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Abstract: Due to its large electric capacity, silicon has become one of the most promising electrode
materials for lithium ion batteries. However, silicon undergoes large volumetric expansion and
material stiffness reduction during the charging process. This can lead to fracture and failure of
lithium-ion batteries. Damage formation and evolution inside the electrode are influenced by the
lithium ion concentration and electrode material. High stress gradients induced by heterogeneous
deformation can lead to massive migration of lithium ions towards high geometrical singularity
regions, such as crack edge regions, which increases the lithium ion concentration. Fully coupled
mechanical diffusion equations are important in describing the mechanics of this problem. In this
study, the three-dimensional peridynamic theory is presented to solve the coupled field problem.
In addition, the newly developed peridynamic differential operator concept is utilized to convert
partial differential equations into peridynamic form for the diffusion equation. Spherical and
cylindrical shaped energy storage structures with different pre-existing penny-shaped cracks are
considered to demonstrate the capability of the developed framework. It is shown that peridynamic
theory is a suitable tool for predicting crack evolution during the lithiation process.
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1. Introduction

In the marine industry, traditional propulsion systems with internal combustion engines
cannot match the increasing strict standards for waste gas emissions (MARPOL Annex VI) [1].
Hence, the hybrid propulsion system, as an alternative approach to marine propulsion systems,
has become popular in the shipping industry. Marine batteries, as primary energy storage devices,
have been subject to excessive investigation [2]. The lithium ion battery is one of the most promising
marine batteries due to its high energy to weight ratio, high energy density, low rate of self-discharge
and long cycle life [3]. The performance of a lithium ion battery mainly depends on the material
properties of its anode, cathode and electrolyte. The carbon group elements, carbon (C), silicon
(Si), germanium (Ge), tin (Sn) and their alloys, can be selected as the anode material in lithium
ion batteries [4,5]. In many commercial grade lithium ion batteries, graphitic carbon is the main
component of the anode material due to its low expansion induced by lithiation during battery
charging [4]. However, the major limitation of graphite carbon is its low electric capacity (372 mAhg−1)
whereby it stores the lithium ion inside graphite sheets as (LiC6) [4–6] which cannot satisfy the demand
for high electric capacity in marine batteries. On the other hand, silicon (Si) and germanium (Ge)
have relatively high theoretical capacities as compared to graphite carbon (3579 mAhg−1 and 1625
mAhg−1, respectively) [6] which can be considered to be suitable candidates for the anode material in
lithium ion batteries. However, both Si and Ge anodes experience large volumetric changes during
battery cycling. The Si anode can experience a volume expansion of up to 400% during the charging

Energies 2018, 11, 1461; doi:10.3390/en11061461 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/6/1461?type=check_update&version=1
http://dx.doi.org/10.3390/en11061461
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1461 2 of 22

process [7,8]. Similar to the Si anode, the Ge anode can expand 370% in volume during the lithiation
process [9]. Frequent cycling of the lithium ion battery may lead to stress misdistribution, degradation
and delamination of the battery components. This may then lead to failure or even pulverization of
the battery anode.

Many efforts have been conducted to increase the electric capacity and to avoid the occurrence
of defects inside the electrodes of lithium ion batteries. Winter et al. [10] suggested that some metals,
such as aluminum (Al), tin (Sn) and antimony (Sb) can store more lithium ion than graphite carbon
by forming alloys with lithium ions. However, the newly formed alloyed anode will experience
a 500% volumetric expansion [4], which is the major barrier to becoming the anode material in
rechargeable lithium ion batteries. Gao et al. [11] suggested carbon nanotubes as the anode material.
Carbon nanotubes are tubular forms of graphite sheet with high conductivity, high tensile strength,
high rigidity and low density. They increase the electric capacity of carbon by up to around 600 mAhg−1

without damage or pulverization. Metals or their alloys can also be added into the nanotube in
composite form. Hence, the advantage of the high electric capacity of metal alloys and the low
volumetric change in graphite carbon can be utilized in anode materials [12,13]. However, carbon
nanotubes experience a loss of lithium ion capacity during cycling and a linear voltage drop during
discharging [4].

