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Abstract: The behavior of the pollutants NO and CO at elevated combustor pressure are of special
importance due to the continuing trend toward developing engines operating at higher pressure
ratios to yield higher thermal efficiency. An experiment was performed to examine the NO
and CO emissions for a swirl convergent-divergent nozzle at elevated pressure. The NO and
CO correlations were obtained. Meanwhile, the flame length, exhaust gas oxygen concentration,
exit temperature and global flame residence time were also determined to analyze the NO and
CO emission characteristics. The results showed that, with the increase in combustor pressure
P, flame length decreased proportionally to P−0.49; exit O2 volume fraction increased and exit
temperature was reduced. The global flame residence time decreased proportionally to P−0.43.
As pressure increased, the NO and Emission Index of NO (EINO) levels decreased proportionally to
P−0.53 and P−0.6 respectively, which is mainly attributed to the influence of global flame residence
time; the NO and EINO increased almost proportionally with the increase in global flame residence
time. The EINO scaling EINO (ρue/d) was proportional to Fr0.42, which indicated that compared
with pure fuel, the fuel diluted with primary air can cause a decrease in the exponent of the Fr power
function. At higher pressure, the CO and Emission Index of CO (EICO) decreased proportionally
to P−0.35 and P−0.4, respectively, due to the increased unburned methane and high pressure which
accelerated chemical reaction kinetics to promote the conversion of CO to CO2.

Keywords: NO emission; CO emission; swirl convergent-divergent nozzle; combustion at elevated
pressure; turbulent non-premixed flame

1. Introduction

Pollutant emissions from the combustion of fossil fuels have become great public concern due to
their harmful effects on human health and the environment [1]. The regulations for pollutant emissions
are becoming increasingly strict, which has recently led combustion devices manufacturers to develop
combustors that meet various regulatory requirements.

Gas turbines are critical facilities in the gas and oil industry. The principal pollutants generated
by gas turbines are NO and CO, and both emissions have drawn considerable academic interest,
particularly in their formation mechanisms and influencing factors. NO could be formed by four
different pathways: thermal NO, prompt NO, nitrous oxide NO, and fuel NO [2]. Concerning CO,
it arises mainly from incomplete combustion of the fuel, due to inadequate reaction rates in the flame
zone caused by very low equivalence ratio and/or insufficient residence time. The factors influencing
both NO and CO emissions, e.g., equivalence ratio, flow velocity, fuel property, variable geometry,
ambient air temperature have been investigated widely, as mentioned in [3].
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Among various impacts, the influence of combustion pressure P on NO and CO formation is of
particular significance, because of the continuing trend toward engines with higher pressure ratios
(relative to the atmosphere) for achieving higher thermal efficiency and lower fuel consumption [4].
Pressure ratios of heavy-duty gas turbines (F/G/H level) have been increased to about 15~40-fold,
such as GE 7HA/9HA (22), Siemens SGT6-6000G/SGT5-8000H (19), Mitsubishi M501G/M701G (20)
and M501H (25), ALSTOM GT26 (33).

However, owing to experimental difficulties, combustor measurement data under high pressures
is extremely limited [3,5–7]. The vast majority of combustion tests were carried out at low pressure
levels, and the results obtained then extrapolated to higher pressure levels. The extrapolation could
be performed confidently assuming that the relationship between pollutant emissions and pressure
were precisely known. Regrettably, the testing data obtained on various combustor categories are
inconsistent in this regard.

In the last few years, a few studies have been performed to explore the effect of combustion
pressure on NO and CO emissions in gas turbine combustors. Correa [8] conducted a review to
summarize NOx formation under gas turbine conditions (NOx consists of NO and NO2, where the
dominant component at high emission levels is NO). The results from his study showed that NOx

