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Abstract: This paper presents a linearization method for the vehicle and tire models under the 

model predictive control (MPC) scheme, and proposes a linear model-based MPC path-tracking 

steering controller for autonomous vehicles. The steering controller is designed to minimize lateral 

path-tracking deviation at high speeds. The vehicle model is linearized by a sequence of supposed 

steering angles, which are obtained by assuming the vehicle can reach the desired path at the end 

of the MPC prediction horizon and stay in a steady-state condition. The lateral force of the front tire 

is directly used as the control input of the model, and the rear tire’s lateral force is linearized by an 

equivalent cornering stiffness. The course-direction deviation, which is the angle between the 

velocity vector and the path heading, is chosen as a control reference state. The linearization model 

is validated through the simulation, and the results show high prediction accuracy even in regions 

of large steering angle. This steering controller is tested through simulations on the CarSim-

Simulink platform (R2013b, MathWorks, Natick, MA, USA), showing the improved performance of 

the present controller at high speeds. 

Keywords: autonomous vehicles; model linearization; path tracking; steering controller; model 

predictive control 

 

1. Introduction 

Autonomous vehicle technology aims to increase driving safety, reduce traffic congestion and 

emissions, and improve energy efficiency [1,2]. The ability to track the desired path accurately and 

steadily plays a critical role in the control task of an autonomous vehicle, especially when operating 

at high speeds. Therefore, a great deal of research has been done on steering control of autonomous 

vehicles. 

Full vehicle models and nonlinear tire models are usually used to simulate the vehicle response 

during high speeds and large-steering-angle driving [3]. However, the nonlinearity of vehicle and 

tire models leads to a high computational burden [4]. A bicycle model with a small-angle assumption 

and a proportional linear tire model are widely used in path-tracking research [5,6]. However, when 

the steering angle and lateral slip angle are larger than 5°, the model becomes inaccurate, especially 

in the region of tire-force saturation. Erlien et al. [7] introduced an affine approximation linearization 

method to handle the nonlinearity of the tires in the model predictive control (MPC) scheme, however, 

this approach is inaccurate when the length of the prediction horizon is larger. Talvala et al. [8] 

proposed a tire slip angle-related parameter to capture the nonlinearity even when the tire is 

saturated. In general, tuning the parameters of a given model to realistic values can be challenging 

work. 
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Heading deviation and lateral deviation are usually chosen as the control reference states, and 

multiple approaches are presented to eliminate them [9–11]. Brown et al. [5] presented a path-

tracking controller, based on an MPC with different prediction horizons, which achieved stabilization 

and obstacle avoidance simultaneously. Kritayakirana et al. [6] used the center of percussion as a 

reference point for calculating the steering command, in order to minimize both the heading and 

lateral deviations. Their algorithm has lower complexity and can maintain stability even when the 

rear tires are saturated. Katriniok et al. [12] proposed a combined longitudinal and lateral optimal 

control algorithm for the collision-avoidance system. The robustness of their algorithm is 

demonstrated through experiment.  

While there has been some success in these studies, choosing the heading deviation as a 

reference state may not effectively minimize the lateral deviation, especially when operating at high 

speeds. Mammar et al. [13] utilized the yaw-rate error instead of the path-tracking error as the 

feedback input to minimize the deviation from the path, and good robustness was demonstrated 

through their tests. Tagne et al. [14] presented an adaptive controller and used the steady-state 

sideslip and yaw rate to help bring the operating point to the desired equilibrium quickly. However, 

their controller is not capable of accurate path tracking in the tire-friction limit. Kapania et al. [15] 

pointed out that lateral deviations would be minimized when vehicle sideslip was tangential to the 

path, and hence designed a feedback controller to keep the vehicle velocity vector at the desired 

heading. However, a fixed look-ahead distance is not always optimal over a range of vehicle speeds. 

The capability to systematically include system constraints and future predictions in the design 

procedure makes model predictive control (MPC) an attractive method in the control of autonomous 

vehicles, where vehicle stability constraints, as well as changing vehicle and tire dynamics, exist in 

the system [16–19]. While MPC seems promising, when combined with the nonlinear plant model, it 

still faces convergence and high online computational complexity issues, making it unsuitable under 

high-speed conditions. On the contrary, the unique global minimum of the linear MPC can be 

efficiently calculated by various methods in a limited number of iterations [20,21]. Several methods 

that combine MPC with a linear model were proposed in References [5,7,17]. Raffo et al. [18] 

presented an MPC path-tracking controller with a linear kinematic model to achieve the desired 

performance during high-speed driving. Beal et al. [19] combined an MPC with linear vehicle and 

tire dynamic models to stabilize the vehicle at the limits of handling. 