In comparison with graphite carbon or carbon nanotube anodes, silicon has superior performance
in terms of electrical capacity. However, as mentioned earlier, it suffers from pulverization due to
large volumetric change during battery cycling. The fracture behaviour of silicon anodes has been
subject to frequent investigation in recent years. Liu et al. [14] constructed a thin silicon film model
to investigate lithiation-induced tensile stress and surface cracking by using analytical and finite
element methods (FEM). A compression-traction transition zone was observed along the interface
of electrode and electrolyte. The formation of the transition zone depends on the large volumetric
change, plastic deformation and slow charging rate. Crack formation and propagation was led by the
location of the transition zone [14,15]. The magnitude and profiles of tensile stress at the surface of
the lithiated silicon zone depends on volumetric misfit strain, yield stress and modulus of unlithiated
silicon. Ryu et al. [8] found that the large volume change during the normal cycling process is always
accompanied by a pressure gradient. High hydrostatic stress will affect the lithium ion diffusion and
fracture propagation inside the anode of a battery. Grantab and Shenoy [16] conducted a detailed
investigation of the effect of the pressure gradient factor on crack propagation in silicon nanowires.
The cohesive FEM was applied to model fracture evolution in silicon nanowires. Since localized stress
around the crack tip is higher than the surrounding nanowire surface region, a large quantity of lithium
ions moved into the crack tip region which caused a relatively large volume expansion. Therefore,
the hydrostatic stress around the crack tip reduced. Zuo and Zhao [17] used the phase field method
to study the stress evolution and crack propagation. Several damaged anode models with different
crack numbers and different crack orientations were considered to illustrate fracture evolution in the
battery anode. The pressure gradient was shown to be dependent on the elastic modulus, partial
molar volume, concentration, Poisson’s ratio and the localized lithium ion concentration. On the
other hand, Gao and Zhou [18] applied the FEM and the J-integral method to study the softening
effect during the lithiation process. They also captured the high lithium ion concentration at crack
tip regions during the charging process, leading to relaxation of hydrostatic stress in later diffusion
process. The fracture evolution in silicon nanowires also depends on the geometry of the structure.
Ryu et al. [8] also concluded that silicon nanowires with diameters smaller than 300 nm will not
fail during battery cycling, even pre-damaged nanowires. Due to their large pressure gradient and
large volume expansion, lithium ions can rapidly diffuse into silicon nanowires. As an alternative
approach, peridynamics [19–25] was used to investigate fracture evolution during the lithiation process
by considering plane-stress conditions [26,27]. It was shown that peridynamics can capture accurate
fracture propagation patterns for multiple cracks with random orientations inside the anode material.
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In this study, the two-dimensional fully-coupled peridynamic model developed in Wang et al. [27]
is extended to a three-dimensional peridynamic model. The effect of pressure gradient and material
phase change during lithiation process (from Si to LixSi) are taken into consideration. Coupled field
equations are used to describe the lithiation process with the help of the newly developed peridynamic
differential operator [26]. To demonstrate the capability of the model, the fracture evolution inside the
cylindrical and spherical shaped lithium ion battery anodes is presented.

2. Coupled Diffusion-Mechanical Deformation Formulation

Fick’s Second Law describes the basic principles of ion diffusion [28]. Due to silicon being
the anode material, larger volume expansion occurs as lithium ions diffuse inside the anode.
Hence, the diffusion-induced stress during battery cycling should be taken into account in Fick’s
Second Law. The mechanical strain component, εM

ij , can be expressed by considering the influence of
lithium ion diffusion as [16,17]:

εM
ij = εij − αCavgδij (1)

where εij refers to the total strain, α represents the coefficient of expansion, Cavg represents the
current average concentration value of the interacting material points, and δij is the Kronecker Delta.
For three-dimensional cases, the stress-strain constitutive equation can be written as:

σxx

σyy

σzz

σxy

σxz

σyz


=

E
(1 + ν)(1− 2ν)


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
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εM
xx

εM
yy

εM
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2εM
xy

2εM
xz

2εM
yz


(2)

By substituting Equation (2) into Equation (1), the coupled field normal stresses can be
expressed as:

σxx =
E

(1 + ν)(1− 2ν)

[
(1− ν)εxx + νεyy + νεzz

]
− E

(1− 2ν)
αCmaxC (3)

σyy =
E

(1 + ν)(1− 2ν)

[
νεxx + (1− ν)εyy + νεzz

]
− E

(1− 2ν)
αCmaxC (4)

σzz =
E

(1 + ν)(1− 2ν)

[
νεxx + νεyy + (1− ν)εzz

]
− E

(1− 2ν)
αCmaxC (5)

where C is current value of the normalized lithium ion concentration, and Cmax is the maximum value
of the lithium ion concentration. The total normal strain in all three dimensions can be expressed in
terms of displacements as:

εxx =
∂u
∂x

(6)

εyy =
∂v
∂y

(7)

εzz =
∂w
∂z

(8)

Local stress will rise along with lithium ion diffusion at regions with high geometrical singularity.
A high pressure gradient will lead to a large amount of lithium ion diffusion into these regions,
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which will increase the lithium ion concentration. As a result, stress will release as volume expands.
Hence, the general Fick’s Second Law should be modified by considering the pressure-gradient as:

∂C
∂t = MkBT

(
∂2C
∂x2 + ∂2C

∂y2 + ∂2C
∂z2

)
− MCΩ

NA

(
∂2σ̃
∂x2 + ∂2σ̃

∂y2 + ∂2σ̃
∂z2

)
−MCΩ

NA

(
∂C
∂x

∂σ̃
∂x + ∂C

∂y
∂σ̃
∂y + ∂C

∂z
∂σ̃
∂z

) (9)

where M is the molecular mobility, kB is Boltzmann constant, T is the absolute temperature,
NA is Avogadro’s constant and σ̃ is the hydrostatic stress.

Zhang et al. [29] emphasized that silicon has different lithiated stages during the charging process.
In the early stage, since lithium ion concentration is low, silicon will transform into partial lithiated
silicon (LixSi). As the lithium ion concentration increases, the partially lithiated silicon will further
transform into fully lithiated silicon (Li15Si4). Moreover, since some material properties of lithiated
silicon, such as the elastic modulus and fracture toughness, are lower than those of pure silicon,
the lithiation process can also be regarded as a material softening process [30]. However, the size of the
partially lithiated silicon region in a battery anode is very small compared to the anode’s geometry [29].
Therefore, in this study, only fully lithiated silicon was considered.