and CO emissions scaled proportionally with a power function of the combustion pressure Pn.
The exponent n could be swayed by some factors, for example, n approached 0 at low equivalence
ratios and was greater than 0 for rich flames. Bhargava et al. [9] carried out experiments and PSR
network simulations in the lean conditions range with two different nozzles; the pressure was varied
from 100 psi to 400 psi. The results revealed that the NOx exponent n changed from −0.18 to 1.6 for the
tangential nozzle and from−0.77 to 0.61 for the axial nozzle as the equivalence ratio varied from 0.43 to
0.65. Göke et al. [10] studied NOx and CO emissions for a premixed natural gas flame within a pressure
range of 1.5–9.0 bar by performing experiments and simulations. They found that NOx increased and
CO decreased with increasing pressure, the exponent for NOx emissions increased with equivalence
ratio from 0.1 to 0.65 while the exponent for CO emissions was about −0.4 at lower temperatures
and −0.5 at higher temperatures. The calculation results in Wang et al. [11] and Pillier et al. [12] also
revealed that the NO has an increasing trend but CO has a decreasing trend with pressure.

Nevertheless, when Rutar [13] studied NOx and CO emissions at an elevated pressure of
3.0–6.5 atm he concluded that NOx decreased a little with increasing pressure for a fixed residence time,
which was also revealed by Steele et al. [14]. Biagioli and Güthe [15] analyzed the NO from 1–30 bar
based on a model, and they found that the NOx pressure exponent is negative under fully premixed
conditions. Leonard et al. [16] measured NOx emissions for well-premixed flames; they pointed out
that NOx emissions were independent of pressure and it is possible to run a combustor from 1 atm to
30 atm without any noticeable change in NOx emissions.

To investigate the parameters controlling NOx yields, Røkke et al. [17] proposed a leading-order
scaling approach for buoyancy-dominated hydrocarbon non-premixed flames based on simplified
expressions for the flame volume, simplified finite-rate reaction mechanism, and a flamelet description
which includes hydrocarbon fuel components up to C3. They proposed a theoretical expression to
predict the NOx emission index EINOx, i.e., Equation (1):

EINOx(ρue/d) ∝ Fr0.6 (1)

where ρ stands for the fuel jet density; ue represents fuel jet exit velocity; d stands for the diameter of
nozzle exit; Fr represents the jet exit Froude number, which is defined by Equation (2):

Fr = ue
2/gd (2)

where g is the acceleration of gravity.
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The NOx emission index EINOx is defined as the ratio of the mass rate of NO produced to the
mass of fuel supplied, as given by Equation (3) [18]:

EINOx =
.

mNOx /
.

mF (3)

Equation (1) was used to predict their experimental data as well as data from other researches for
hydrocarbon fuels [19–22]. Generally, the predicted results were good for Fr less than 105. Moreover,
Szegö et al. [23] explored the impacts of diluent on EINOx for a laboratory-scale mild combustor. It was
found that the exponential constant for Frn varied with the addition of N2 or CO2 into fuel compared
to fuel with no diluents.

To predict combustion emissions based on a set of operating parameters, e.g., fuel composition,
combustor pressure, air flow rate, equivalence ratio, inlet air temperature, some empirical and
semi-empirical models are widely employed. These models are developed by correlating test data on
pollutant emissions in terms of all the relevant parameters. They serve in designing and developing
low-emission combustors by reducing the complicated problems affiliated with emissions to forms
which are more easier for the combustion engineers. These models can be found in the reviews
by Tsalavoutas et al. [24], Chandrasekaran and Guha [25], as listed in Table A1 in Appendix A.
For example, a general correlation proposed by Lefebvre [26] is showed by Equation (4):

EINOx = 0.459 × 10−8P0.25 · F · τ · exp(0.01Tst) (4)

where F is the fraction of air employed in the flame zone; τ is the flame zone residence time, (measured
in s); Tst is the stoichiometric flame temperature, (measured in K). Equation (4) considers the fact
that in the combustion of heterogeneous fuel-air mixtures, the formation of NOx is determined by
the stoichiometric flame temperature Tst, rather than the average flame temperature. However,
the residence time in the flame zone τ is also important to NOx formation. Another example proposed
by Røkke et al. [27] is displayed by Equation (5):

EINOx = 1.46P1.42 .
mair

0.3 f f ar
0.72 (5)

where ṁair is air mass flow rate, ffar is fuel to air ratio. The influence of combustion temperature on
NOx is considered by the inclusion of the fuel to air ratio ffar.

