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Abstract: The accurate prognostics of lithium-ion battery state of health (SOH) and remaining useful
life (RUL) have great significance for reducing the costs of maintenance. The methods based on
the physical models cannot perform satisfactorily as the systems become more and more complex.
With the development of digital acquisition and storage technology, the data of battery cells can
be obtained. This makes the data-driven methods get more and more attention. In this paper,
to overcome the problem that the trend fitting deteriorates rapidly when test data are far from the
training data for multiple-step-ahead estimation, a prognostic method fusing the wavelet de-noising
(WD) method and the hybrid Gaussian process function regression (HGPFR) model for predicting
the RUL of the lithium-ion battery is proposed. Gaussian process regression (GPR) is a typical
representative for the Bayesian structure with non-parameter expression and uncertainty presentation.
In this case, the effects on predictive results are compared and analyzed using the proposed
method and the HGPFR model with different lengths of training data. Besides, in consideration
of the degradation characteristics for the lithium-ion battery data set, the selections of the wavelet
de-noising method are performed with corresponding experimental analyses. Furthermore, we set
the hype-parameter for the mean function and co-variance function, and then develop a method for
parameter optimization to make the proposed model suitable for the data. Moreover, a numerical
simulation based on the data repository of Department of Engineering Science (DES) university of
Oxford and Center for Advanced Life Cycle Engineering (CALCE) of University of Maryland is
carried out, and the results are analyzed. For the data repository, an accuracy of 2.2% is obtained
compared with the same value of 6.7% for the HGPFR model. What is more, the applicability and
stability are verified with the prognostic results by the proposed method.

Keywords: lithium-ion battery; RUL prediction; Gaussian process function regression; wavelet de-noising

1. Introduction

Lithium-ion batteries are used to enable main equipment to store electricity, with the advantages
of high specific energy, long service life, high reliability, and safety [1]. These advantages promote
the application of lithium-ion batteries in battery-powered systems [2], such as mobile phones,
laptops, electric vehicles, etc. Moreover, applications have been extended to the fields of military
communications and aerospace [3]. Lithium-ion batteries have gradually become the key technology
in many crucial fields [4,5].

However, as a lithium-ion battery cell ages, the power fades, the capacity fades, and other
performance degradation occurs [6]. To specify the performance of the lithium-ion battery under
uncertain situations, lithium-ion batteries are usually chosen with over-capacity [7,8]. On the one
hand, this costs more. On the other hand, it is a pivotal part of the battery management system (BMS)
with high prediction accuracy. At present, many studies are concentrated on the estimation of the
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state of charge (SOC) [8–10], the state of health (SOH) [4,11] and remaining useful life (RUL) [1–3] for
lithium-ion batteries.

For the conventional methods, the prognostic models are constructed based on the equivalent
circuit models, such as the battery internal resistance equivalent (Rint) model, the Thevenin model,
the partnership for a new generation of vehicles (PNGV) model, the General-nonlinear (GNL) model,
etc. [12,13]. These methods can describe the working principle and physical interpretation of the
lithium-ion battery. There are many studies about prognostic models based on the equivalent circuit
models. For instance, Ref. [13] propose an approach based on the RC equivalent circuit model for the
SOC prediction. This paper has got some satisfied results that are based on the specified working
conditions. However, the relationship between the number of RC networks and model accuracy
remains unresolved. In fact, with the increment of RC networks, the accuracy of model may not be
better [14]. Worse more, excessive RC networks increase the complexity of the model. On the one hand,
the performance of lithium-ion battery is directly related to its aging state and operating temperature.
On the other hand, the practical working condition is so complex that the equivalent circuit models
cannot represent the degradation behavior accurately.

To overcome the problem with equivalent circuit model, the prognostic model based on the
data-driven method is getting more and more attention. It is a vital characteristic that the data-driven
methods are non-parametric. Hence, these approaches can be used for predicting the state of complex
battery system, if there are sufficient data and the accuracy of the data-driven method depends on
the size of data. There are many studies for battery prediction based on data-driven methods, such
as the particle filter (PF), the relevance vector machine (RVM), the support vector machine (SVM),
the Kalman filter (KF), etc. Ref. [15] propose a method depending on the unscented particle filter
(UPF) for the prognostics of RUL. In this paper, the proposed method is modeled by understanding the
degradation of the battery, and the results are obtained with 5% maximum error. Hu Chao et al. [16]
applied the RVM and a specified model for the battery aging for the prediction of lithium-ion battery
capacity. Zou et al. [17] propose a multi-time-scale method based on extended Kalman filter (EKF) and
unscented Kalman filter (UKF) for estimating the SOC and SOH of lithium-ion battery. Besides, the
authors of Ref. [17] obtain higher robustness and accuracy. Wei et al. [18] apply an online prediction
model for improving the performance of vanadium redox battery (VRB), and the parameters are
optimized with recursive least squares (RLS) and EKF. Furthermore, for the certain prediction time
horizon, the constraints containing current, SOC, and voltage are incorporated with the estimation of
the peak power in real time.