3. Peridynamic Theory

An extensive number of studies about fracture mechanics based on classic continuum mechanics
(CCM) can be found in the literature. The CCM applies the spatial partial differential equations to
describe the motion of a material point. Within the framework of CCM, various tools, such as the FEM,
boundary element method (BEM) and cohesive zone method (CZM) [31–33], have been applied in
numerical fracture analysis. However, since partial differential equations require continuous material
geometry, CCM, as a local theory, may have difficulty performing the numerical analysis of problems
with discontinuous geometry, such as cracks and kinks. By regarding damage as newly formed
boundaries, a remeshing process may be inevitable in numerical analysis [34].

Peridynamic theory (PD) was firstly introduced by Silling and Askari [35] as an alternative
numerical approach to CCM. Unlike FEM, the PD uses spatial integral equations instead of partial
differential equations to describe the motion of material points. On the other hand, PD is a non-local
theory. Material points can build up interactions, called peridynamic bonds, with surrounding
neighbors within a certain distance (δ), as shown in Figure 1. The collection of neighboring points
is called the horizon (Hx). For neighboring points of material point x beyond the size of the horizon,
it is assumed that the interactions are too weak and have little influence on point x, which can
be ignored in a numerical simulation. By integrating the forces between material point x and its
neighboring points, x’, the equation of motion of material point x can be calculated and expressed as

ρ
..
u(x, t) =

∫
Hx

f
(
u
(
x′, t
)
− u(x, t), x′ − x

)
dVx′ + b(x, t), (10)

where b refers to the body force density and f is the pairwise force of each interaction (bond). Note that,
in this study, the bond-based peridynamic theory is used for simplicity. However, extension of the
formulation to the ordinary-state based formulation is straightforward [34,36].

In bond-based peridynamic theory, the bond force depends on the relative position and relative
displacement of the material points associated with the bond which can be calculated as [37]:

f =
ξ+ η

|ξ+ η| c
(
s− αCavg

)
µ(t,ξ) (11)

where the relative position of material points x and x′ can be defined in the undeformed
configuration as:

ξ = x′ − x (12)
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Note that the bond force given in Equation (11) is calculated based on the deformed configuration.
Therefore, the formulation has the capacity to capture large deformations. Moreover, the relative
displacement can be expressed as:

η = u
(
x′, t
)
− u(x, t) (13)

In Equation (11), α is the coefficient of expansion, s is the stretch of the bond and Cavg represents
the average lithium ion concentration of material points x and x′. µ is the failure parameter and c is the
bond constant. For a three-dimensional isotropic material, the bond constant can be expressed as:

c =
12E
πδ4 (14)

Note that for the three-dimensional, bond-based peridynamic theory, the Poisson’s ratio for
a linear elastic isotropic material is equivalent to ν = 1/4.

In CCM, damage is specially treated by using remeshing or a pre-defined crack propagation path.
On the other hand, the damage is represented as “bond breakage” in peridynamic theory. For brittle
elastic material, once the bond stretch exceeds a critical stretch value, sc, after deformation, the bond
will break and cannot recover by itself. The critical stretch depends on the critical strain energy release
rate (Gc). For a three-dimensional model, the rate definition of the critical strain energy release in
peridynamics has been derived by Silling and Askari [35] as:

Gc =
∫ δ

0

{∫ 2π

0

∫ δ

0

∫ cos−1 z/ξ

0

(
1
2

cξs2
c ξ2
)

sin φdφdξdθ

}
dz =

1
2

cs2
c

(
δ5π

5

)
(15)

Hence, the critical stretch, sc, can be expressed as:

sc =

√
5Gc

6Eδ
(16)

The failure condition of each bond can be represented by a failure parameter as:

µ(t,ξ) =

{
1 s ≤ sc

0 s > sc
(17)

Since the broken bond no longer carries any load, the total load associated with material point
x will be redistributed to the remaining bonds. This leads to a change in mechanical conditions.
The damage value of material point x can be defined as:
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ϕ(x, t) = 1−
∫

Hx
µ(t,ξ)dVx′∫
Hx

dVx′
(18)

which represents the percentage of broken bonds associated with material point x. The material point
is totally damaged when the damage parameter is equivalent to 1, whereas it is undamaged when the
damage parameter is equivalent to 0. Note that breakage of a single bond will not cause the emergence
of a crack. Instead, all bonds passing through a crack surface should be broken for a crack to occur.
In other words, as the number of broken bonds increases, cracks can emerge and eventually propagate
inside the structure. Moreover, there is no need to define the crack path, as in some other existing
approaches, such as the cracking particle method [38,39].

During the charging (lithiation) process, the anode will expand in volume, and high hydrostatic
stresses will emerge inside the anode, especially at high singularity regions. For three-dimensional
problems, the hydrostatic stress of a material point, x, can be calculated as [40]:

σ̃ =
1
3
(
σxx + σyy + σzz

)
(19)

The Cauchy stress tensor, σij, can be expressed in terms of the first Piola–Kirchoff stress, σ0, as [41]:

σ = Jσ0FT =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (20)

where the deformation gradient, F, and its determinant, J, are defined as:

F =
9

4πδ4

∫
Hx

1

|x′ − x|2
(
y′ − y

)
⊗
(
x′ − x

)
dVx′ (21)

and:
J = det(F) (22)

In Equation (21), x′ − x refers to the initial relative distance, and y′ − y refers to the relative
distance after deformation. The stress is not directly expressed by the bond-based peridynamic theory.
However, the first Piola–Kirchoff stress can be calculated using peridynamic parameters as:

σ0 =
∫

Hx
f⊗

(
x′ − x

)
dVx′ (23)

Hence, the amount of hydrostatic stress depends on the displacement gradient and the lithium ion
concentration, whereas the concentration change rate depends on the hydrostatic stress gradient and
the lithium ion concentration gradient. Therefore, the coupled field equation is applied, as shown in
Equation (9). In this study, the peridynamic form of partial differential equation given in Equation (9)
was obtained by using peridynamic differential operator method developed by Madenci et al. [42].