Recently, several correlations were obtained for specific industrial combustors: a correlation for
a model combustor of an aero gas turbine by Li et al. [28], a correlation for fuel staged combustion
employing laboratory-scale gas turbine combustor by Han et al. [7], and another correlation for a 10 MW
non-premixed gas turbine combustor utilizing high hydrogen fuels by Kroniger and Wirsum [29].

It can be concluded from the above that the NO and CO behavior at high pressure is variable
and even contradictory in different tests. NO increased, decreased or even remained unaffected
by pressure for different burners/combustors, correspondingly, the pressure exponent for NO was
positive, negative or even zero. The emissions test data at high-pressure were rare, and the effects
of pressure on them are comparatively unknown. Meanwhile, the proposed NO correlations are
strongly dependent on the specific burners/combustors and combustion technology. An individual
NO correlation could not be used to estimate NO emissions accurately for a particular combustion
device. Lastly, the EINO scaling with Fr was not yet examined with the addition of primary air in fuel.
Therefore, further exploration is needed to reveal the NO and CO characteristics at elevated pressure.

In this paper, a swirl convergent-divergent nozzle designed for high flame stability and low
pollutants emissions was examined experimentally regarding NO and CO emissions at elevated
combustor pressure for turbulent non-premixed combustion. The flame zone, exit O2 volumetric
fraction, exit temperature were also measured to analyze the emissions characteristics. The CO and
NO correlations were obtained by fitting the test data, the EINO scaling with Fr was also presented.
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2. Experimental Setup

2.1. Experimental Apparatus

The swirl convergent-divergent nozzle design used in our efforts was mainly based on the
combination of swirl combustion technology and divergent conical nozzle technology, as shown in
Figure 1a, with an endeavor to enhance the flame stabilization and lowering pollutants emission.
The swirl generated by the swirler can strengthen flame stabilizing, control flame size and combustion
intensity, decrease NO formation by improving the mixing of fuel and air [30–32]. The divergent conical
nozzle technology can obtain highly stabilized flames which can be seen in previous studies [33–36].
Moreover, the convergent passage can further enrich the mixing of fuel and air to lower the pollutant
emissions. The nozzle mainly consists of three components: the central fuel tube, the swirler, and the
convergent-divergent passage. The swirler is the radial type and has 10 straight vanes, as shown in
Figure 1b, the setting angle of vanes α is 50◦. The angle between the divergent side face of the nozzle
and vertical line is 42◦.
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For the present investigation, a 20 kW high-pressure combustion test rig was installed, which can
be run at pressures less than 2 Mpa, as shown in Figure 2.
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It is composed mainly of three sections: the supply section, the combustion chamber and the
exhaust section, which are described as follows:

(1) The supply section, in which an air compressor is used to supply air, the air mass flow rate
has a maximum of 2.5 kg/min. The air is regulated electrically through a control valve and measured
using an air flow meter. A gas holder is employed to provide the fuel, which is methane. The fuel is
regulated and measured by a mass flow controller (MFC), the fuel mass flow rate has a maximum of
36 g/min.

(2) The combustion chamber, which is an axisymmetric cylindrical chamber, its diameter is 0.3 m
and height is 1.35 m, as shown in Figure 3. This combustion chamber is mainly composed of four
components: swirl convergent-divergent nozzle, wind distributing plate, cooling slot near to the
inner wall, and combustor. The swirl convergent-divergent nozzle has been previously displayed in
Figure 1b. A part of the air flows tangentially through the swirler to bring the fuel provided with the
central fuel tube into the combustor in which burning occurs (initiated by an igniter near the nozzle).
This part of air is referred as primary air, which is 5% of total inlet air by mass fraction, it is used to
mix with methane before combustion for controlling flame length. The mixing degree of primary air
and methane is incomplete since the distance for mixing is relatively short. The rest of the air flows
through air wind distribution plate to a cooling slot near to the inner wall, and then enters into the
combustor. This part of the air is referred as secondary air, and is used to support combustion and cool
the wall to avoid heat damage to the metal material. An optically accessible window is installed on the
combustor wall that can be used to observe the flame structure.
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Figure 3. The combustion chamber.