In this paper, a methodology is proposed to allow one to linearize the nonlinearities of the 

vehicle and tire models under the MPC scheme, with some additional assumptions. A linear-model 

MPC path-tracking steering controller, using the direction deviation between the vehicle’s velocity 

vector and the path heading as the control reference state, is designed. Basic information about the 

MPC scheme is introduced in Section 2. The linearization method for the models and the simulation 

method for validating our approach are presented in Section 3. In Section 4, the use of different 

control reference states is discussed and the control objective is determined. Additionally, our 

proposed MPC controller is presented, including the constraints and the optimization problem. In 

Section 5, the simulation results verify the efficacy of the presented controller under high speeds and 

large lateral-acceleration conditions. Finally, Section 6 concludes the paper with a brief discussion of 

the results. 

2. MPC Algorithms 

Before constructing the linearization method of the vehicle model using the prediction 

information, we first briefly introduce the MPC control scheme. The system to be controlled is 

described with a difference equation: 

( , )f+ =x x u , (1) 

where x , +x  and u  are the state, successor state, and control input of the system, respectively, 

subject to the constraints: 

x , u , (2) 



Energies 2018, 11, 1451 3 of 18 

 

where n  is a closed, convex set and m  is a compact, convex set. We employ ( )kx  and 

( )ku  to denote the state and the control action at sampling time k.  

In the MPC scheme, the future behavior of the system can be predicted using the plant model 

. The control objective is to steer the state trajectory, ( )ux , to the desired state, 
r
x , over a finite 

prediction horizon, 
P
N , by applying the control sequence, ( )u , to the system. Figure 1 shows an 

example control process of the MPC. 

time

futurepast

+
P

k N+
C

k N+1kk−1k

( )ux

r
x

( )u

Δ ( )k i


+

u

( )ku

( )kx

 

Figure 1. Control process of the model predictive control (MPC) algorithm. 

We consider the typical cost function, 
C P,

( , )
N N
J   , as defined by: 

CP

C P

11

r r
0 0

,
( ( ),Δ ( )) ( ( ) ( )) ( ( ) ( )) Δ ( ) Δ ( )

NN
T T

N N
i i

J k i k i k i k i k i k i
−−

= =

  = + − + + − + + + + ux u x x Q x x u R u , (3) 

where 
C

1 1Δ ( ) {Δ ( ),Δ ( ),  ,Δ ( )}k k k N = +  + −u u u u  is the sequence of control input increments, 

P
1 2( ) { ( ), ( ), , (  )}k k k N = + +  +ux x x x , 

C
N  is the control horizon, with the constraint 

C P
N N , and 

Q and R are the weighting matrices. 

At each sampling time k, MPC solves the following optimization problem: 

C P

1
,

Δ ( ), ( )
min ( ( ), ( ),Δ ( ))

N N
J k k

 

− 
uu x

x u u , (4) 

s.t. 
P

( 1) ( ( ), ( ))   0  , , , 1k i f k i k i i N+ + = + + = −x x u , (5) 

0
C

0 11
=

+ += =− + −() Δ)( ( ) ,, ,
i

j

k i k j ik Nuu u , (6) 

C P
1 1+ + − == −( ) ( ), , ,

C
k i k N i N Nu u , (7) 

C
0 1+  = −,Δ ( ) Δ , ,k i i Nu , (8) 

C
0 1+  = −( ) , , ,k i i Nu , (9) 

P
1+  =( ) , , ,k i i Nx . (10) 

The optimal solution denoted by Δ ( ) u of Equations (4)–(10) is generated, and the control input 

is, therefore, defined by: 

1( ) ( ) Δ ( )k k k= − +u u u . (11) 

( )f 
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Hence, the control ( )ku  is applied to the system at time k. At the next sampling time, the 

optimization problem in Equations (4)–(10) is resolved over the shifted prediction horizon, and the 

process is thus repeated for every sampling time.  

Solving the optimization problem of Equations (4)–(10) is a computationally demanding task. 

