
energies

Article

Design of a Path-Tracking Steering Controller for
Autonomous Vehicles

Chuanyang Sun 1, Xin Zhang 1,*, Lihe Xi 1 and Ying Tian 2

1 Beijing Key Laboratory of Powertrain for New Energy Vehicle, School of Mechanical, Electronic and Control
Engineering, Beijing Jiaotong University, Beijing 100044, China; sunchuanyang@bjtu.edu.cn (C.S.);
xilihe@bjtu.edu.cn (L.X.)

2 Beijing Jiaotong University Yangtze River Delta Research Institute, Zhenjiang 212009, China;
ytian1@bjtu.edu.cn

* Correspondence: zhangxin@bjtu.edu.cn; Tel.: +86-010-5168-8404

Received: 25 April 2018; Accepted: 1 June 2018; Published: 4 June 2018
����������
�������

Abstract: This paper presents a linearization method for the vehicle and tire models under the
model predictive control (MPC) scheme, and proposes a linear model-based MPC path-tracking
steering controller for autonomous vehicles. The steering controller is designed to minimize lateral
path-tracking deviation at high speeds. The vehicle model is linearized by a sequence of supposed
steering angles, which are obtained by assuming the vehicle can reach the desired path at the end
of the MPC prediction horizon and stay in a steady-state condition. The lateral force of the front
tire is directly used as the control input of the model, and the rear tire’s lateral force is linearized by
an equivalent cornering stiffness. The course-direction deviation, which is the angle between the
velocity vector and the path heading, is chosen as a control reference state. The linearization model is
validated through the simulation, and the results show high prediction accuracy even in regions of
large steering angle. This steering controller is tested through simulations on the CarSim-Simulink
platform (R2013b, MathWorks, Natick, MA, USA), showing the improved performance of the present
controller at high speeds.

Keywords: autonomous vehicles; model linearization; path tracking; steering controller; model
predictive control

1. Introduction

Autonomous vehicle technology aims to increase driving safety, reduce traffic congestion and
emissions, and improve energy efficiency [1,2]. The ability to track the desired path accurately
and steadily plays a critical role in the control task of an autonomous vehicle, especially when
operating at high speeds. Therefore, a great deal of research has been done on steering control of
autonomous vehicles.

Full vehicle models and nonlinear tire models are usually used to simulate the vehicle response
during high speeds and large-steering-angle driving [3]. However, the nonlinearity of vehicle and tire
models leads to a high computational burden [4]. A bicycle model with a small-angle assumption and
a proportional linear tire model are widely used in path-tracking research [5,6]. However, when the
steering angle and lateral slip angle are larger than 5◦, the model becomes inaccurate, especially in the
region of tire-force saturation. Erlien et al. [7] introduced an affine approximation linearization method
to handle the nonlinearity of the tires in the model predictive control (MPC) scheme, however, this
approach is inaccurate when the length of the prediction horizon is larger. Talvala et al. [8] proposed a
tire slip angle-related parameter to capture the nonlinearity even when the tire is saturated. In general,
tuning the parameters of a given model to realistic values can be challenging work.

Energies 2018, 11, 1451; doi:10.3390/en11061451 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en11061451
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/11/6/1451?type=check_update&version=3


Energies 2018, 11, 1451 2 of 17

Heading deviation and lateral deviation are usually chosen as the control reference states, and
multiple approaches are presented to eliminate them [9–11]. Brown et al. [5] presented a path-tracking
controller, based on an MPC with different prediction horizons, which achieved stabilization and
obstacle avoidance simultaneously. Kritayakirana et al. [6] used the center of percussion as a reference
point for calculating the steering command, in order to minimize both the heading and lateral
deviations. Their algorithm has lower complexity and can maintain stability even when the rear
tires are saturated. Katriniok et al. [12] proposed a combined longitudinal and lateral optimal control
algorithm for the collision-avoidance system. The robustness of their algorithm is demonstrated
through experiment.

While there has been some success in these studies, choosing the heading deviation as a reference
state may not effectively minimize the lateral deviation, especially when operating at high speeds.
Mammar et al. [13] utilized the yaw-rate error instead of the path-tracking error as the feedback input
to minimize the deviation from the path, and good robustness was demonstrated through their tests.
Tagne et al. [14] presented an adaptive controller and used the steady-state sideslip and yaw rate to
help bring the operating point to the desired equilibrium quickly. However, their controller is not
capable of accurate path tracking in the tire-friction limit. Kapania et al. [15] pointed out that lateral
deviations would be minimized when vehicle sideslip was tangential to the path, and hence designed
a feedback controller to keep the vehicle velocity vector at the desired heading. However, a fixed
look-ahead distance is not always optimal over a range of vehicle speeds.