However, there is still a problem of weak prediction ability for the data-driven method supporting
uncertainty presentation [19]. In addition, the battery resistance is used for the health index (HI) for
the research of the lithium-ion battery RUL estimation [20]. Besides, it is very difficult to monitor and
measure the battery resistance. Worse more, the rated capacity is also difficult to measure and estimate
under fully charged or discharged conditions [21]. The Bayesian models have a pivotal characteristic
with uncertainty presentation. The results of Bayesian models provide the confidence bounds that help
make better decisions [22,23]. Compared with other data-driven methods, the GPR method is a type of
Bayesian model that has exclusive strength. At the same time, the GPR method can also improve the
accuracy of estimation without the physical model.

In recent years, the models based on GPR have been used for the battery estimation. Ref. [24]
propose a method based on the GPR model for predicting the battery capacity through calculating the
value of internal resistance. However, the method proposed by Ref. [24] is modeled on the condition
that the relationship of mapping internal resistance to capacity is linear. When applied practically,
this cannot guarantee that the relationship between internal resistance and capacity is linear. Moreover,
the short-term prognostics have been shown only, and they are lacking in terms of long-term prediction.
Ref. [25] propose a method for SOH prediction with combination of Gaussian process and PF. For that
paper, the data on different working conditions are used for training data to fit the battery degradation,
and the parameters are optimized by the maximization of the log-likelihood, and high accuracy is
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obtained. Unfortunately, the method cannot eliminate the impact of lithium-ion battery regeneration.
That is the reason the predictive trend cannot fit the actual trend satisfactorily. Ref. [26] propose
a method for SOH prediction with a combination of the Gaussian process function. That paper
applies the combination Gaussian process function for battery prognostics innovatively and proves
the feasibility for that method. Unfortunately, the trend fitting deteriorates when test data are far from
the training data and the predictive results are unsatisfactory.

To solve the problems stated above, this paper proposes a method with the fusion of the wavelet
de-noising method and the HGPFR model (WD-HGPFR method). To reduce the impact of noise and
obtain more accurate RUL prediction results, the WD method is applied. In consideration of the
degradation characteristics for lithium-ion battery data set, the selection of the wavelet de-noising
method is performed with corresponding experiments analyses. This method can remove the noise
from useful data effectively. Furthermore, the key features are also distilled. That guarantees the
significance of de-noise data. The proposed method is formulated with the HGPFR model, and
the hype-parameters are optimized by the maximization of the log-likelihood method. Finally,
numerical simulations based on the data repository of DES and CALCE are carried out, and the
results are analyzed.

The contribution of the proposed method can be summarized as follows.

(1) The domain transformation method is fused with the time series prognostic model to predict the
RUL of lithium-ion battery.

(2) The wavelet denoising method is selected by the experimental and theoretical analysis.

This paper is classified 5 parts as follows. The wavelet de-noising and typical GPR model and
previous work are introduced in Section 2. The framework of the proposed model is introduced
in Section 3. The results for the estimation of lithium-ion batteries are analyzed in Section 4.
The conclusion and future work are shown in Section 5.

2. Methodologies

2.1. Wavelet De-Noising

The noise cannot be avoided in the test processes and that can lead the character variety of input
data. Therefore, the noise has negative effects on the prognostics of lithium-ion battery, such as the
estimation of parameters and the accuracy of prediction. To reduce the impact of the noise, de-noising
methods are used [27]. These methods aim to eliminate the noise from the data to be analyzed without
altering the features of original data. Varieties of de-noising methods are applied, such as smoothing
filtering, short-duration averaging, etc. However, these methods cannot get a satisfactory signal to
noise ratio (SNR), an important evaluating indicator for the performance of de-noising. To overcome
this problem, wavelet de-noising is widely applied to eliminate the noise and distills the key features
of the original data.

The original data are dealt with a mother wavelet function defined as φ(t), and t refers to time.
The wavelet can work accurately only when mother wavelet function satisfies the equation shown as
follows [28]:

Cω =
∫ +∞

−∞

∣∣∣∣Ψ(ω)

w

∣∣∣∣dw < ∞ (1)

in which Ψ(ω) is the Fourier transform of the mother wavelet function φ(t).
The mother wavelet function φ(t) can be defined by Equation (2).

φa,b(t) = |a|−
1
2 φ

(
t− b

a

)
a, b ∈ R, a 6= 0 (2)

in which φa,b(t) indicates a wavelet function transformed by the mother wavelet function, a denotes
the scale coefficient that indicates the length of wavelet, and b refers to the time position coefficient.
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Before dealing with the actual data, a measurable square integral function space is required
defined as L2(R). The types of an actual signal wavelet transform (WT) f (t) ∈ L2(R) are indicated
as follows:

W f (a, b) = |a|−
1
2

∫ +∞

−∞
f (t)φ∗

(
t− b

a

)
dt (3)

in which φ∗(t) is the complex conjugate type of φ(t), and W f (a, b) refers to the wavelet factor.
In practical terms, the original signals are expressed by discrete type defined as f (k∆t); k is the

number of sample, and ∆t represents time interval. Therefore, the discrete wavelet transform (DWT)
can be defined as follows:

Wj,k = a0
− j

2 f (t)φ∗(a0
−jt− kb0)dt (4)

in which the a0 and b0 are both constant. j indicates the time scale coefficient with the same function as
mentioned in Equation (3), and kb0 represents the time position coefficient with the same function as
mentioned in Equation (3). In practical procession, a0 and b0 are set to 2 and 1, respectively.