Furthermore, the system order, control horizon length 
C
N , and nonlinearities in the plant model 

( )f   are the main factors in determining the computational burden [22]. Usually, adequately 

lowering the system order and successively linearizing the process model to formulate a linear–

quadratic optimization problem are efficient ways to improve computational efficiency. 

3. Modelling 

3.1. Nonlinear Model 

3.1.1. Vehicle Dynamic Model 

The single-track ‘bicycle’ model, shown in Figure 2 with two speed states and three position 

states, can adequately capture the tracking performance and handling stability under various 

operating conditions. In this scheme, the front steering angle δ is the only actuation. To make the 

optimization problem of δ convex, longitudinal speed Ux is not allowed to be variable. While an 

external speed controller could be used to track a desired speed profile, the speed over the prediction 

horizon is assumed to be fixed when building the process model. 

e

a

b

fα

δ

rα

r

yrF

yfF

β

xUy
U

U

s

Δ

PATH 
HEADING

Δψ

O

 

Figure 2. Bicycle model schematic. O is the center of mass; U  and 
y

U  are vehicle speed and the 

lateral speed at the center of gravity, respectively. 

The sideslip β and yaw rate r are described by the equations of motion [23]: 

yf yr

x

+
= −

cos( )F δ F
β r

mU
, (12) 

yf yr

zz

−
=

cos( )aF δ bF
r

I
, (13) 

where m and Izz are the vehicle mass and yaw inertia, respectively; Fy[f,r] denotes the lateral tire force 

of the front and rear axle, respectively; and a and b are the distances from the center of mass O to the 

front and rear axles, respectively. 

3.1.2. Tire Model 

The lateral tire force is modelled using the Fiala brush tire model [24]; 
y f r tire z

=
[ , ]

( , )F f α F , where: 
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2 3

3α α z

α 2 2

tire z z αz

z

3
,  

= 3 27

,                otherwise

  
− + −    
  

−

tan tan tan tan arctan
( , )

sgn

C C μF
C α α α α α

f α F μF Cμ F

μF α

. (14) 

In Equation (14), μ is the coefficient of friction, Fz is the normal force, and Cα is the tire cornering 

stiffness. The tire slip angles αf and αr, using small-angle approximations, can be expressed as: 

f

x

= + −
ar

α β δ
U

, (15) 

r

x

= −
br

α β
U

, (16) 

where δ is the front steer angle. 

In order to simplify the nonlinear relationship between the actuation δ and the vehicle dynamic 

states while taking the saturation of the tire into account, the front lateral force Fyf is considered as 

the control input of the model. The desired Fyf, generated by the MPC optimization, is then mapped 

to δ by: 

1

tire yf

x

−= + − ( )
ar

δ β f F
U

, (17) 

where 1

tire yf

− ( )f F  is the inverted tire model, which calculates the tire slip from the tire force via 

numerical methods. 

3.1.3. Path-Tracking Model 

The path-tracking model is shown in Figure 2, and the vehicle’s relative position to the desired 

path can be determined by three state parameters: the lateral deviation e, the heading deviation Δψ, 

and the distance s along the path. The path tracking model can be written as [5]: 

x
= −Δ ( )ψ r U κ s , (18) 

x y
= +sin(Δ ) cos(Δ )e U ψ U ψ , (19) 

x y
= −cos(Δ ) sin(Δ )s U ψ U ψ , (20) 

where  is the curvature of the desired path at s. 

3.2. Model Linearization 

3.2.1. Vehicle Dynamic Model 

The most popular linearization method is the small-angle assumption (when 5δ   , cos( ) 1δ  ). 

The nonlinear model of Equations (12) and (13) can thus be expressed as: 

yf yr

x

+
 −
F F

β r
mU

, (21) 

yf yr

zz

−

aF bF

r
I

. (22) 

However, when the vehicle tracks a path with high curvature, the steering angle can be very 

large, and the small-angle assumption is invalid. The model in Equations (21) and (22) will fail to 

simulate the vehicle response at these operational conditions.  

( )κ s
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Consider the following suppositions: 

(1) Suppose the steering angle increments are fixed at every step over the prediction horizon, and 

are independent of the control sequence , that is: 

Pa
( )

N
δ k i δ + =  , 

P
0 1, ,i N= − , (23) 

where 
a
( )δ k i +  is the supposed steering angle increment at step i+1 and 

PN
δ  is the 

corresponding fixed increment, which will be determined later. 