4. Peridynamic Differential Operator Approach

The three-dimensional peridynamic differential operator can be derived by considering the Taylor
series. Three-dimensional Taylor Series can be written by disregarding the higher order terms [41]:

f (x′) = f (x) + ξ1
∂ f (x)
∂x1

+ ξ2
∂ f (x)
∂x2

+ ξ3
∂ f (x)
∂x3

+ 1
2!

∂2 f (x)
∂x2

1
+ 1

2!
∂2 f (x)

∂x2
2

+ 1
2!

∂2 f (x)
∂x2

3
+ ξ1ξ2

∂2 f (x)
∂x1∂x2

+ ξ1ξ3
∂2 f (x)
∂x1∂x3

+ ξ2ξ3
∂2 f (x)
∂x2∂x3

(24)

This is done by moving f (x) to the left-hand-side and multiplying each term in Equation (24)
with a PD function, gp1 p2 p3

3 (ξ), in which (p1, p2, p3 = 0, 1, 2 and they cannot be equal to zero at the
same time), and integrating throughout the horizon yields:
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∫
Hx

( f (x′)− f (x))gp1 p2 p3
3 (ξ)dVx′ =

∂ f (x)
∂x1

∫
Hx

ξ1gp1 p2 p3
3 (ξ)dVx′ +

∂ f (x)
∂x2

∫
Hx

ξ2gp1 p2 p3
3 (ξ)dVx′

+ ∂ f (x)
∂x3

∫
Hx

ξ3gp1 p2 p3
3 (ξ)dVx′+

∂2 f (x)
∂x2

1

∫
Hx

1
2! ξ

2
1gp1 p2 p3

3 (ξ)dVx′ +
∂2 f (x)

∂x2
2

∫
Hx

1
2! ξ

2
2gp1 p2 p3

3 (ξ)dVx′

+ ∂2 f (x)
∂x2

3

∫
Hx

1
2! ξ

2
3gp1 p2 p3

3 (ξ)dVx′ +
∂2 f (x)
∂x1∂x2

∫
Hx

ξ1ξ2gp1 p2 p3
3 (ξ)dVx′

+ ∂2 f (x)
∂x1∂x3

∫
Hx

ξ1ξ3gp1 p2 p3
3 (ξ)dVx′ +

∂2 f (x)
∂x2∂x3

∫
Hx

ξ2ξ3gp1 p2 p3
3 (ξ)dVx′

(25)

The orthogonality property of the PD functions is invoked:

1
n1n2n3

∫
Hx

ξn1
1 ξn2

2 ξn3
3 gp1 p2 p3

3 (ξ)dVx′ = δn1 p1 δn2 p2 δn3 p3 with (n1, n2, p1, p2 = 1, 2) (26)

and Equation (26) is substituted into Equation (25); then, the partial differential equations can be
expressed in peridynamic form as:

∂ f (x)
∂x1

∂ f (x)
∂x2

∂ f (x)
∂x3

∂2 f (x)
∂x2

1
∂2 f (x)

∂x2
2

∂2 f (x)
∂x2

3
∂2 f (x)
∂x1∂x2
∂2 f (x)
∂x1∂x3
∂2 f (x)
∂x2∂x3



=
∫

Hx

(
f
(
x′
)
− f (x)

)
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g100
3

g010
3

g001
3

g200
3

g020
3

g002
3

g110
3

g101
3

g011
3
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dVx′ (27)

In Equation (27), the peridynamic functions, gp1 p2 p3
3 (ξ), can be constructed by:

gp1 p2 p3
3 (ξ) = ap1 p2 p3

100 ω100(|ξ|)ξ1 + ap1 p2 p3
010 ω010(|ξ|)ξ2 + ap1 p2 p3

001 ω001(|ξ|)ξ3 + ap1 p2 p3
200 ω200(|ξ|)ξ2

1

+ap1 p2 p3
020 ω020(|ξ|)ξ2

2
+ ap1 p2 p3

002 ω002(|ξ|)ξ2
3
+ ap1 p2 p3

110 ω110(|ξ|)ξ1ξ2 + ap1 p2 p3
101 ω101(|ξ|)ξ1ξ3

+ap1 p2 p3
011 ω011(|ξ|)ξ2ξ3

(28)
The weight function, ωq1q2q3(|ξ|) can be expressed as:

ωq1q2q3(|ξ|) =
(

δ

|ξ|

)q1+q2+q3+1
(29)

where q1, q2, q3 = 0, 1, 2 and they cannot be equal to zero at the same time.
According to Equation (28), the peridynamic functions, gp1 p2 p3

3 (ξ), are composed of elements
with an unknown coefficient matrix, a, weight function, ω and bond length in the x, y and z directions.