On the basis of DWT, we introduce the wavelet de-noising method. It is assumed that the original
data defined as yk are comprised of real signal defined as xk and additional noise defined as nk.
Then, the original data can be given as follows:

yk = xk + nk, k = 1, 2 . . . N (5)

Then, the original data yk can be decomposed as follows:

yk = ∑
n

cJ,n ϕJ,n +
J

∑
j=1

∑
n

dj,nφj,n (6)

in which J refers to the decomposition levels, n is the time position coefficient, ϕ indicates the time
scale coefficient, φ is the DWT function. ϕJ,n and φj,n indicate the zooming of ϕ and panning of φ,
respectively. cJ,n reflects the approximation coefficient, and dj,n is the detail coefficient.

It is easy to obtain the discrete approximation coefficient cJ,n and detail coefficient dj,n by varieties
of decomposition levels. A great deal of engineering experience and theoretical studies have shown
that the detail coefficient dj,n usually carries less information that is controlled by the noise. Hence,
if these detail factors are set to 0, most of the noise can be removed, and the key features of original
data can be distilled. That can be achieved by the wavelet threshold de-noising. With this de-noising
method, the detail coefficient values of the deposition level are set to 0, if the value is less than the
threshold dj,n, and then the signals are reconstructed by the high amplitude signal.

The threshold dj,n usually includes 2 parts, the soft threshold and the hard threshold, shown as
Equations (7) and (8), respectively.

dj,n =

 d̂j,n,
∣∣∣d̂j,n

∣∣∣ ≥ λ

0,
∣∣∣d̂j,n

∣∣∣ < λ
(7)

dj,n =

 sgn(d̂j,n)(
∣∣∣d̂j,n

∣∣∣− λ),
∣∣∣d̂j,n

∣∣∣ ≥ λ

0,
∣∣∣d̂j,n

∣∣∣ < λ
(8)

in which λ reflects the preset threshold, and sgn(·) indicates the sign function shown as
following equation:

sgn(x) =


1 x > 0
0 x = 0
−1 x < 0

(9)
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Both of the thresholds can reduce the impact of noise effectively. Owing to the better performance
of soft threshold, it can not only remove the noise form the original signals, but also can distill the key
features. Therefore, in this paper, to reduce uncertainty extract trend information effectively, the soft
threshold is chosen to de-noise the original signal.

2.2. GPR Model

The essence of GPR is a collection of a finite number of random variables that are defined as
{ f (xi)|xi ∈ x} .Under the constant condition, to give the probable distribution for f (xi), the stochastic
process is specified as determined form. x is a 1-dimension time series standing for the length of input
data [29]. In this paper, x is defined as the number of charge/discharge cycles. The mean function m(x)
and co-variance function k(xi, xj) can nearly represent the Gaussian process f (x) [30,31]. The mean
function m(x) and co-variance function k(xi, xj) are described as follows:

m(x) = E( f (x)) (10)

k(xi, xj) = E[( f (xi)−m(xi)) · ( f (xj)−m(xj))] (11)

These two functions are obeying the Gauss distribution expressed as follows:

f (x) ∼ GP[m(x), k(xi, xj)] (12)

For conventional GPR model, the mean function m(x) is specialized as 0, and the co-variance
function k(xi, xj) is specialized as squared exponential covariance function. For the practical prediction
of lithium-ion battery, the co-variance function k(xi, xj) is usually made up of two components
described as follows:

k(xi, xj) = k f (xi, xj) + kn(xi, xj) (13)

in which k f (xi, xj) and kn(xi, xj) stand for the co-variance function of practical system and noise,
respectively. Reference [32] discusses the different selection of k f (xi, xj) in different conditions.

Ref. [32] list the co-variance functions for the proposed prediction model, and the squared
exponential covariance function is shown as following equation:

k f = σ2
f1

exp

(
−
(xi − xj)

2

2l12

)
(14)

The periodic covariance function is shown as following equation:

K f = σ2
f2

exp

(
− 2

l2
2

sin2
( ω

2π
(xi − xj)

))
(15)

The constant covariance function is shown as following equation:

kn = σ2
n (16)

The Equation (16) is often applied for the noise under the white Gaussian noise condition.
From Equations (14)–(16), it can be obviously seen that the parametric solution of free parameters
called the hyper-parameters should be accomplished if these covariance functions are used for the
models. These free parameters can be described as follows:

Θ = [σ2
f1

, σ2
f2

, l1, l2, ω, σ2
n ]

T
(17)

in which σ2
f1

and σ2
f2

stand for the signal variance, and the variance of noise is represented by the σ2
n . l1

and l2 are the length of signal, and ω reflects the angular frequency [33].
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Generally, to achieve a better model, the hyper-parameters should be optimized according to the
maximization theory of the log-likelihood, that is, defined as follows [34–36]:

L = log p(y|x, Θ)

= − 1
2 log(det(K f + σ2

n I))− 1
2 yT [K f + σ2

n I]−1y− N
2 log 2π

(18)

in which I reflects the unit matrix, and n refers to the length-scale of training data.
The posterior distribution can be driven through the functions with training data described as

{(x, y)|i = 1, . . . , n}. The target y is shown as following equation if a Gaussian process is used:

y = f (x) + ε (19)

here, ε refers to the white Gaussian noise, and ε ∼ N(0, σ2
n).