The capability to systematically include system constraints and future predictions in the design
procedure makes model predictive control (MPC) an attractive method in the control of autonomous
vehicles, where vehicle stability constraints, as well as changing vehicle and tire dynamics, exist in
the system [16–19]. While MPC seems promising, when combined with the nonlinear plant model,
it still faces convergence and high online computational complexity issues, making it unsuitable
under high-speed conditions. On the contrary, the unique global minimum of the linear MPC can be
efficiently calculated by various methods in a limited number of iterations [20,21]. Several methods
that combine MPC with a linear model were proposed in References [5,7,17]. Raffo et al. [18] presented
an MPC path-tracking controller with a linear kinematic model to achieve the desired performance
during high-speed driving. Beal et al. [19] combined an MPC with linear vehicle and tire dynamic
models to stabilize the vehicle at the limits of handling.

In this paper, a methodology is proposed to allow one to linearize the nonlinearities of the vehicle
and tire models under the MPC scheme, with some additional assumptions. A linear-model MPC
path-tracking steering controller, using the direction deviation between the vehicle’s velocity vector
and the path heading as the control reference state, is designed. Basic information about the MPC
scheme is introduced in Section 2. The linearization method for the models and the simulation method
for validating our approach are presented in Section 3. In Section 4, the use of different control reference
states is discussed and the control objective is determined. Additionally, our proposed MPC controller
is presented, including the constraints and the optimization problem. In Section 5, the simulation
results verify the efficacy of the presented controller under high speeds and large lateral-acceleration
conditions. Finally, Section 6 concludes the paper with a brief discussion of the results.

2. MPC Algorithms

Before constructing the linearization method of the vehicle model using the prediction information,
we first briefly introduce the MPC control scheme. The system to be controlled is described with a
difference equation:

x+ = f (x, u), (1)

where x, x+ and u are the state, successor state, and control input of the system, respectively, subject to
the constraints:

x ∈ X, u ∈ U, (2)
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where X ⊂ Rn is a closed, convex set and U ⊂ Rm is a compact, convex set. We employ x(k) and u(k)
to denote the state and the control action at sampling time k.

In the MPC scheme, the future behavior of the system can be predicted using the plant model f (·).
The control objective is to steer the state trajectory, xu(·), to the desired state, xr, over a finite prediction
horizon, NP, by applying the control sequence, u(·), to the system. Figure 1 shows an example control
process of the MPC.
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We consider the typical cost function, JNC,NP(·, ·), as defined by:

JNC,NP(x
u(·), ∆u(·)) =

NP−1
∑

i=0
(x(k + i)− xr(k + i))TQ(x(k + i)− xr(k + i)) +

NC−1
∑

i=0
∆u(k + i)TR∆u(k + i), (3)

where ∆u(·) = {∆u(k), ∆u(k + 1), . . . , ∆u(k + NC − 1)} is the sequence of control input increments,
xu(·) = {x(k + 1), x(k + 2), . . . , x(k + NP)}, NC is the control horizon, with the constraint NC ≤ NP,
and Q and R are the weighting matrices.

At each sampling time k, MPC solves the following optimization problem:

min
∆u(·),xu(·)

JNC,NP(x(k), u(k− 1), ∆u(·)), (4)

s.t. x(k + i + 1) = f (x(k + i), u(k + i)), i = 0, . . . , NP − 1, (5)

u(k + i) = u(k− 1) +
i

∑
j=0

∆u(k + j), i = 0, . . . , NC − 1, (6)

u(k + i) = u(k + NC − 1), i = NC, . . . , NP − 1, (7)

∆u(k + i) ∈ ∆U, i = 0, . . . , NC − 1, (8)

u(k + i) ∈ U, i = 0, . . . , NC − 1, (9)

x(k + i) ∈ X, i = 1, . . . , NP. (10)

The optimal solution denoted by ∆u∗(·) of Equations (4)–(10) is generated, and the control input
is, therefore, defined by:

u(k) = u(k− 1) + ∆u∗(k). (11)

Hence, the control u(k) is applied to the system at time k. At the next sampling time, the
optimization problem in Equations (4)–(10) is resolved over the shifted prediction horizon, and the
process is thus repeated for every sampling time.