(2) Suppose the vehicle will reach the desired path at step 
P
N  of the prediction horizon, and will 

subsequently track the path without deviation, as shown in Figure 3. Then, the vehicle at step 

P
N  is assumed to be in the steady state. Hence: 

a P
0( )e k N+ = , (24) 

a P ss P
1 1( ) ( )δ k N δ k N+ − = + − , (25) 

[f,r],a P [f,r] ss P
1 1+ − = + −

,
( ) ( )α k N α k N , (26) 

where 
a
e , 

a
δ  and 

[f,r],a
α  are the supposed lateral deviation, steering angle, and tire slip angle, 

respectively, and 
ss
δ , 

[f,r] ss,
α  are the steady-state steering angle and tire slip angle, respectively. 

PATH

ss
δ

P
( 1)R k N+ −

p
1k N+ −k

r
α

δ
f
α

r,ss
α

f,ss
α

( )R k

ss
β

β

1k +

P
( 1)P k N+ −

( 1)P k +

 

Figure 3. The supposed path over the prediction horizon for the linearized model. R(k + i) and P(k + i) 

denote the radius of the desired path and the supposed point at s(k + i), respectively, i = 0, …, 𝑁P − 1. 

Under steady-state cornering conditions, setting 0r =  in Equation (19), the front and rear tire 

forces are yielded: 

ss 2

yf x
2

mb
F U κ

L
= , (27) 

ss 2

yr x
2

ma
F U κ

L
= . (28) 

Hence, the steady-state steering angle relates to the front and rear lateral tire slip by vehicle 

kinematics via: 

ss f,ss r,ss
= − +δ Lκ α α , (29) 

( )u
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where L = a + b is the wheel base, and 
f,ss
α  and 

r,ss
α  can be calculated from Equations (14) and (27) 

and (28) by the inverted tire model 1

tire y f r

−

[ , ]
( )f F . 

Under the suppositions above, the supposed steering-angle increment can be written as: 

a p

a

p

1( ) ( )
( )

δ k δ k N
δ k i

N

− + −
 + = , 

P
0 1, ,i N= − . (30) 

Finally, considering the slew-rate capabilities of the vehicle, the supposed steering-angle 

increment is determined via: 

P

a
  

sign   else

max

max

,

( ) ,

a

N

δ δ δ
δ

δ δ

   
 = 

 

, (31) 

and the supposed steering angle for every step of the prediction horizon is thus: 

Pa
( ) ( )

N
δ k i δ k i δ+ = +  , 

P
0 1, ,i N= − . (32) 

Combining Equation (32) with Equations (12) and (13) yields a linearized version of our 

nonlinear vehicle model: 

yf a yr

x

+  + + +
+ = − +

( ) cos( ( )) ( )
( ) ( )

F k i δ k i F k i
β k i r k i

mU
, 

P
0 1, ,i N= − , (33) 

yf a yr

zz

+  + − +
+ =

( ) cos( ( )) ( )
( )

aF k i δ k i bF k i
r k i

I
, 

P
0 1, ,i N= − . (34) 

3.2.2. Tire Model 

The front lateral force is considered as the control input, and the nonlinear dynamics of the rear-

tire force should be properly accounted for to accurately approximate the MPC with a linear 

optimization problem. Inspired by Reference [7], which assumes that the tire-cornering stiffness 

keeps constant in the prediction horizon, we propose a new online successive linearization method 

by combining both the information of time k and step  of the prediction horizon to accurately 

predict the propagation of lateral tire forces, as shown in Figure 4. 

 
Tire-slip angle 

r

T
ir

e 
L

a
te

ra
l 

F
o

rc
e 
F

y
r

 

 

Brush model
Linear approx

r
α

r ,ss
α

r
F

r ss,
F

r
C

 

Figure 4. Linear approximation of the brush tire model. r
α  and 

r,ss
α  are the tire slip angle at time 

k and steady-state tire slip angle at step NP of the prediction horizon, respectively. r
F  and 

r,ss
F are 

the corresponding lateral forces. 

In the linearized model, the equivalent cornering stiffness over the prediction horizon is: 

P
N
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r,ss r

r

r,ss r

( )F F
C

α α

−
=

−
. (35) 

Thus, the approximate expression for the predicted rear-tire lateral force is: 

yr r r r r
( ) ( ( ) )F k i F C α k i α+ = − + − , 

P
0 1, ,i N= − , (36) 

where  is the predicted rear-tire slip angle which can be calculated by Equation (16). 