According to analysis above, the prognostic distribution for GPR can be shown as follows [37]:(
y
f ′

)
∼
(

0,

(
k f (x, x) + σ2

n k f (x, x′)
k f (x, x′)T k f (x′, x′)

))
(20)

here, x refers to a set of training points, and x′ reflects the test data inputs.
The posterior is shown as follows:(

f ′|x, y, x′
)
∼ N( f ′, cov( f ′)) (21)

here,
f ′ = E[ f ′|x, y, x] = k f (x, x′)[k f (x, x) + σ2

n I]
−1

y,

cov( f ′) = k f (x′, x′)− [k f (x′, x) + σ2
n I]
−1

k f (x, x′).

2.3. HGFPR Model

For the interpolation test data, satisfied results can be achieved using the GPR model. However,
the trend fitting deteriorates rapidly if the test data are less when traditional GPR is used for
multiple-step-ahead estimation. To improve the accuracy of prediction, the hybrid Gauss process
function regression (HGPFR) is used in Ref. [26].

According to the Ref. [23], authors choose Equation (14) to describe the training data trend,
and Equation (15) is chosen to reduce the impact of regeneration phenomenon. The linear mean is
chosen for mean function. The HGPFR is presented as follows:

mx = ax + b

k f = σ2
f1

exp
(
− (xi−xj)

2

2l12

)
+ σ2

f2
exp

(
− 2

l2
2

sin2( ω
2π (xi − xj)

)) (22)

On the one hand, compared with the traditional GPR model, HGPFR model performs better in
terms of flexibility and stability. On the other hand, the better prediction results have been achieved by
our previous work. However, the computing complexity would raise sharply for more parameters to
estimate if there are huge amounts of original data. Fortunately, for the general battery RUL forestation,
the amounts of data to be processed are relatively small. That cannot cause the computing complexity
raising obviously. Therefore, for the proposed method in this paper, the HGPFR model is applied other
than the traditional GPR model. The HGPFR model is chartered with better performance in flexibility
and stability; at the same time, higher accuracy RUL prediction results can be achieved than with the
traditional GPR model.
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3. Fusion Framework with WD Method and HGPFR Model

The motivation of this paper is to fuse the WD method and HGPFR model to remove the noise
from original data and obtain the higher accuracy RUL prediction. Furthermore, 95% confidence
bounds of RUL prediction can be presented as well. The noise can be removed effectively, and the key
features can be also distilled when the original data are processed by the WD method. The denoised
data are input to the HGPFR model to optimize the hype-parameter and output the prognostic result.
At the same time, the uncertainty of RUL prediction can be obtained together with prognostic result
from HGPFR model as well. Hence, the domain transformation and data-driven methods are applied
by the fusion method. Thus, the fusion method can achieve the target containing data preprocessing
and RUL prediction for the lithium-ion battery.

Depending on the station above, the flowchart for the proposed hybrid method for the battery
RUL prognostics is shown in the Figure 1.
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According to Figure 1, the input of the hybrid method is the capacity, and the output is prognostic
capacity degradation trajectory with 95% confidence bounds. Then, the evaluation is given with testing
data set and prediction results through some criteria. The fusion method of WD method and HGPFR
model for the noise de-noising and battery RUL prediction are introduced as follows.

Definition: Hype-parameter Θ = [a, b, σ2
f1

, σ2
f2

, l1, l2, ω, ]T is an important factor to be optimized.
Prognostic starting point is set to T. Data_train(T) reflects the training data for the HGPFR model that
consists of the history data {Cap(i), i}T−1

i=1 . WD_Data_train(T) reflects the preprocessed training data
for the HGPFR model that consist of the history data {WD_Cap(i), i}T−1

i=1 . N means the total cycle life
number of each data set. The process of proposed method is stated as follows.

Firstly, wavelet function φ(t), the value of soft threshold λ, and the decomposition levels are
initialized. Based on that, the original data that are decomposed for J levels are decided. At the
same time, the detail coefficient dj,n is obtained. Then, the de-noised signals are reconstructed.
Next, the hype-parameter and times of optimization are initialized, and they are optimized by the
maximization of the log-likelihood method. The de-noised signals are input to the HGFPR model.
Finally, the model outputs the prediction results, and the evaluation criteria is given to evaluate the
performance of hybrid method.