Solving the optimization problem of Equations (4)–(10) is a computationally demanding task.
Furthermore, the system order, control horizon length NC, and nonlinearities in the plant model f (·)
are the main factors in determining the computational burden [22]. Usually, adequately lowering
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the system order and successively linearizing the process model to formulate a linear–quadratic
optimization problem are efficient ways to improve computational efficiency.

3. Modelling

3.1. Nonlinear Model

3.1.1. Vehicle Dynamic Model

The single-track ‘bicycle’ model, shown in Figure 2 with two speed states and three position states,
can adequately capture the tracking performance and handling stability under various operating
conditions. In this scheme, the front steering angle δ is the only actuation. To make the optimization
problem of δ convex, longitudinal speed Ux is not allowed to be variable. While an external speed
controller could be used to track a desired speed profile, the speed over the prediction horizon is
assumed to be fixed when building the process model.
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The sideslip β and yaw rate r are described by the equations of motion [23]:

.
β =

Fyf cos(δ) + Fyr

mUx
− r, (12)

.
r =

aFyf cos(δ)− bFyr

Izz
, (13)

where m and Izz are the vehicle mass and yaw inertia, respectively; Fy[f,r] denotes the lateral tire force
of the front and rear axle, respectively; and a and b are the distances from the center of mass O to the
front and rear axles, respectively.

3.1.2. Tire Model

The lateral tire force is modelled using the Fiala brush tire model [24]; Fy[f,r] = ftire(α, Fz), where:

ftire(α, Fz) =

{
−Cα tan α + C2

α
3µFz
|tan α| tan α− C3

α

27µ2Fz
2 tan3 α, |α| < arctan

(
3µFz
Cα

)
−µFzsgnα, otherwise

. (14)

In Equation (14), µ is the coefficient of friction, Fz is the normal force, and Cα is the tire cornering
stiffness. The tire slip angles αf and αr, using small-angle approximations, can be expressed as:
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αf = β +
ar
Ux
− δ, (15)

αr = β− br
Ux

, (16)

where δ is the front steer angle.
In order to simplify the nonlinear relationship between the actuation δ and the vehicle dynamic

states while taking the saturation of the tire into account, the front lateral force Fyf is considered as the
control input of the model. The desired Fyf, generated by the MPC optimization, is then mapped to
δ by:

δ = β +
ar
Ux
− f−1

tire(Fyf), (17)

where f−1
tire(Fyf) is the inverted tire model, which calculates the tire slip from the tire force via

numerical methods.

3.1.3. Path-Tracking Model

The path-tracking model is shown in Figure 2, and the vehicle’s relative position to the desired
path can be determined by three state parameters: the lateral deviation e, the heading deviation ∆ψ,
and the distance s along the path. The path tracking model can be written as [5]:

∆
.
ψ = r−Uxκ(s), (18)

.
e = Ux sin(∆ψ) + Uy cos(∆ψ), (19)
.
s = Ux cos(∆ψ)−Uy sin(∆ψ), (20)

where κ(s) is the curvature of the desired path at s.

3.2. Model Linearization

3.2.1. Vehicle Dynamic Model

The most popular linearization method is the small-angle assumption (when δ < 5◦, cos(δ) ≈ 1).
The nonlinear model of Equations (12) and (13) can thus be expressed as:

.
β ≈

Fyf + Fyr

mUx
− r, (21)

.
r ≈

aFyf − bFyr

Izz
. (22)

However, when the vehicle tracks a path with high curvature, the steering angle can be very large,
and the small-angle assumption is invalid. The model in Equations (21) and (22) will fail to simulate
the vehicle response at these operational conditions.