The resulting linear expressions for the motion equations are described as follows: 

yf a r r r

x

x

  +
+  + + − + − − 

 
+ = − +

( )
( ) cos( ( )) ( ( ) )

( ) ( )

b r k i
F k i δ k i F C β k i α

U
β k i r k i

mU
, 

P
0 1, ,i N= − , 

(37) 

yf a r r r

x

zz

  +
+  + − − + − − 

 
+ =

( )
( ) cos( ( )) ( ( ) )

( )

b r k i
aF k i δ k i b F C β k i α

U
r k i

I
, 

P
0 1, ,i N= − . 

(38) 

3.2.3. Tracking Model 

Making the small-angle approximation for  and  yields: 

x
=+ + − +Δ ( ) ( ) ( )ψ k i r k i U κ k i , 

P
0 1, ,i N= − , (39) 

x
=( ) ( ( ) Δ ( ))e k i U β k i ψ k i+ + + + ,

P
0 1, ,i N= − , (40) 

x
=+( )s k i U , 

P
0 1, ,i N= − . (41) 

Due to the assumption that the speed is fixed over the prediction horizon, the distance along the 

path can be given, a priori, as: 

x
0

=
=

+ +( ) ( )
i

j

s k i s k U , 
P

1, ,i N= . (42) 

4. MPC Controller Design 

4.1. Problem Statement 

Unlike human driving, which cannot perceive the velocity direction of the vehicle, autonomous 

vehicles can obtain more accurate information from sensors and estimation technology. Taking the 

heading deviation Δψ as a control reference state does not maximize the capacity of an autonomous 

vehicle. The course deviation Δφ , which is the angle between the vehicle’s velocity vector and the 

path heading, denotes the real deviation of the vehicle’s moving direction and also indicates the trend 

of the lateral deviation, as shown in Figure 5. When the sideslip, β, is small and Δψ is close to Δφ , a 

controller based on Δψ can keep the tracking deviation in a small range. However, when the 

difference between Δψ and Δφ  becomes large, especially near the handling limits where a high rear-

tire slip angle and a high yaw rate lead to high sideslip, β, as shown in Figure 5, a controller based on 

Δψ will fail to effectively minimize the tracking deviation. This is especially important for a vehicle 

traveling across a corner at the physical limits of tire friction, where vehicle sideslip, β, can reach 5°, 

and cannot be ignored at this level. 

r
( )α k i+

β Δψ
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β

U

Δψ

ΔPATH 
HEADING

 

Figure 5. The relationship between the course-direction deviation Δφ , sideslip β and the heading 

deviation Δψ. 

According to the vehicle kinematics, the course deviation is given by: 

Δ Δφ ψ β= + . (43) 

Zero steady-state lateral deviation requires the value of Δφ  to be zero, and the value of Δψ is, 

hence, nonzero. Due to this, the course-direction deviation Δφ  should be chosen as a reference state 

when designing a path-tracking steering controller. 

4.2. Control Model 

Using the zeroth-order hold discretization method, we can get the discrete vehicle model from 

Equations (37)–(42) as follows: 

yf rc yf κ
( 1)= ( )+ ( )+ ( )+

F α
k k F k κ k+x Α x B B d , (44) 

where Δ
T

β r ψ e=   x  is the state vector, and  

 −
− 

 
 
 −
 
 
 
  

r r

2
x x

2

r r
c

zz zz x

x x

2 2
1 0 0

2 2
= 0 0

0 1 0 0

0 0

C C b

mU mU

C b C b

I I U

U U

Α , 

 + 
 
 
 +
 
 
 
 
  

yf

x

zz

2 cos( )

2 cos( )
=

0

0

F

δ i

mU

a δ i

I
B , 

x

0

0
=

0

κ U

 
 
 
 −
 
  

B , 

 +
 
 
 +
 −
 
 
 
  

r

r r r

x

r r r

zz

2( )

2 ( )

0

0

α

F C α

mU

b F C α

I
d .  

In order to apply the integral action to eliminate the static offset caused by model uncertainties, 

the discrete model can be written in the incremental form: 

1 yf 2
( +1)= ( )+ Δ ( )+ +k k F k κξ Αξ B B d , (45) 

( ) ( )k k=η Cξ , (46) 

yf yf yf
( ) ( 1) Δ ( )F k F k F k= − + , (47) 

where yf
( ) ( ) ( 1)

T

k k F k = −
 

ξ x  is the extended state vector; f
 

( ) Δ ( ) ( )
T

k k e k=   η  is the output 

vector; and yfC F
 

=  
  

Α B
Α

0 I
, yf

1

F
 

=  
  

B
B

I
, κ

2

 
=  
 

B
B

0
, rα

 
=  
  

d
d

0
, and 

1 0 1 0

0 0 0 1

T
 

=  
 

C . 