For clarity, the hybrid method with WD method and HGPFR model can be summarized in
Algorithm 1.
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Algorithm 1. The hybrid method with WD method and HGPFR algorithm

(1) Initialization:
Select the wavelet function φ(t), the value of soft threshold λ, and the decomposition levels J;
(2) Decomposition:
Decompose the {Cap(i), i}T−1

i=1 for the J levels and calculate the detail coefficient dj,n form 1 to J levels with
Equation (6);
(3) Wavelet reconstruction:
The signals {WD_Cap(i), i}T−1

i=1 are reconstructed with the value of soft threshold λ and detail coefficient dj,n
form 1 to J levels by the Equations (6) and (8);
(4) Initialize the hype-parameter and times of optimization:

Initializing value of hype-parameter is set to Θ0 = [a0, b0, (σ2
f1
)

0
, (σ2

f2
)

0
, l10, l20, ω0]

T , and the times of
optimization are set to Nop;
(5) Optimized the hype-parameter
FOR I = 1, . . . Nop

Calculate the hype-parameter Θi using Equation (9) with the reconstruct signal {WD_Cap(i), i}T−1
i=1

Update the value of hype-parameter with Θi

END FOR;
(6) Output the prediction result:
Input the reconstruct signal {WD_Cap(i), i}T−1

i=1 to the prognostic model, and then capacity degradation
trajectory with the 95% confidence bounds is obtained;
(7) Prognostic result evaluation:
The evaluation is given with testing data set and prediction results through some criteria to evaluate the
performance of hybrid method.

4. Experiments and Discussion

To evaluate the performance of hybrid method, the lithium-ion battery data set is applied. The data
set is characterized with different experiment conditions. The varieties of data set guarantee the
adaptability and effectiveness of proposed model. Next, the detailed information and evaluation
criteria will be introduced.

4.1. Raw Data from Lithium-Ion Battery and Evaluation Criteria

4.1.1. DES Lithium-Ion Battery Data Set

This section shows an overview of the raw data of the experiment. The data for carrying out the
prediction model is from the DES, University of Oxford. The Bio-Logic MPG-205 lithium-ion battery
systems are applied for the experiment of lithium-ion battery degradation. The test subject is the
lithium-ion battery produced by the Kokam CO LTD [38–40]. The version of battery is SLPB533459H4
whose rated capacity is 740 mAh. Structures of the test data are made up of 5 kinds of forms consisting
of charge rate, discharge rate, temperature of battery, open circuit voltage, and capacity at temperature
of 40 ◦C. The details of the experimental conditions for the battery are given as follows.

• The thermal chamber is set to 40 ◦C.
• The lithium-ion battery is charged under the constant current of 0.74 A condition until the voltage

attained 4.2 V.
• The battery is discharged under the constant current of 0.74 A condition until the voltage fell to

2.7 V.
• The capacity data are recorded every 100 cycles of drive cycles.

The lithium-ion batteries are repeated charging and discharging cycles to achieve accelerated
the aging process. The impedance measurements completed by the electrochemical impedance
spectroscopy (EIS) provide the internal parameters of the battery during the aging process.
These experiments are carried out with the accelerated aging pattern. The number of charge or
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discharge cycles will be more than the results of these experiments in the actual application. In the
experiment of the Department of Engineering Science, University of Oxford, the experiments are ended
when the charged capacity of the lithium-ion batteries reaches about 80% of the rated capacity (from
0.74 Ah to about 0.60 Ah).

The data consist of training data and testing data for Cell-1, Cell-4, and Cell-7 batteries showing
marked degradation characteristics through analyzing the data and experimental conditions. These sets
of data are routine degradation performance test at temperature of 40 ◦C. Therefore, it is the
representative for these sets of data to verify the method proposed in this paper. The results that
measured the capacity of these data sets are shown in Figure 2. The measured capacity is normalized
in this paper. For the reason that capacity data are recorded every 100 cycles of drive cycles, the values
of horizontal ordinate are 100 times for the practical cycles. That means No. 10 cycle of the figures in
this paper actually denotes No. 1000.
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4.1.2. CALCE Lithium-Ion Battery Data Set

This section shows an overview of the raw data of the experiment. The data for carrying out the
prediction model is from the CALCE, University of Maryland [41]. The Arbin BT2000 lithium-ion
battery systems are applied for the experiment of lithium-ion battery degradation. To provide sufficient
data, the data is divided into two parts with the difference of batteries’ rated capacity that is 1.35 Ah
and 1.1 Ah for batteries, respectively, and the battery with 1.1 Ah rated capacity is chosen for the
experiment. Structures of the data are made up of 3 kinds of forms (charge, discharge, and capacity) at
room temperature. The details of the experimental conditions for the battery are shown as follows:

• The thermal chamber was set to 20 ◦C–25 ◦C.
• The lithium-ion battery was charged under the constant current of 0.55 A condition until the

voltage attained 4.2 V.
• The battery was discharged under the constant current of 1.1 A condition until the voltage fell to

2.7 V.

The lithium-ion batteries are repeated charging and discharging cycles to achieve accelerated
the aging process. The impedance measurements completed by the electrochemical impedance
spectroscopy (EIS) provide the internal parameters of the battery during the aging process.
That completed the progress of the lithium-ion batteries aging process. These experiments are carried
out with the accelerated aging pattern. However, the number of charge or discharge cycle will be
more than the results of these experiment in the actual application. In the experiment of the CALCE,
the experiments are ended when the charged capacity of the lithium-ion batteries reaches about 80%
of the rated capacity (from 1.1 Ah to about 0.88 Ah).
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The data consists of training data and testing data for CS2-8, CS2-21, and CS2-33 batteries showing
marked degradation characteristics through analyzing the data and experimental conditions. These sets
of data are routine degradation performance test at room temperature, while the other batteries are
accelerated aging experiments. Therefore, it is the representative for these sets of data to verify the
method proposed in this paper. The results of the measured capacity of these sets of data are shown in
Figure 3.
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4.1.3. Evaluation Criteria