The unknown coefficient matrix, a, is derived from the peridynamic shape matrix, A, and
the known coefficient matrix, b, via following relationship:

A a = b (30)

The elements of the peridynamic shape matrix, A, can be expressed as:

A(n1n2n3)(q1q2q3)
=
∫

Hx

ωq1q2q3(|ξ|)ξn1+q2
1

ξ
n2+q2
2 ξ

n3+q3
3 dV (31)

where the unit volume is dVx′ = ξ2 sin θdξdθdφ. Hence, the peridynamic shape matrix can be
calculated as:
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A =



4
9 πδ5 0 0 0 0 0 0 0 0

0 4
9 πδ5 0 0 0 0 0 0 0

0 0 4
9 πδ5 0 0 0 0 0 0

0 0 0 1
5 πδ7 1

15 πδ7 1
15 πδ7 0 0 0

0 0 0 1
15 πδ7 1

5 πδ7 1
15 πδ7 0 0 0

0 0 0 1
15 πδ7 1

15 πδ7 1
5 πδ7 0 0 0

0 0 0 0 0 0 1
15 πδ7 0 0

0 0 0 0 0 0 0 1
15 πδ7 0

0 0 0 0 0 0 0 0 1
15 πδ7


. (32)

The elements of the known matrix, b, can be expressed as:

bp1 p2 p3
n1n2n3 = n1!n2!n3!δn1 p1 δn2 p2 δn3 p3 (33)

Hence, the known coefficient matrix b can be written as:

b =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(34)

According to Equation (30), the unknown matrix a can be computed as:

a =



9
4πδ5 0 0 0 0 0 0 0 0

0 9
4πδ5 0 0 0 0 0 0 0

0 0 9
4πδ5 0 0 0 0 0 0

0 0 0 12
πδ7

−3
πδ7

−3
πδ7 0 0 0

0 0 0 −3
πδ7

12
πδ7

−3
πδ7 0 0 0

0 0 0 −3
πδ7

−3
πδ7

12
πδ7 0 0 0

0 0 0 0 0 0 15
πδ7 0 0

0 0 0 0 0 0 0 15
πδ7 0

0 0 0 0 0 0 0 0 15
πδ7


(35)

Substituting Equations (29) and (35) back to Equation (28), the peridynamic functions gp1 p2 p3
3 (ξ)

can be calculated as:
g100

3 =
9

4πδ3
1
|ξ| sin θ cos φ (36)

g010
3 =

9
4πδ3

1
|ξ| sin θ sin φ (37)

g001
3 =

9
4πδ3

1
|ξ| cos θ (38)

g200
3 =

12
πδ4

1
|ξ| sin2 θ cos2 φ− 3

πδ4
1
|ξ| sin2 θ sin2 φ− 3

πδ4
1
|ξ| cos2 θ (39)

g020
3 =

−3
πδ4

1
|ξ| sin2 θ cos2 φ +

12
πδ4

1
|ξ| sin2 θ sin2 φ− 3

πδ4
1
|ξ| cos2 θ (40)
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g002
3 =

−3
πδ4

1
|ξ| sin2 θ cos2 φ− 3

πδ4
1
|ξ| sin2 θ sin2 φ +

12
πδ4

1
|ξ| cos2 θ (41)

g110
3 =

15
πδ4

1
|ξ| sin2 θ cos φ sin φ (42)

g101
3 =

15
πδ4

1
|ξ| sin θ cos θ cos φ (43)

g011
3 =

15
πδ4

1
|ξ| sin θ cos θ sin φ (44)

where θ represents the angle between the projection of the bond over the x-y plane and x-axis. φ shows
the angle between the bond and the z-axis, as shown in Figure 2 (red line shows the bond).
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Substituting Equations (36)–(44) in Equation (27), the partial derivative expressions in peridynamic
form can be obtained. Therefore, the extension of Fick’s Second Law given in Equation (9) can be
rewritten in peridynamic form as:

∂C
∂t = MkBT

∫
Hx
{C(x′, t)− C(x, t)}

{
g200

3 (ξ) + g020
3 (ξ) + g002

3 (ξ)
}

dVx′

−MCΩ
NA

∫
Hx
{σ̃(x′, t)− σ̃(x, t)}

{
g200

3 (ξ) + g020
3 (ξ) + g002

3 (ξ)
}

dVx′

−MCΩ
NA

{(∫
Hx
{C(x′, t)− C(x, t)}g100

3 (ξ)dVx′
)(∫

Hx
{σ̃(x′, t)− σ̃(x, t)}g100

3 (ξ)dVx′
)}

−MCΩ
NA

{(∫
Hx
{C(x′, t)− C(x, t)}g010

3 (ξ)dVx′
)(∫

Hx
{σ̃(x′, t)− σ̃(x, t)}g010

3 (ξ)dVx′
)}

−MCΩ
NA

{(∫
Hx
{C(x′, t)− C(x, t)}g001

3 (ξ)dVx′
)(∫

Hx
{σ̃(x′, t)− σ̃(x, t)}g001

3 (ξ)dVx′
)}

(45)

5. Numerical Studies

To demonstrate the capability of the current approach, spherical and cylindrical shaped anodes
with different crack configurations were considered and the evolution of the damage during
the lithiation process was investigated. In all cases, for the numerical solution, uniform spatial
discretization was utilized with a grid size of 20 nm for the spherical model and 10 nm for the
cylindrical model. Corresponding horizon sizes were specified as 60 nm and 30 nm, respectively.
However, the recently introduced dual-horizon concept [20,22] can also be applied to improve the
numerical efficiency of the solution. For the time integration, two different critical time step sizes
for Equations (10) and (45) were determined as given in [34]. Since the critical time step size for



Energies 2018, 11, 1461 10 of 22

each equation was different, we chose the smaller value, i.e., 2 × 10−14 s, to ensure the stability of
the solution.