The control objective is to generate an optimal front force input Fyf(k) by the steering controller, 

such that the lateral path-tracking deviation is minimized and that the vehicle maintains stability at 

the limits of handling. 
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4.3. Constraints 

The design of the safety constraints is defined by the bounds of two vital indicators of vehicle 

stability. Under the assumptions of steady-state cornering and the given tire model, the bounds of β 

and r reflect the maximum capabilities of the vehicle’s tires. 

The maximum steady-state yaw rate can be expressed as follows: 

max

x

=
gμ

r
U

, (48) 

where g is the gravity. Given a yaw rate r, the vehicle sideslip, β, reaches a maximum when the rear 

tires approach saturation: 

+
，max r,sat

x

=
ss

br
β α

U
, (49) 

where 
r,sat
α  is the saturated tire slip angle, which is expressed as: 

r

1

r ,sat

3
tan

α

mgμ a
α

C a b
−
 
 =
 +
 

, (50) 

where 
rα

C  is the rear-tire cornering stiffness. 

The constraints defined by Equations (49) and (50) can be concisely expressed via the inequality: 

v v
( )k H ξ G , (51) 

where:  

v

x

0 1 0 0 0

1 0 0 0
b

U

 
 

=
 −
  

H  and 
v max r,sat

=
T

r α  G .  

4.4. MPC Formulation 

The optimization problem for MPC, given in Equations (4)–(10), can be formulated as follows: 

CP

P
yf v

CP

2

yf vΔ ,
1 1

2

yf v
1 1

min   ( ( )) ( ) R(Δ ( ))

               = ( ) ( ) R(Δ ( ))

NN
T

N
i i

NN
T T

i i

J k i k i F k i

k i k i F k i

= =

= =

= + + + + +

+ + + + +

 

 

F ε
η Qη Wε

ξ C QCξ Wε

, (52) 

s.t. v v v
( )k i+  +H ξ G ε , i , (53) 

yf yf,max
Δ ( ) ΔF k i F+  , 

C
0, , 1i N= − , (54) 

yf
Δ ( ) 0F k i+ = , 

C C P
, 1, , 1i N N N= + − , (55) 

yf yf,max
( )F k i F+  , 

C
0, , 1i N= − , (56) 

where  

yf yf yf yf C
Δ [Δ ( ),Δ ( 1), ,Δ ( 1)] TF k F k F k N= + + −F  is the sequence of future input increments, 

and Q, R and W are weighting matrices of appropriate dimension. ΔFyf,max and Fyf,max are the slew rate 

capabilities and the maximum lateral force, respectively. As Equation (51) is based on steady-state 

assumptions, the vehicle state can exceed the bounds and still return back within the bounds after a 



Energies 2018, 11, 1451 11 of 18 

 

short excursion. To ensure the optimization problem is always feasible, a nonnegative slack variable 

εv is used.  

The solution vector of the optimization problem in Equations (52)–(56) is expanded as follows: 

* *  

yf v
Δ [Δ , ] T=U F ε . (57) 

The optimal front lateral force input is obtained through the first element of the optimal solution 

sequence: 

* *

yf yf yf
( ) ( 1) Δ ( )F k F k F k= − + . (58) 

Additionally, the steering angle δ that will be applied to the vehicle is obtained by mapping 

 through Equation (17). 

In order to accurately capture the propagation of β and r at a high frequency, the sampling time 

Ts = 0.02 s is small enough. Considering the balance of the control performance and the computational 

complexity, NC and NP are chosen as 20 and 50, respectively. The following weighting matrices were 

obtained by iteratively tuning via simulation: 

1000 0

0 5

 
=  
 

Q , (59) 

1R = , (60) 

10 10 10 10=   W . (61) 

5. Simulations and Results 

5.1. Model Validation 

In order to demonstrate the improvements of the linearized method, two paths with different 

corner curvatures are designed. The general shape of both paths are the same, as shown in Figure 6, 

with three sections—corner entry, constant radius, and corner exit—and the distance of each section 

is the same. The center points of each section would be comparison points. The radii of the constant 

radius section (green in Figure 6) are 8 m and 30 m for the two paths. The nonlinear models of 

Equations (12)–(14) and (18)–(20) are used to compute the vehicle states. The Stanley method is used 

to track the desired path at two constant speeds, and the steering-angle control law is given by: 

1 P

x

= −+Δ tan ( )       
k e

δ ψ
U

, (62) 

where 
P
k  is the gain parameter. 