To validate the proposed model, four different evaluation criteria are used. They are shown
as follows:

1. SNR. It evaluates the performance of de-noising. The detailed information is shown as follows:

SNR = 10lg


n
∑

i=1
(yi)

2

n
∑

i=1
(yi − ŷi)

2

 (23)

2. Err: relative error of RUL prediction. The detailed information is shown as follows:

RUL_err =
∣∣∣∣ ŷRUL − yRUL

yRUL

∣∣∣∣ (24)

3. RMES reflects the root mean squared error. The detailed information is shown as follows:

RMES(ŷi, yi) =

√
∑n

i=1 (yi − ŷi)
2

n
(25)

4. MAPE means absolute percentage error. The detailed information is shown as follows:

MAPE(ŷi, yi) =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (26)
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in which yi reflects the measured value and ŷi refers to the predicted value. n is the number of raw
data. ŷRUL and yRUL reflect the value of RUL prediction and the measured RUL value.

The evaluation criteria described above analyze the values between the prediction starting point
and end of life (EOL), not only the value of EOL. Some problems can be avoided by this evaluation
criteria. For example, the trajectory of prognostic model is far from the true trajectory, but the value of
EOL prediction is closed to the EOL. That prognostic model is not good.

4.2. The Selection of Wavelet De-Noising Method

For the selection of wavelet de-noising method, there are three factors that affect the performance
containing the value of threshold, wavelet basis, and decomposition levels. Next, the selection of these
three factors will be analyzed.

4.2.1. The Selection of Threshold Value

The value of threshold is a vital part of the selection of wavelet de-noising method. It is a dividing
line for removing the noise from useful signals. If the selections for threshold value are not suitable,
the results processed by the wavelet de-noising method are unsatisfied. In general, the conventional
threshold value is expressed as follows [42–44]:

λ = σ
√

2 log(N) (27)

in which σ reflects the standard deviation of interference noise. N refers to the length of original data.
According to the wavelet theory, the wavelet factors will be decreased as the increase of

decomposition levels. Hence, a constant threshold value is not suitable for practical application.
To overcome this problem, reference [45,46] propose an adaptive threshold value shown as follows:

λ =
σ
√

2 log(N)

log(J + 1)
(28)

in which J reflects the decomposition levels. N means the length of original data.
From Equation (29), we know that threshold values decrease as the decomposition levels that

conform with the wavelet theory increase. Figure 4 shows the de-noised results through these
2 different threshold values by the 5th Symlets (sym5) wavelet basis with Cell-1 battery data.
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In Figure 3, we know that the trend of trajectory processed by adaptive threshold value is better
than the conventional ones. Furthermore, according to calculation, the SNR value of de-noised result
with the conventional threshold value is 61.7144 dB, and the SNR value of de-noised result with the
adaptive threshold value is 78.8679 dB. Thus, the performance of adaptive threshold value is higher
than the conventional one’s. Therefore, in this study, the adaptive threshold value is chosen for the
wavelet denoising method.

4.2.2. The Selection of Wavelet Basis and Decomposition Levels

The wavelet basis is another important factor for selecting of wavelet denoising method. The type
of wavelet function is specified by the wavelet basis essentially. To improve the performance, it is
essential to select a suitable wavelet basis. Generally speaking, there are four factors affecting wavelet
basis consisting of orthogonality, symmetry, compact support, regularity, and vanishing moments.
Hence, to achieve the appreciated wavelet basis, Symlets (sym)wavelet base, Daubechies (db)wavelet
base, Coiflets (coif)wavelet base, and Biorthogonal (bior)wavelet base are applied to de-noise the
battery data. In this paper, the decomposition levels are chosen from 2 to 9. The de-noised results for
these four wavelet bases with Cell-1 battery data are shown in Figure 4.

In Figure 5, we know that all these four trajectories are characterized by the tendency from rise to
decline. While the decomposition is set to be 3, the SNR value of db wavelet base is the maximum.
Thus, the db wavelet base is chosen as the wavelet basis.

For the detailed selection information of db wavelet base, the db2 to db9 is simulated from 2 to
8 decomposition levels. The simulation consequence with Cell-1 battery data of DES is given in the
Figure 6.Energies 2017, 10, x FOR PEER REVIEW  13 of 20 
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In Figure 6, we know that while the decomposition levels are less than 7, the trajectory of db6
wavelet basis nearly outstrips others. Therefore, the db6 is chosen as the wavelet base for wavelet
de-noising method.

4.3. Battery RUL Prognostics with Hybrid Method

This part is organized as follows. First, the performances of proposed hybrid method are
compared with the HGFPR model and GPR model. Then, the performance of proposed hybrid
method is evaluated. The experiments of evaluation are carried out by the lithium-ion battery data sets
provided by DES and CALCE, respectively. To evaluate the prognostic results, the evaluation criteria
are calculated with the original data and prognostic results.