(3) The exhaust section, which is mainly composed of a pressure controlling valve and induced
draught system. The pressure controlling valve is used for regulating the combustor operating pressure.
The induced draught system is used for expelling the exhaust gas to the atmospheric environment.
Besides, there are some mounting bases installed on the exhaust section to allow the measurements of
exit gas composition and exit temperature.

2.2. Measurement Methods

Flame appearance was determined by measuring the CO2* chemiluminescence image through
the optical window, with a high-speed camera (i speed 3, Olympus, Essex, UK) coupled to an optical
filter (BG 38, HB-OPTICAL, Shengyang, China) which has a bandwidth of 340–600 nm, as displayed in
Figure 4.
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The CO2* method is often used for determining flame zones, which can be seen in the previous
studies reviewed by Samaniego et al. [37]. Although within the 340–600 nm wavelength range several
species such as PAH, CH, C, etc., exist, their influence can be neglected as CO2* is the main emitter in
hydrocarbon flames. As the review [37] indicated, the amount of CO2* emissions is more than 95%
of the total chemiluminescence integrated over the whole 340–600 nm range, therefore, the effect of
chemiluminescence signals from other species could be ignored in comparison with CO2* emissions.
As an indicator of the flame zone, the CO2* formation consists of three elementary steps, given in
Equation (6) [37]:

CO + O + M→ CO2 ∗+M
CO2∗ → CO2 + hv

CO2 ∗+M→ CO2 + M
(6)

The CO2* is produced by the first step reaction, which is a three-body reaction. In the second and
third step reaction, CO2* returns to its ground state. The second step reaction is the cause of the CO2*
light emission and competes with the third step reaction which is a quenching step.

The recording frame rate of the camera was 400 frames per second. At each case, an averaged
flame image was acquired by averaging a total of 800 consecutive instantaneous images. The averaged
image was then employed to determine the flame shape and size. The combustor pressure was
measured with a pressure transmitter mounted on the chamber wall. Exit temperature was measured
by the K-type thermocouples placed along the radius (for mean values) at the exhaust gas exit. Exhaust
gas was extracted with a probe located downstream of the exhaust nozzle; NO, CO, O2 were measured
with a testo350 gas analyzer (TestoSE & Co. KGaA, Badenia-wirtembergia, Germany), as displayed in
Figure 5.
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O2 was employed to correct the NO and CO emissions under standard 15% oxygen concentration.
The delay between the sample probe and analyzer required a steady flame be held in each test
case for approximately 60 seconds before a steady measurement could be attained. The instrument
specifications and measurement uncertainty according to the manufacturer are shown in Table 1.

Table 1. Specifications of the instrument and uncertainty.

Measurement Instrument Range Accuracy Uncertainty

Temperature K-type thermocouple 273–1273 K ±1 K ± 1 K
O2 Testo 350 gas analyzer 0–25 vol % ±0.8% FSR 0.01 vol %

CO Testo 350 gas analyzer 0–500 ppm ±2 ppm (0–39.9 ppm)
±5% (40–500 ppm) 0.1 ppm

NO Testo 350 gas analyzer 0–300 ppm ±2 ppm (0–39.9 ppm),
±5% (40–300 ppm) ± 0.1 ppm

2.3. Experimental Conditions

Test cases are shown in Table 2. Operating pressure P was increased from 3 bar to 6 bar; fuel mass
flow rate ṁF was varied from 12–16 g/min at a fixed pressure, air mass flow rate and primary air mass
flow rate ṁpri were kept constant for all cases.

Table 2. Operating conditions of the experiment.