  
(a) (b) 

Figure 6. (a) The designed path and (b) the corresponding path curvature varies along the path. 
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The simulation is carried out with sampling time Ts = 0.02 s, and the simulated steering angle 

and the corresponding front lateral force are shown in Figure 7. 

  
(a) (b) 

Figure 7. The steering angle and front tire lateral force of the model in (a) R = 30 m and Ux = 45 km/h 

and (b) R = 8 m and Ux = 25 km/h cases. 

We use Equations (21) and (22) and the tire-linearization method proposed in Reference [7] as a 

baseline prediction model to compare with our model, which provides steady-state information and 

is a combination of Equations (36)–(38). The prediction horizon length is chosen as 0.4 s with 20 steps. 

Utilizing the simulated front lateral force as the input of the prediction model, the predicted vehicle 

state sequences can be generated, and the results are shown in Figure 8. 

For the first case, where the constant radius is 30 m and the speed is 45 km/h, the lateral 

acceleration can reach 6 m/s2. The steering angle is less than 5° at points 1 and 3, and slightly higher 

at point 2. Therefore, the small-angle assumption is valid. As shown in Figure 8a, both linear models 

can predict the vehicle states accurately. However, the predicted sideslip β at point 1 of the baseline 

linear model begins to deviate from the nonlinear value. For the second case, where the speed is 25 

km/h and the maximum lateral acceleration is 7 m/s2, the steering angle is much larger than 5° at all 

three points, especially at point 2. The small-angle assumption is no longer valid under these 

conditions. As shown in Figure 8b, the prediction errors of sideslip, yaw rate and rear-tire force for 

the baseline model increase with step number at point 2. At the same time, the linear model with 

steady-state information can still predict the vehicle state accurately. 
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(a) (b) 

Figure 8. The prediction results of different linearization models in (a) R = 30 m, Ux = 45 km/h and (b) 

R = 8 m, Ux = 25 km/h cases. 

5.2. Controller Performance 

To validate the performance of the presented steering controller, a test was performed via 

simulation. The simulation is implemented based on the CarSim-Simulink platform with a validated 

high-fidelity full-vehicle dynamics model. The parameters of the vehicle and path are listed in Table 

1. 

Table 1. Parameter values of the vehicle. 

Parameter Symbol Value Units 

Vehicle mass m 1230 kg 

Yaw inertia Izz 1343.1 kg∙m2 

Front axle-O distance a 1.04 m 

Rear axle-O distance b 1.56 m 

Front cornering stiffness 
fα

C  48,840 N/rad 

Rear cornering stiffness 
rα

C  32,887 N/rad 

Friction coefficient μ 0.95 n/a 

The path for the simulated steering controller to follow is a 584 m circuit generated by the path-

generation method of Reference [25], as shown in Figure 9a. The desired path is parameterized as a 

curvature profile that varies with distance counterclockwise along the path, which is shown in Figure 

9b. The desired longitudinal speed and lateral acceleration profile are generated by the speed 

controller proposed in Reference [26], as shown in Figure 10. The curvature varies between −0.04 m−1 

and 0.05 m−1, the longitudinal speed varies between 13.5 m/s to 28 m/s, and the lateral acceleration 

varies between −9 m/s2 to 9 m/s2. 
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(a) (b) 

Figure 9. The designed path for steering controller to track. (a) Overhead view of path and (b) the 

corresponding curvature varies counterclockwise along the path. 

 

Figure 10. The desired speed and lateral acceleration. 

Figure 11 shows the simulation results of three separate MPC steering controllers. The first 

(linear controller) utilizes the steering angle as the control input with the linear vehicle and tire 

models employed. The second (original controller) and the third (proposed controller) controllers 

both utilize the vehicle and tire models introduced in Section 3. The difference is that, as a baseline 

controller, the original controller uses the heading deviation Δψ and lateral deviation e as a reference 

state. The longitudinal controller and stability bounds are used for all cases.  