4.3.1. DES Lithium-Ion Battery RUL Prediction Result

To clarify the performances with different models clearly, the Cell-1 battery data are applied,
and the lengths of training data are set to be 20, 30, 35, and 45, respectively. Figure 7 shows the
prediction results using three different models with different lengths of training data for Cell-1 battery.Energies 2017, 10, x FOR PEER REVIEW  14 of 20 
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In Figure 7, it can be seen that, under the condition in which the length of training data and the
same initialization of hype-parameter are the same, the performance of RUL prognostic results and
trajectory fitting tendency processed by the proposed method are better than the HGFPR model and
GPR model. The prognostic results for the rest of other two battery data set with 95% confidence are
shown as Figures 8 and 9.
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As is shown in Figures 8 and 9, it can be seen that the prognostic results are better with more
training data. Table 1 lists the prognostic results and evaluation criteria by HGPFR methods and GPR
model with different length of training data.

Firstly, as is shown in Table 1, it can be seen that most predictions of relative errors are less
than 7%. Furthermore, for the evaluation criteria, the proposed model can achieve smaller values
of RMSE and MAPE than HGFPR model and GPR model. This means that the proposed model
in this paper can achieve satisfied prediction accuracy. Besides, the error can be reduced when the
ending point of training data is closer to the EOL point for the two different models. This refers
to the fact that more training data can help improve the accuracy of prediction. Unfortunately,
according to the prognostic results, the highest relative error arises in the Cell-1 battery with 20 training
data. This phenomenon may occur for two reasons. On the one hand, the training data are so
few that the optimized hype-parameter cannot be obtained. On the other hand, the degradation
trajectory appears to have larger tendency changes near the 20th point that are inconsistent with the
following degradation trend. This may cause the parameters to change for the log-likelihood algorithm.
Thus, proposed method may lose the prediction performance.

Table 1. Prognostic results and evaluation criteria using different methods with different lengths of
training data.

Data Set Start Point
WD-HGPFR HGPFR GPR

Err RMSE MAPE Err RMSE MAPE Err RMSE MAPE

C-1

20 25.0% 0.0236 0.0253 32.2% 0.0406 0.0444 37.7% 0.1589 0.2319
30 8.9% 0.0108 0.0103 23.2% 0.0408 0.0438 17.0% 0.0600 0.0720
35 5.4% 0.0072 0.0075 17.9% 0.0181 0.0167 13.2% 0.0525 0.0632
40 3.6% 0.0108 0.0099 7.3% 0.0163 0.0181 9.4% 0.0598 0.0767

C-4

20 6.7% 0.0079 0.0076 20.0% 0.0600 0.0645 24.4% 0.0984 0.1035
30 11.1% 0.0509 0.0639 15.6% 0.0772 0.0901 20.0% 0.0893 0.0907
35 4.4% 0.0044 0.0046 15.6% 0.0053 0.0055 17.8% 0.0482 0.0578
40 2.2% 0.0026 0.0026 6.7% 0.0028 0.0037 11.1% 0.0364 0.0471

C-7

20 10.9% 0.0273 0.0289 16.0% 0.0354 0.0433 21.0% 0.1305 0.1437
30 6.7% 0.0061 0.0126 12.0% 0.0147 0.0141 17.1% 0.1026 0.1147
35 5.3% 0.0056 0.0050 9.3% 0.0444 0.0465 13.2% 0.0833 0.0945
40 2.7% 0.0145 0.0169 5.3% 0.0231 0.0248 10.5% 0.0681 0.0842



Energies 2018, 11, 1420 15 of 20

Energies 2017, 10, x FOR PEER REVIEW  15 of 20 

 

  
(c) (d) 

Figure 8. Prediction results using proposed method with different lengths of training data for Cell-4 
battery. (a) RUL prediction results with 20 training data, (b) RUL prediction results with 30 training 
data, (c) RUL prediction results with 35 training data, and (d) RUL prediction results with 40 training 
data. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Prediction results using proposed method with different lengths of training data for Cell-7 
battery. (a) RUL prediction results with 20 training data, (b) RUL prediction results with 30 training 
data, (c) RUL prediction results with 35 training data, and (d) RUL prediction results with 40 training 
data. 

Figure 9. Prediction results using proposed method with different lengths of training data for Cell-7
battery. (a) RUL prediction results with 20 training data, (b) RUL prediction results with 30 training data,
(c) RUL prediction results with 35 training data, and (d) RUL prediction results with 40 training data.

Secondly, the Cell-4 obtains the most accurate prediction result compared with other 2 cells battery
data. However, the Cell-1 are performed with the worst prediction result. The reason for this is that
the data size of Cell-4 is smaller than other 2 cells, and the proportion is higher than the same number
of training data. That means the hype-parameter is optimized better than other 2 cells. The other
reason is that the relative degradation tendency of Cell-1 is larger than other 2 cells, and the optimized
hype-parameter cannot be obtained. Nevertheless, with the increase of training data, the prediction
accuracy of Cell-1 is higher, and the highest accuracy is 3.6%, which is acceptable. Despite the fact that
the prediction accuracy is not satisfactory at one test point, an acceptable RUL prediction can be still
achieved using the proposed method.