Consider the following suppositions:

(1) Suppose the steering angle increments are fixed at every step over the prediction horizon, and
are independent of the control sequence u(·), that is:

∆δa(k + i) = ∆δNP , i = 0, . . . , NP − 1, (23)

where ∆δa(k + i) is the supposed steering angle increment at step i + 1 and ∆δNP is the
corresponding fixed increment, which will be determined later.
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(2) Suppose the vehicle will reach the desired path at step NP of the prediction horizon, and will
subsequently track the path without deviation, as shown in Figure 3. Then, the vehicle at step NP

is assumed to be in the steady state. Hence:

ea(k + NP) = 0, (24)

δa(k + NP − 1) = δss(k + NP − 1), (25)

α[f,r],a(k + NP − 1) = α[f,r],ss(k + NP − 1), (26)

where ea, δa and α[f,r],a are the supposed lateral deviation, steering angle, and tire slip angle,
respectively, and δss, α[f,r],ss are the steady-state steering angle and tire slip angle, respectively.
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Under steady-state cornering conditions, setting
.
r = 0 in Equation (19), the front and rear tire

forces are yielded:

Fss
yf =

mb
2L

U2
xκ, (27)

Fss
yr =

ma
2L

U2
xκ. (28)

Hence, the steady-state steering angle relates to the front and rear lateral tire slip by vehicle
kinematics via:

δss = Lκ − αf,ss + αr,ss, (29)

where L = a + b is the wheel base, and αf,ss and αr,ss can be calculated from Equations (14) and (27) and
(28) by the inverted tire model f−1

tire(Fy[f,r]).
Under the suppositions above, the supposed steering-angle increment can be written as:

∆δa(k + i) =
δ(k)− δa(k + Np − 1)

Np
, i = 0, . . . , NP − 1. (30)

Finally, considering the slew-rate capabilities of the vehicle, the supposed steering-angle increment
is determined via:

∆δNP =

{
∆δa, |∆δa| ≤ ∆δmax

sign(∆δ) · ∆δmax, else
, (31)
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and the supposed steering angle for every step of the prediction horizon is thus:

δa(k + i) = δ(k) + i · ∆δNP , i = 0, . . . , NP − 1. (32)

Combining Equation (32) with Equations (12) and (13) yields a linearized version of our nonlinear
vehicle model:

.
β(k + i) =

Fyf(k + i) · cos(δa(k + i)) + Fyr(k + i)
mUx

− r(k + i), i = 0, . . . , NP − 1, (33)

.
r(k + i) =

aFyf(k + i) · cos(δa(k + i))− bFyr(k + i)
Izz

, i = 0, . . . , NP − 1. (34)

3.2.2. Tire Model

The front lateral force is considered as the control input, and the nonlinear dynamics of the
rear-tire force should be properly accounted for to accurately approximate the MPC with a linear
optimization problem. Inspired by Reference [7], which assumes that the tire-cornering stiffness
keeps constant in the prediction horizon, we propose a new online successive linearization method by
combining both the information of time k and step Np of the prediction horizon to accurately predict
the propagation of lateral tire forces, as shown in Figure 4.
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In the linearized model, the equivalent cornering stiffness over the prediction horizon is:

Cr =
(Fr,ss − Fr)

αr,ss − αr
. (35)

Thus, the approximate expression for the predicted rear-tire lateral force is:

Fyr(k + i) = Fr − Cr(αr(k + i)− αr), i = 0, . . . , NP − 1, (36)

where αr(k + i) is the predicted rear-tire slip angle which can be calculated by Equation (16).
The resulting linear expressions for the motion equations are described as follows:

.
β(k + i) =

Fyf(k + i) · cos(δa(k + i)) +
[

Fr − Cr(β(k + i)− b · r(k + i)
Ux

− αr)

]
mUx

− r(k + i), i = 0, . . . , NP − 1, (37)
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.
r(k + i) =

aFyf(k + i) · cos(δa(k + i))− b
[

Fr − Cr(β(k + i)− b·r(k+i)
Ux

− αr)
]

Izz
, i = 0, . . . , NP − 1. (38)

3.2.3. Tracking Model

Making the small-angle approximation for β and ∆ψ yields:

∆
.
ψ(k + i) = r(k + i)−Uxκ(k + i), i = 0, . . . , NP − 1, (39)

.
e(k + i) = Ux(β(k + i) + ∆ψ(k + i)), i = 0, . . . , NP − 1, (40)

.
s(k + i) = Ux, i = 0, . . . , NP − 1. (41)

Due to the assumption that the speed is fixed over the prediction horizon, the distance along the
path can be given, a priori, as:

s(k + i) = s(k) +
i

∑
j=0

Ux, i = 1, . . . , NP. (42)