Case Combustor
Pressure, P (bar)

Methane Mass Flow
Rate, ṁF (g/min)

Air Mass Flow Rate,
ṁA (kg/min)

Primary Air,
ṁpri (g/min) ṁF/ṁpri

1 3 12 2.1 105 0.114
2 3 14 2.1 105 0.133
3 3 16 2.1 105 0.152
4 4 12 2.1 105 0.114
5 4 14 2.1 105 0.133
6 4 16 2.1 105 0.152
7 5 12 2.1 105 0.114
8 5 14 2.1 105 0.133
9 5 16 2.1 105 0.152

10 6 12 2.1 105 0.114
11 6 14 2.1 105 0.133
12 6 16 2.1 105 0.152

3. Results and Discussion

3.1. Flame Shape and Length

Figure 6 displays flame appearances for combustor pressure P under varying ṁF/ṁpri ratios;
it should be noted that the flame base is the nozzle divergent end. One can see that the flame shape
became shorter and the flame volume decreased with the increment of P at a fixed ṁF/ṁpri ratio,
the same phenomenon was also detected in [38]. It could be associated with the declined axial diffusion
of fuel under higher pressure. It can also be seen in Figure 6 that the flame zone became longer and
wider as the ṁF/ṁpri ratio increased at a given P, which could be attributed to the augmented ambient
air that needed to be entrained to reach stoichiometric proportions. The flame length Lf is defined as
the distance from nozzle throat to flame tip, since the throat is treated as the nozzle injection exit, so,
the Lf can be obtained by summing the measuring length and the length between the nozzle divergent
end and the throat.
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Figure 7 shows Lf shortened with the increasing P at a fixed ṁF/ṁpri ratio but enlarged with the
increment of ṁF/ṁpri ratio. The Lf was influenced significantly by P and ṁF/ṁpri with an opposite
effect. By fitting the Lf data against P and ṁF/ṁpri, a correlation was achieved which is shown in
Equation (7):

L f = 0.91P−0.49(
.

mF/
.

mpri)
0.73 (7)

The values for the exponent of pressure and ṁF/ṁpri ratio were −0.49 and 0.73, respectively,
the pressure exponent −0.49 approaches the exponent −0.67 given in [39]. A comparison of the
measurement and prediction of Lf with the correlation Equation (7) is presented in Figure 8.
Good agreement was observed between measured and the calculated results, which implied the
fitting for obtaining the flame length correlation was correct.
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3.2. Exit Gas Oxygen Concentration and Temperature

As shown in Figure 9a, combustor exit gas O2 volume fraction increased with the increment of
pressure when keeping the ṁF/ṁpri ratio constant. This indicates that less O2 was consumed at higher
pressure, and thus combustion became more incomplete as pressure was increased. This phenomenon
corresponded to the decrease in exit temperature with increasing pressure, as shown in Figure 9b,
due to the lessened heat release since the O2 amount taking part in global chemical reactions (8) and/
or (9) decreased:

2CH4 + 3O2 → 2CO + 4H2O (8)

2CO + O2 → 2CO2 (9)

It also can be observed that the exit O2 volume fraction became smaller with an increase in
ṁF/ṁpri at a given P, which implied more O2 was consumed through the aforementioned reactions by
increasing the fuel. This trend can also be reflected in Figure 9b, which showed the exit temperature
increased as the ṁF/ṁpri ratio was increased because more reaction heat was released due to the
increasing fuel and O2 participating in reactions.
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3.3. Global Flame Residence Time

As mentioned before [26], flame residence time tR has an important influence on NO formation.
The flame residence time tR can be measured with a global flame residence time tg, which is defined
as Equation (10). The tg has been used in some previous analyses for NOx formation [22,40,41],
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its definition is based on the consideration that the flame volume Vf is proportional to Lf
3, as indicated

by Equation (11):
tg = L f

3/ued2 (10)

tR ∝ Vf /ued2 ∝ L f
3/ued2 = tg (11)

To calculate the tg in present work, the exit velocity ue needed to be determined. For the sake of
convenience and simplicity of analyses in the present situation, the mixture of fuel and primary air is
regarded as a nozzle exit fuel ṁe, i.e., ṁe = ṁF + ṁpri, and the throat is treated as the nozzle injection
exit as stated previously. Then the nozzle exit ue is obtained by Equation (12):

ue = 4
.

me/ρeπd2 (12)

where π stands for circular constant, d is nozzle throat diameter, d = 0.01 m, ρe is the density of nozzle
exit fluid, which can be obtained by ideal gas state Equation (13):