The simulation results for the lateral deviation and steering angle for three controllers are shown 

in Figure 11, and statistics of the results are shown in Table 2. As shown in Table 2, the average of the 

absolute lateral deviation e  and the standard deviation of the absolute lateral deviation ( )σ e , and 

the maximum absolute lateral deviation max( )e  of the linear controller, are much higher than the 

other two MPC controllers. Additionally, as shown in Figure 11, the steering angle of the linear 

controller keeps increasing until it reaches a maximum, beyond which the lateral deviation continues 

to increase. This is because the linear model fails to predict the lateral tire force when the tire reaches 

the nonlinear region, especially near saturation. On the other hand, the controllers with the proposed 

dynamic model can maintain the lateral deviation in a small range, which indicates that the 

linearization method proposed in the Section 3 can properly retain the characteristics of the vehicle 

nonlinearity even under high-speed conditions. 

The performances of the original and the proposed controllers are quite close, as shown in Figure 

11. However, the e  and ( )σ e  of the proposed controller are lower as shown in Table 2, while the 

max( )e  of the two controllers remains roughly the same. The reason for this can be concluded as 
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follows: At some points, the front lateral force necessary to minimize deviation has exceeded the 

available friction, and there is nothing the steering controller can do to bring the vehicle back to the 

desired path with such a large lateral acceleration. To show more details of the control process, Figure 

12 shows the simulation results of the two controllers over the range 0–200 m.  

Table 2. Comparison of control results of different controllers. 

Model e  (m) ( )σ e  (m) max( )e  (m) 

Linear Controller 2.460 3.295 11.702 

Original Controller 0.671 0.906 4.402 

Proposed Controller  0.539 0.750 4.400 

 

Figure 11. The simulation results of lateral deviation and steering angle of different controllers. 

As shown in Figure 12, the lateral deviation e is reduced when using the course-direction 

deviation  in the controlled state. Around s = 50, 80, 120 and 150 m along the track, vehicle 

sideslips increase with speed and curvature beyond 5°, and even reach up to 10°. This explains the 

noticeable difference between heading deviation Δψ and course-direction deviation Δφ  at the same 

points. Additionally, the lateral deviation e of the original controller is much larger than the proposed 

controller, which matches the expected results in Section 4. Around s = 140 m, the heading deviation, 

Δψ, of the original controller becomes positive (the left side of path-heading direction) and maintains 

about 10 m. However, the lateral deviation e keeps increasing on the right side of the desired path. 

This indicates that heading deviation cannot accurately reflect the real direction of the vehicle and 

the tendency of lateral deviation when the vehicle sideslip is large. From s = 130 to 150 m, the front 

lateral force is constant, while the steering angle of the front tires fluctuates. This confirms that using 

lateral force as the input to the model is a more direct approach to account for the nonlinearity of the 

tires. 
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Figure 12. Simulation results over 0–200 m. The lateral deviation e, sideslip beta β, heading deviation 

Δψ, course-direction deviation Δφ , front-tire lateral force Fyf and steering angle δ of proposed 

controller are compared with that of original controller over 0–200 m. 

6. Conclusions 

The design of an MPC steering controller based on a linearized model for autonomous vehicle 

path tracking is described in this paper. The proposed steering controller can track the desired path 

accurately at high speeds and under large lateral-acceleration conditions. By including the predicted 

and steady-state information in the model, the proposed linearization method can properly retain the 

nonlinear characteristics of the vehicle and tire models. Additionally, a single-track ‘bicycle’ model 

and a brush tire model are linearized to accurately describe the motion of the vehicle at high speeds. 

A simulation has been conducted to validate the accuracy of the method. Problems with the effective 

control reference states were discussed. Based on the linearized model, the MPC controller utilizes 

course-direction deviation instead of heading deviation as the control reference state to eliminate the 

tracking deviation. Thus, an improved MPC controller with course-direction deviation and stability 

constraints was developed. Finally, by comparing with the linear controller, the simulation results 

demonstrate the controller with proposed linearized model can maintain the deviation in a small 

range even under large lateral acceleration conditions. Analysis of results indicates that the steering 

controller with course-direction deviation reduces the average of absolute lateral deviation, 

compared to the controller with heading deviation, by nearly 20%. This steering controller can ensure 

tracking accuracy and vehicle stability under high-speed conditions and can be applied to drive an 

autonomous vehicle. 
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