4. MPC Controller Design

4.1. Problem Statement

Unlike human driving, which cannot perceive the velocity direction of the vehicle, autonomous
vehicles can obtain more accurate information from sensors and estimation technology. Taking the
heading deviation ∆ψ as a control reference state does not maximize the capacity of an autonomous
vehicle. The course deviation ∆ϕ, which is the angle between the vehicle’s velocity vector and the
path heading, denotes the real deviation of the vehicle’s moving direction and also indicates the trend
of the lateral deviation, as shown in Figure 5. When the sideslip, β, is small and ∆ψ is close to ∆ϕ, a
controller based on ∆ψ can keep the tracking deviation in a small range. However, when the difference
between ∆ψ and ∆ϕ becomes large, especially near the handling limits where a high rear-tire slip angle
and a high yaw rate lead to high sideslip, β, as shown in Figure 5, a controller based on ∆ψ will fail to
effectively minimize the tracking deviation. This is especially important for a vehicle traveling across
a corner at the physical limits of tire friction, where vehicle sideslip, β, can reach 5◦, and cannot be
ignored at this level.
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According to the vehicle kinematics, the course deviation is given by:

∆ϕ = ∆ψ + β. (43)

Zero steady-state lateral deviation requires the value of ∆ϕ to be zero, and the value of ∆ψ is,
hence, nonzero. Due to this, the course-direction deviation ∆ϕ should be chosen as a reference state
when designing a path-tracking steering controller.
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4.2. Control Model

Using the zeroth-order hold discretization method, we can get the discrete vehicle model from
Equations (37)–(42) as follows:

x(k + 1) = Acx(k) + BFyf Fyf(k) + Bκκ(k) + dαr , (44)

where x =
[

β r ∆ψ e
]T

is the state vector, and

Ac =


−2Cr
mUx

2Crb
mUx

2 − 1 0 0
2Crb
Izz

− 2Crb2

IzzUx
0 0

0 1 0 0
Ux 0 Ux 0

, BFyf =


2 cos(δ+i)

mUx
2a cos(δ+i)

Izz

0
0

, Bκ =


0
0
−Ux

0

, dαr


2(Fr+Crαr)

mUx

− 2b(Fr+Crαr)
Izz

0
0

.

In order to apply the integral action to eliminate the static offset caused by model uncertainties,
the discrete model can be written in the incremental form:

ξ(k + 1) = Aξ(k) + B1∆Fyf(k) + B2κ + d, (45)

η(k) = Cξ(k), (46)

Fyf(k) = Fyf(k− 1) + ∆Fyf(k), (47)

where ξ(k) =
[

x(k) Fyf(k− 1)
]T

is the extended state vector; η(k) =
[

∆f(k) e (k)
] T

is the output

vector; and A =

[
AC BFyf

0 I

]
, B1 =

[
BFyf

I

]
, B2 =

[
Bκ

0

]
, d =

[
dαr

0

]
, and C =

[
1 0 1 0
0 0 0 1

]T

.

The control objective is to generate an optimal front force input Fyf(k) by the steering controller,
such that the lateral path-tracking deviation is minimized and that the vehicle maintains stability at
the limits of handling.

4.3. Constraints

The design of the safety constraints is defined by the bounds of two vital indicators of vehicle
stability. Under the assumptions of steady-state cornering and the given tire model, the bounds of β

and r reflect the maximum capabilities of the vehicle’s tires.
The maximum steady-state yaw rate can be expressed as follows:

rmax =
gµ

Ux
, (48)

where g is the gravity. Given a yaw rate r, the vehicle sideslip, β, reaches a maximum when the rear
tires approach saturation:

βss,max = αr,sat +
br
Ux

, (49)

where αr,sat is the saturated tire slip angle, which is expressed as:

αr,sat = tan−1
(

3mgµ

Cαr

a
a + b

)
, (50)

where Cαr is the rear-tire cornering stiffness.
The constraints defined by Equations (49) and (50) can be concisely expressed via the inequality:

|Hvξ(k)| ≤ Gv, (51)
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where:

Hv =

[
0 1 0 0 0
1 − b

Ux
0 0 0

]
and Gv =

[
rmax αr,sat

]T
.