4.3.2. CALCE Lithium-Ion Battery RUL Prediction Result

To clarify the performances with different model clearly, the Cell-33 battery data are applied,
and the lengths of training data are set to 40, 60, 70, and 80, respectively. Figure 10 shows the prediction
results using three different models with different lengths of training data for Cell-33 battery.
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Figure 10. Prediction results using different models with different lengths of training data for Cell-33
battery. (a) RUL prediction results with 40 training data, (b) RUL prediction results with 60 training data,
(c) RUL prediction results with 70 training data, and (d) RUL prediction results with 80 training data.

In Figure 10, it can be seen that, under the condition in which the length of training data and the
same initialization of hype-parameter are the same, the performance of RUL prognostic results and
trajectory fitting tendency processed by the proposed method are better than the HGFPR model and
GPR model.

Table 2 lists other two battery cells prognostic results and evaluation criteria using HGPFR
methods and GPR model with different lengths of training data. For the different end of life, the length
of training is different.

As is shown in Table 2, it can be seen that the proposed model can achieve smaller values of RMSE
and MAPE than HGFPR model and GPR model. This means that the proposed model in this paper
can get a satisfied prediction accuracy. However, the Cell-8 is performed with the worst prediction
result. The reason for this may be the fact that degradation trajectory of Cell-8 changes more than other
two cells, so the optimized hype-parameter cannot be obtained. Nevertheless, with the increase of
training data, the prediction accuracy of Cell-33 is higher, and the highest accuracy is 3.2%, which is
acceptable. The proposed method can also perform well with lithium-ion battery data sets under
different work conditions.
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Table 2. Prognostic results and evaluation criteria using different methods with different lengths of
training data.

Data Set Start Point
WD-HGPFR HGPFR GPR

Err RMSE MAPE Err RMSE MAPE Err RMSE MAPE

C-8

150 11.9% 0.0979 0.1036 14.2% 0.3980 0.4746 17.9% 0.4058 0.5318
180 9.1% 0.0817 0.0952 9.9% 0.1935 0.2579 11.5% 0.3368 0.4238
210 7.1% 0.0774 0.0853 8.7% 0.1309 0.1537 10.3% 0.2088 0.2607
230 4.7% 0.0895 0.1299 6.3% 0.1371 0.1625 7.5% 0.1366 0.1452

C-21

70 9.7% 0.1363 0.1428 12.3% 0.1784 0.1908 14.2% 0.2355 0.3087
90 7.8% 0.0933 0.1132 9.9% 0.1012 0.1398 10.4% 0.1177 0.1736
110 6.4% 0.0767 0.0973 7.8% 0.0907 0.1124 11.0% 0.1325 0.2038
130 5.2% 0.0663 0.0909 5.8% 0.0832 0.0922 7.2% 0.0912 0.1331

C-33

40 8.6% 0.0784 0.1637 15.1% 0.0947 0.1340 20.4% 0.1637 0.1921
60 7.5% 0.0817 0.1053 12.9% 0.0992 0.1340 11.8% 0.1184 0.2191
70 5.3% 0.0245 0.0369 7.5% 0.0463 0.0576 8.6% 0.3391 0.4790
80 3.2% 0.0863 0.1989 4.3% 0.0954 0.2129 10.7% 0.2373 0.2717

5. Conclusions

This paper tries to improve the performance for RUL prognostics of lithium-ion battery through
the domain transformation model and the data-driven method. A fusion method of the WD method
and the HGPFR model is proposed to remove the noise from the original data and obtain a higher
accuracy RUL prediction. Contributions to this paper can be summarized in the following three terms:
(1) To reduce the impact of noise and obtain higher accuracy RUL prediction results, the WD method
is applied. (2) In consideration of the degradation characteristics of the lithium-ion battery data set,
the selection of the wavelet de-noising method is performed with corresponding experiments analyses.
This method can remove the noise form useful data effectively. Furthermore, the key features are also
distilled. This guarantees the significance of the de-noise data. (3) The hybrid method obtained RUL
prediction results with 95% confidence bounds, producing profound value with practical applications.

The data for carrying out the prediction model is from the DES and CALCE. It is representative
of these sets of data to that are used to verify the method proposed in this paper. With different cells
degradation data, the proposed method performed satisfactorily. Most of the predictions of relative
errors are less than 7%. Furthermore, for the evaluation criteria, the proposed model can achieve
smaller values of RMSE and MAPE than the HGFPR model. This means that the proposed model in
this paper can achieve satisfied prediction accuracy. What is more, the hybrid method has features that
express the confidence bounds during the prediction.

In the future, the update of the hybrid method is considered for the wider application and higher
accuracy. The present WD-HGPFR method shows the satisfied performance with RUL prediction for
the specific condition. Hence, it is meaningful to discover a method that updates the WD-HGPFR
model as the prediction process functions for RUL prediction on dynamic conditions. At the same time,
it is useful to compare the proposed approach with existing ones, such as RVM, EKF, etc. This will
make sense of the wider applications and higher accuracy of the model.
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