5.1. Spherical Model

In the first case, a spherical energy storage particle with a pre-existing penny-shaped crack was
considered. The materials of this particle, including pure silicon and lithiated silicon, were regarded as
brittle materials. In addition, the concentration values were normalized by the maximum concentration
as shown in Table 1. Before the charging started, the anode material remained as pure silicon. During
the charging process, lithium ions at their maximum concentration were applied to the entire outer
surface. Since the particle structure was free from any displacement constraints, it experienced free
expansion during the charging process. For the three-dimensional bond-based peridynamic theory,
the Poisson’s ratio is limited to 1/4. However, the Poisson’s ratio values of pure silicon and lithiated
silicon, given in Table 1, are very close to the constrained value. Therefore, the limitation of bond-based
peridynamic theory regarding Poisson’s ratio would not be effective in this case. Other Poisson’s ratio
values can be specified using the ordinary-state based peridynamic formulation. Since the geometry of
the spherical energy storage particle was symmetric and the penny-shaped crack was horizontally
oriented, the sample planes were selected along the longitude and latitude of the sphere, shown in red
and black, respectively, in Figure 3 to show the lithium ion concentration and mechanical deformation
clearly inside the particle.
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Table 1. Geometrical parameters and material properties of energy storage models.

R Radius of spherical particle 0.5 µm
L Longitudinal length of cylindrical nanowire 0.5 µm

Esilicon Elastic constant of pure silicon 80 GPa
ELi15Si4 Elastic constant of lithiated silicon, Li15Si4 41 GPa
νsilicon Poisson’s ratio of pure silicon 0.22
νLi15Si4 Poisson’s ratio of lithiated silicon, Li15Si4 0.24

Ω Partial molar volume 8.5 × 10−6 m3 mol−1

M Molecular mobility 500 m2 J−1 s−1

kB Boltzmann constant 1.38 × 10−23 J·K−1

T Absolute temperature 300 K
NA Avogadro’s constant 6.02 × 1023 mol−1

Cmax Maximum concentration 1.18 × 104 mol m−3

The penny-shaped crack was located in the central region of the anode structure. The diameter of
the penny-shaped crack was half of the diameter of the anode and the crack was horizontally oriented,
as shown in Figure 3. As lithiation progressed, the material at the anode surface region became lithiated
silicon (Li15Si4) first. Hence, the surface region experienced relatively large deformation while the
central region remained undeformed. Due to this mechanical deformation state, compressive stresses
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emerged at the particle surface region, whereas tensile stresses formed at the particle central region,
especially around the crack tip location. Hence, according to Equation (9), high hydrostatic stress
affects the lithium ion distribution inside the spherical structure.

The results of lithium ion diffusion and diffusion-induced deformation during the charging
process are shown in Figures 4 and 5. In order to have a clear understanding of the lithiation-induced
damage in the three-dimensional structure, results are presented in both the x-z plane and x-y
plane (crack surface plane). Due to the heterogeneous distribution of deformation in the spherical
structure, high hydrostatic stresses arose at the edge of the penny-shaped crack where high geometrical
singularity lies, as shown in Figures 4c and 5c. As the lithium ion diffused further into the spherical
structure, the lithium ion concentration at the crack edge regions started to increase compared with
the surrounding regions. However, since the penny-shaped crack had just started to propagate,
as shown in Figures 4b and 5b, the change in lithium-ion concentration may not be very obvious
from the concentration plot. The hydrostatic stress value around the crack edge region was
around 1.5 GPa which led to a bond stretch far beyond the critical stretch of amorphous silicon.
Hence, the penny-shaped crack would have continued to propagate until the stretch of the bonds at
the crack tip region reduced below the critical stretch value given in Equation (16).
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5.2. Cylindrical Model

In this section, several different pre-damaged models are considered to investigate the fracture
evolution in the silicon nanowire. The silicon nanowire is represented by a cylindrical-shaped
structure. The fracture analysis of cases with different crack orientations is separately discussed
in the following sections.

5.2.1. Penny-Shaped Crack along the Horizontal Plane

A cylindrical-shaped structure with diameter L, shown in Figure 6, was considered to represent
a silicon nanowire. A penny-shaped crack (marked as shadow lines in Figure 6), L/4 in diameter,
was horizontally oriented at the center of the cylindrical structure. The material properties of the
cylindrical anode were the same as for the spherical model in Table 1. Before charging the battery,
the cylindrical material was pure silicon. During the charging process, lithium ions at maximum
concentration was applied to the outer surface of the cylindrical structure. As a result, the material
properties changed as the lithium ions diffused inside the electrode and the cylindrical structure
deformed. Similar to the spherical model, the results are shown in two different plane views in order
to present detailed fracture information.
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Due to the material phase change during the charging process, material points at the surface
region expanded as pure silicon changed into lithiated silicon, whereas material points in the central
region remained undeformed. Therefore, the hydrostatic stress in the outer surface region is shown as
compression stress which is marked as blue in Figures 7c and 8c. The hydrostatic stress in the inner
region of the cylindrical anode is shown as tensile stress, which is marked in red, especially at the
crack tip region. In this case, the crack propagation is obvious. The penny-shaped crack edge lies
close to the material phase boundary, as shown Figures 7b and 8b. Hence, according to Equation (9),
the lithium ion concentration at the crack edge region is relatively higher than in the surrounding
regions as shown in Figures 7d and 8d. Since the hydrostatic stress at the crack tip region is around
2.3 GPa, it leads to the bond stretching far beyond the critical stretch of the lithiated silicon. Therefore,
the crack propagation will not stop until the stretch values of the bonds at the crack edge regions
reduce below the critical stretch value.
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(crack surface plane): (a) initial damage; (b) damage after deformation; (c) hydrostatic stress; and
(d) lithium ion concentration.