4.4. MPC Formulation

The optimization problem for MPC, given in Equations (4)–(10), can be formulated as follows:

min
∆Fyf,εv

JNP =
NP
∑

i=1
(η(k + i))TQη(k + i) +

NC
∑

i=1
R
(

∆Fyf(k + i))
2
+ Wεv

=
NP
∑

i=1
ξ(k + i)TCTQCξ(k + i) +

NC
∑

i=1
R
(

∆Fyf(k + i))
2
+ Wεv

, (52)

s.t. |Hvξ(k + i)| ≤ Gv + εv, ∀i, (53)∣∣∣∆Fyf(k + i)
∣∣∣ ≤ ∆Fyf,max, i = 0, . . . , NC − 1, (54)

∆Fyf(k + i) = 0, i = NC, NC + 1, . . . , NP − 1, (55)∣∣∣Fyf(k + i)
∣∣∣ ≤ Fyf,max, i = 0, . . . , NC − 1, (56)

where ∆Fyf = [∆Fyf(k), ∆Fyf(k + 1), . . . , ∆Fyf(k + NC − 1)]T is the sequence of future input increments,
and Q, R and W are weighting matrices of appropriate dimension. ∆Fyf,max and Fyf,max are the slew
rate capabilities and the maximum lateral force, respectively. As Equation (51) is based on steady-state
assumptions, the vehicle state can exceed the bounds and still return back within the bounds after a
short excursion. To ensure the optimization problem is always feasible, a nonnegative slack variable εv

is used.
The solution vector of the optimization problem in Equations (52)–(56) is expanded as follows:

∆U∗ = [∆F∗yf, ε∗v]
T . (57)

The optimal front lateral force input is obtained through the first element of the optimal
solution sequence:

F∗yf(k) = Fyf(k− 1) + ∆F∗yf(k). (58)

Additionally, the steering angle δ that will be applied to the vehicle is obtained by mapping F∗yf(k)
through Equation (17).

In order to accurately capture the propagation of β and r at a high frequency, the sampling time
Ts = 0.02 s is small enough. Considering the balance of the control performance and the computational
complexity, NC and NP are chosen as 20 and 50, respectively. The following weighting matrices were
obtained by iteratively tuning via simulation:

Q =

[
1000 0

0 5

]
, (59)

R = 1, (60)

W =
[

10 10 10 10
]
. (61)

5. Simulations and Results

5.1. Model Validation

In order to demonstrate the improvements of the linearized method, two paths with different
corner curvatures are designed. The general shape of both paths are the same, as shown in Figure 6,
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with three sections—corner entry, constant radius, and corner exit—and the distance of each section
is the same. The center points of each section would be comparison points. The radii of the constant
radius section (green in Figure 6) are 8 m and 30 m for the two paths. The nonlinear models of
Equations (12)–(14) and (18)–(20) are used to compute the vehicle states. The Stanley method is used
to track the desired path at two constant speeds, and the steering-angle control law is given by:

δ = ∆ψ + tan−1(
kPe
Ux

), (62)

where kP is the gain parameter.
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The simulation is carried out with sampling time Ts = 0.02 s, and the simulated steering angle
and the corresponding front lateral force are shown in Figure 7.
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Figure 7. The steering angle and front tire lateral force of the model in (a) R = 30 m and Ux = 45 km/h
and (b) R = 8 m and Ux = 25 km/h cases.

We use Equations (21) and (22) and the tire-linearization method proposed in Reference [7] as a
baseline prediction model to compare with our model, which provides steady-state information and is
a combination of Equations (36)–(38). The prediction horizon length is chosen as 0.4 s with 20 steps.
Utilizing the simulated front lateral force as the input of the prediction model, the predicted vehicle
state sequences can be generated, and the results are shown in Figure 8.
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Figure 8. The prediction results of different linearization models in (a) R = 30 m, Ux = 45 km/h and (b)
R = 8 m, Ux = 25 km/h cases.

For the first case, where the constant radius is 30 m and the speed is 45 km/h, the lateral
acceleration can reach 6 m/s2. The steering angle is less than 5◦ at points 1 and 3, and slightly higher at
point 2. Therefore, the small-angle assumption is valid. As shown in Figure 8a, both linear models can
predict the vehicle states accurately. However, the predicted sideslip β at point 1 of the baseline linear
model begins to deviate from the nonlinear value. For the second case, where the speed is 25 km/h
and the maximum lateral acceleration is 7 m/s2, the steering angle is much larger than 5◦ at all three
points, especially at point 2. The small-angle assumption is no longer valid under these conditions.
As shown in Figure 8b, the prediction errors of sideslip, yaw rate and rear-tire force for the baseline
model increase with step number at point 2. At the same time, the linear model with steady-state
information can still predict the vehicle state accurately.

5.2. Controller Performance

To validate the performance of the presented steering controller, a test was performed via
simulation. The simulation is implemented based on the CarSim-Simulink platform with a validated
high-fidelity full-vehicle dynamics model. The parameters of the vehicle and path are listed in Table 1.
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Table 1. Parameter values of the vehicle.

Parameter Symbol Value Units

Vehicle mass m 1230 kg
Yaw inertia Izz 1343.1 kg·m2

Front axle-O distance a 1.04 m
Rear axle-O distance b 1.56 m

Front cornering stiffness Cαf 48,840 N/rad
Rear cornering stiffness Cαr 32,887 N/rad

Friction coefficient µ 0.95 n/a

The path for the simulated steering controller to follow is a 584 m circuit generated by the
path-generation method of Reference [25], as shown in Figure 9a. The desired path is parameterized
as a curvature profile that varies with distance counterclockwise along the path, which is shown in
Figure 9b. The desired longitudinal speed and lateral acceleration profile are generated by the speed
controller proposed in Reference [26], as shown in Figure 10. The curvature varies between −0.04 m−1

and 0.05 m−1, the longitudinal speed varies between 13.5 m/s to 28 m/s, and the lateral acceleration
varies between −9 m/s2 to 9 m/s2.Energies 2018, 11, x  14 of 18 

 

  
(a) (b) 

Figure 9. The designed path for steering controller to track. (a) Overhead view of path and (b) the 
corresponding curvature varies counterclockwise along the path. 

 
Figure 10. The desired speed and lateral acceleration. 

Figure 11 shows the simulation results of three separate MPC steering controllers. The first 
(linear controller) utilizes the steering angle as the control input with the linear vehicle and tire 
models employed. The second (original controller) and the third (proposed controller) controllers 
both utilize the vehicle and tire models introduced in Section 3. The difference is that, as a baseline 
controller, the original controller uses the heading deviation Δψ and lateral deviation e as a reference 
state. The longitudinal controller and stability bounds are used for all cases.  

The simulation results for the lateral deviation and steering angle for three controllers are shown 
in Figure 11, and statistics of the results are shown in Table 2. As shown in Table 2, the average of the 

absolute lateral deviation e  and the standard deviation of the absolute lateral deviation ( )σ e , and 

the maximum absolute lateral deviation max( )e  of the linear controller, are much higher than the 

other two MPC controllers. Additionally, as shown in Figure 11, the steering angle of the linear 
controller keeps increasing until it reaches a maximum, beyond which the lateral deviation continues 
to increase. This is because the linear model fails to predict the lateral tire force when the tire reaches 
the nonlinear region, especially near saturation. On the other hand, the controllers with the proposed 
dynamic model can maintain the lateral deviation in a small range, which indicates that the 
linearization method proposed in the Section 3 can properly retain the characteristics of the vehicle 
nonlinearity even under high-speed conditions. 

The performances of the original and the proposed controllers are quite close, as shown in Figure 

11. However, the e  and ( )σ e  of the proposed controller are lower as shown in Table 2, while the 

max( )e  of the two controllers remains roughly the same. The reason for this can be concluded as 

-50 0 50 100 150 200

0

20

40

60

East (m)

N
or

th
 (m

)

Start (0,0)

0 100 200 300 400 500
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Station (m)

C
ur

va
tu

re
 (m

-1
)

0 100 200 300 400 500
-10

0

10

Distance (m)

La
te

ra
l a

cc
 (m

/s
2 )

10

20

30

D
es

ire
d 

sp
ee

d 
(m

/s)

Figure 9. The designed path for steering controller to track. (a) Overhead view of path and (b) the
corresponding curvature varies counterclockwise along the path.
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Figure 10. The desired speed and lateral acceleration.

Figure 11 shows the simulation results of three separate MPC steering controllers. The first (linear
controller) utilizes the steering angle as the control input with the linear vehicle and tire models
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employed. The second (original controller) and the third (proposed controller) controllers both utilize
the vehicle and tire models introduced in Section 3. The difference is that, as a baseline controller,
the original controller uses the heading deviation ∆ψ and lateral deviation e as a reference state.
The longitudinal controller and stability bounds are used for all cases.