5.2.2. Penny-Shaped Crack along the Vertical Plane

In contrast to the spherical energy storage particle model presented earlier, the cylindrical silicon
nanowire model may show different fracture behaviors in the radial direction and longitudinal
direction. Hence, in this case study, the penny-shaped crack along the longitudinal (z-direction)
direction is under investigation. A penny-shaped crack with a diameter of L/4 was located at the
central position in the cylinder model, as shown in Figure 9. However, in contrast to the case study
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in Section 5.2.1, the crack was vertically oriented (or along the x-z mid-plane). Before charging the
lithium ion battery, the cylinder was composed of pure silicon and the lithium ion concentration was
zero throughout the whole structure. During the charging process, the lithium ion concentration
at maximum value was applied to the entire outer surface of the cylinder. As the lithium ion
concentration increased, pure silicon transformed into fully lithiated silicon which led to volume
expansion. The stress and damage induced by this volume expansion are shown in Figures 9 and 10.

Energies 2018, 11, x 16 of 23 

 

in Section 5.2.1, the crack was vertically oriented (or along the x-z mid-plane). Before charging the 
lithium ion battery, the cylinder was composed of pure silicon and the lithium ion concentration was 
zero throughout the whole structure. During the charging process, the lithium ion concentration at 
maximum value was applied to the entire outer surface of the cylinder. As the lithium ion 
concentration increased, pure silicon transformed into fully lithiated silicon which led to volume 
expansion. The stress and damage induced by this volume expansion are shown in Figures 9 and 10. 

 
Figure 9. Cylindrical anode structure with a pre-existing vertical crack. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Result plots of cylindrical anode with a single vertical crack in the y-z mid-plane: (a) initial 
damage; (b) damage after deformation; (c) hydrostatic stress; and (d) lithium ion concentration. 

Figure 9. Cylindrical anode structure with a pre-existing vertical crack.

Energies 2018, 11, x 16 of 23 

 

in Section 5.2.1, the crack was vertically oriented (or along the x-z mid-plane). Before charging the 
lithium ion battery, the cylinder was composed of pure silicon and the lithium ion concentration was 
zero throughout the whole structure. During the charging process, the lithium ion concentration at 
maximum value was applied to the entire outer surface of the cylinder. As the lithium ion 
concentration increased, pure silicon transformed into fully lithiated silicon which led to volume 
expansion. The stress and damage induced by this volume expansion are shown in Figures 9 and 10. 

 
Figure 9. Cylindrical anode structure with a pre-existing vertical crack. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Result plots of cylindrical anode with a single vertical crack in the y-z mid-plane: (a) initial 
damage; (b) damage after deformation; (c) hydrostatic stress; and (d) lithium ion concentration. Figure 10. Result plots of cylindrical anode with a single vertical crack in the y-z mid-plane: (a) initial

damage; (b) damage after deformation; (c) hydrostatic stress; and (d) lithium ion concentration.



Energies 2018, 11, 1461 16 of 22

The results are presented in the x-z mid-plane view (Figure 10) and x-y mid-plane view (Figure 11).
During the charging process, the material points in the outer surface region were first lithiated and
then expanded whereas the material points in the central region remained undeformed. As a result,
a deformation gradient from outer surface to central cylinder was produced, and hydrostatic stress
increased, especially at the crack edge regions, in accordance with Equations (19)–(23). Figures 10c
and 11c, show the location of compression stress at the outer surface region, which is represented in
blue in the figure. Tension stress exists in the central cylinder region, especially at crack edge regions
where geometrical singularity exists, which is represented as red in the figure. As the crack propagated,
the crack opened which caused relatively high tension stress near the crack surface. Since the crack
propagated close to the material phase boundary, the lithium ion concentration was relatively higher
than surrounding regions in accordance with to Equation (9), as shown in Figures 10d and 11d.
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5.2.3. Twin Penny-Shaped Cracks along Horizontal Planes