The simulation results for the lateral deviation and steering angle for three controllers are shown
in Figure 11, and statistics of the results are shown in Table 2. As shown in Table 2, the average of the
absolute lateral deviation |e| and the standard deviation of the absolute lateral deviation σ(|e|), and the
maximum absolute lateral deviation max(|e|) of the linear controller, are much higher than the other
two MPC controllers. Additionally, as shown in Figure 11, the steering angle of the linear controller
keeps increasing until it reaches a maximum, beyond which the lateral deviation continues to increase.
This is because the linear model fails to predict the lateral tire force when the tire reaches the nonlinear
region, especially near saturation. On the other hand, the controllers with the proposed dynamic
model can maintain the lateral deviation in a small range, which indicates that the linearization method
proposed in the Section 3 can properly retain the characteristics of the vehicle nonlinearity even under
high-speed conditions.

The performances of the original and the proposed controllers are quite close, as shown in
Figure 11. However, the |e| and σ(|e|) of the proposed controller are lower as shown in Table 2, while
the max(|e|) of the two controllers remains roughly the same. The reason for this can be concluded
as follows: At some points, the front lateral force necessary to minimize deviation has exceeded the
available friction, and there is nothing the steering controller can do to bring the vehicle back to
the desired path with such a large lateral acceleration. To show more details of the control process,
Figure 12 shows the simulation results of the two controllers over the range 0–200 m.

Table 2. Comparison of control results of different controllers.

Model |e| (m) σ(|e|) (m) max(|e|) (m)

Linear Controller 2.460 3.295 11.702
Original Controller 0.671 0.906 4.402
Proposed Controller 0.539 0.750 4.400
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Figure 11. The simulation results of lateral deviation and steering angle of different controllers.

As shown in Figure 12, the lateral deviation e is reduced when using the course-direction deviation
∆ϕ in the controlled state. Around s = 50, 80, 120 and 150 m along the track, vehicle sideslips increase
with speed and curvature beyond 5◦, and even reach up to 10◦. This explains the noticeable difference
between heading deviation ∆ψ and course-direction deviation ∆ϕ at the same points. Additionally, the
lateral deviation e of the original controller is much larger than the proposed controller, which matches
the expected results in Section 4. Around s = 140 m, the heading deviation, ∆ψ, of the original controller



Energies 2018, 11, 1451 15 of 17

becomes positive (the left side of path-heading direction) and maintains about 10 m. However, the
lateral deviation e keeps increasing on the right side of the desired path. This indicates that heading
deviation cannot accurately reflect the real direction of the vehicle and the tendency of lateral deviation
when the vehicle sideslip is large. From s = 130 to 150 m, the front lateral force is constant, while the
steering angle of the front tires fluctuates. This confirms that using lateral force as the input to the
model is a more direct approach to account for the nonlinearity of the tires.Energies 2018, 11, x  16 of 18 
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Figure 12. Simulation results over 0–200 m. The lateral deviation e, sideslip beta β, heading deviation
∆ψ, course-direction deviation ∆ϕ , front-tire lateral force Fyf and steering angle δ of proposed controller
are compared with that of original controller over 0–200 m.

6. Conclusions

The design of an MPC steering controller based on a linearized model for autonomous vehicle
path tracking is described in this paper. The proposed steering controller can track the desired path
accurately at high speeds and under large lateral-acceleration conditions. By including the predicted
and steady-state information in the model, the proposed linearization method can properly retain the
nonlinear characteristics of the vehicle and tire models. Additionally, a single-track ‘bicycle’ model
and a brush tire model are linearized to accurately describe the motion of the vehicle at high speeds.
A simulation has been conducted to validate the accuracy of the method. Problems with the effective
control reference states were discussed. Based on the linearized model, the MPC controller utilizes
course-direction deviation instead of heading deviation as the control reference state to eliminate the
tracking deviation. Thus, an improved MPC controller with course-direction deviation and stability
constraints was developed. Finally, by comparing with the linear controller, the simulation results
demonstrate the controller with proposed linearized model can maintain the deviation in a small range
even under large lateral acceleration conditions. Analysis of results indicates that the steering controller
with course-direction deviation reduces the average of absolute lateral deviation, compared to the
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controller with heading deviation, by nearly 20%. This steering controller can ensure tracking accuracy
and vehicle stability under high-speed conditions and can be applied to drive an autonomous vehicle.
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