The case studies in Sections 5.2.1 and 5.2.2 focused on the fracture analysis of a single crack
on the symmetry plane of the cylinder structure. Hence, due to symmetric geometry and loading,
the penny-shaped crack propagated along the crack surface plane. However, in reality, multiple cracks
can occur at any position inside the battery electrode. Hence, in this case study, a silicon cylinder with
two cracks not on the symmetry plane was investigated. As shown in Figure 12, twin cracks were
located at the central region with diameters equal to L/4 and the distance between these cracks was
also L/4. Both of the cracks were horizontally oriented. Before charging the battery, the cylindrical
nanowire was composed of pure silicon only. During the charging process, lithium ions at maximum
concentration were applied on the entire outer surface of the cylinder. As a result, the material points
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on the surface became lithiated and expanded while the material points in the central region remained
undeformed. The heterogeneous deformation led to an increase in hydrostatic stress in regions with
geometrical singularity and sped up the diffusion process, as shown in Figure 13.
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Compared with the case in Section 5.2.1, the crack propagation behavior was different. At the
initial stage of the charging process, both cracks propagated along the crack surface plane. However,
as the charging process continued, the upper crack propagated upward from its edge and the lower
crack propagated downwards from its edge. These cracks repelled each other, as shown in Figure 13b.
Due to the heterogeneous volume expansion inside the cylinder, a deformation gradient formed from
surface of the cylinder to the central cylinder. As a result, the hydrostatic stress increased, especially at
the crack edge regions, in accordance with Equations (19)–(23). Since material points at the surface
region experienced expansion during the charging process, the compression stresses were evident,
as represented in Figure 13c. The expansion of these material points caused tensile stress for the
material points in the central region, especially around the crack edge region, as shown in Figure 13c.
Since the crack edge is close to the material phase boundary, lithium ions would have diffused into
regions around the crack edge with higher priority in accordance with Equation (9). Hence, the lithium
ion concentration was relatively higher than surrounding regions, as shown in Figure 13d.

5.2.4. Twin Penny Shape Cracks along Vertical Planes

After the analysis of twin cracks along horizontal planes, a case with twin cracks along vertical
planes was also considered. In this case study, twin vertical oriented cracks were arranged in the center
region of a silicon cylinder, as shown in Figure 14. The diameters of both cracks were L/4 and the
distance between these cracks was also L/4. Before charging the battery, the silicon cylinder was made
of pure silicon. During the charging process, lithium ions at maximum concentration were applied on
the entire outer surface of the cylinder. Hence, the material particles inside the outer surface region
became lithiated and expanded. This influenced the lithium ion diffusion and hydrostatic stress inside
the cylinder, as shown in Figure 15.
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Figure 15a shows the initial damage in the view of the x-z mid-plane. Early in the charging
process, penny shape cracks propagated along their crack surfaces. However, as the charging process
continued, the left crack propagated towards the left and the right crack propagated towards the right.
Generally, these cracks repelled each other, as shown in Figure 15b. Heterogeneous volume expansion
led to the formation of a deformation gradient from the surface region to the central region. Therefore,
hydrostatic stress rose inside the cylinder in accordance with Equations (19)–(23). The heterogeneous
expansion during lithiation introduced compression stress on material points at the cylinder surface
region, which is marked in blue in Figure 15c. As a consequence, the material points at the central
cylinder region would have suffered from the tensile stress, marked in red. As the crack edge reached
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the material phase boundary, the lithium ion would have diffused into material points in the crack edge
region first. Hence, a relatively high lithium ion concentration at the crack edge region as compared
with its surrounding region was observed, as shown in Figure 15d.
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5.3. Discussion

The results presented show that lithiation can influence the fracture behavior of a battery electrode.
In the perspective of peridynamic theory, crack propagation is calculated based on the bond stretch
which depends on the deformation of the structure. Hence, crack propagation generally depends on
deformation which is induced by lithiation during battery charging. Since the pure silicon transforms
into lithiated silicon, the material properties also change which leads to change in the critical bond
stretch value. The comparison between fracture behavior with and without material phase change has
been discussed in previous works [26,27]. In this article, since the material phase change during the
charging process was also under consideration, the critical bond stretch was also influenced by the
material properties.

For an electrode structure with symmetric geometry, the method of crack propagation is different
depending on the position of the initial crack. If the initial cracks lie on the symmetry plane, cracks
will propagate along the crack surface plane, since the geometry and loading are symmetric. However,
if the initial cracks do not lie on the symmetry plane, the newly formed cracks may not align with
the initial crack. For the twin cracks cases, the two-dimensional penny-shaped cracks turned into
three-dimensional bowl-shaped cracks after the battery as charged. This is because of the material
softening phenomenon during lithiation, as described in [32]. Due to the increase in lithium ion
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concentration, pure silicon at the crack edge regions will transform into lithiated silicon (Li15Si4).
As a consequence, the critical bond stretch is reduced. Hence, the bonds at crack edge region reach
a critical stretch value earlier which leads the crack edge to propagate towards the high lithium
ion concentration region. High hydrostatic stresses exist between the twin cracks, as shown in
Figures 13c and 15c, and the bonds located in these regions may not reach the critical value. However,
in situations of high hydrostatic stress, there is potential for these two cracks to merge into one larger
crack as shown in Figure 15b.

6. Conclusions

In this study, peridynamic theory, in conjunction with the newly developed three-dimensional
peridynamic differential operator approach, was utilized as a new method in three-dimensional fracture
analysis during the lithiation process. Two differently shaped structures, a spherical energy storage
particle and cylindrical nanowire, with different pre-existing cracks, were considered. According to
numerical results, crack propagation is usually influenced by high hydrostatic stresses which yield
bond breakage. In addition, the material phase change from pure silicon to lithiated silicon also
influences the crack propagation. If the model geometry and loading are symmetric, the direction of
crack propagation also depends on the initial crack position. High hydrostatic stresses lie between the
cracks in twin crack cases, which means twin cracks have a potential to merge into one larger crack.

As a summary, it was shown that peridynamic theory is a suitable candidate for prediction
of three-dimensional damage evolution in lithium ion battery electrodes. In peridynamic theory,
the damage formation and evolution can be simplified without remeshing or applying sophisticated
damage criteria. By using peridynamics, one can have better understanding of the failure mechanisms
during the cyclic operation of lithium ion batteries.
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