ρe = P/RgT (13)

where Rg is gas constant, and T represents inlet air temperature, T = 288 K.
The calculation result for ue is shown in Figure 10a; the ue decreased gradually as pressure

increased at a fixed ṁF/ṁpri ratio, but remained nearly unchanged under a given pressure since
the variation value of ṁF was very small compared to ṁe. Exit velocity ue was combined with Lf
through Equation (10) to obtain the global flame residence time tg, as displayed in Figure 10b. One can
observe that tg had a decreasing tendency with the increment of P when ṁF/ṁpri ratio was fixed,
which is attributed to the decreasing Lf (as discussed in the previous section) although ue decreased as
well. However, tg extended with an increase in ṁF/ṁpri ratio when P was kept constant, which was
explained by the increasing Lf presented in Figure 7. A correlation was obtained on the effects of P
and ṁF/ṁpri on tg by fitting the experimental data with a power function y = Cx1

ax2
b, as shown in

Equation (14):
tg = 269P−0.43(

.
mF/

.
mpri)

2.07 (14)

From Equation (14), one can clearly see the influence of P and ṁF/ṁpri on tg, tg decreased with
an increase in P (P−0.43), but increased significantly with the increasing of ṁF/ṁpri ((ṁF/ṁpri)2.07).
A comparison of the measurement and prediction of tg with correlation Equation (14) is presented in
Figure 11. Good agreement was observed between measured and the calculated result. Which implied
the fitting for obtaining the global flame residence time correlation was correct.
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3.4. NO Emission

Thermal NO [42] is the significant pathway for the formation of NO, and its mechanism is
described by Equation (15):

N2 + O→ NO + N
N + O2 → NO + O
N + OH→ NO + H

(15)

Thermal NO formation is controlled largely by flame temperature and increases dramatically with
the increment in combustion temperature when the temperature is larger than 1800 K [2]. Therefore,
it always dominates the NO formation in high-temperature flames. The residence time in the flame
zone also has a significant influence on the thermal NO formation, since the reaction rate of thermal
NO is relatively slow [2].

In non-premixed flames, flame surfaces exist where fuel and oxidizer meet in stoichiometric
proportions, and thus the temperature of the flame zone is considerably high. The primary formation
pathway of NO is thermal NO, which is affected by stoichiometric flame temperature Tst and the
residence time in the flame zone tR [26], as can be seen in Equation (4). The Tst can be varied with
some kinds of operating parameters such as fuel type, inlet air temperature. For all cases in the
present experiment, Tst was fixed and approached 2300 K, so the effect of Tst on NO formation was
not considered.

The measured combustor exit NO volumetric fraction and NO emission index EINO are displayed
in Figure 12. It can be found that the NO and EINO had a decreasing trend as pressure was raised at a
fixed ṁF/ṁpri ratio, however, increased with the increment of the ṁF/ṁpri ratio at a given pressure.
This was mainly attributed to the effect of the global flame residence time tg, as shown in Figure 13,
the NO and EINO increased since tg was increased. Combining the results in Figures 10b and 13,
the effect of P and ṁF/ṁpri ratio on NO and EINO can be explained as illustrated in Figure 12.
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The influence of tg on NO and EINO was examined by fitting the NO and EINO data with a
power function y = Cxa. The fitted results are indicated by Equations (16) and (17):

NO = 6.54tg
0.99 (16)

EINO = 0.28tg
1.15 (17)

Both equations showed that NO and EINO increased almost proportionally with the increasing
tg; the increasing rate of EINO is larger slightly than that of NO. Combining the Equations (14),
(16) and (17), the NO and EINO correlation with P and ṁF/ṁpri ratio were derived and expressed as
Equations (18) and (19):

NO = 2299P−0.47(
.

mF/
.

mpri)
2.17 (18)

EINO = 254P−0.54(
.

mF/
.

mpri)
2.52 (19)

Meanwhile, the data in Figure 12 was also directly fitted with the power function y = Cx1
ax2

b;
the result is characterized by Equations (20) and (21):

NO = 1831P−0.53(
.

mF/
.

mpri)
2.02 (20)

EINO = 180P−0.6(
.

mF/
.

mpri)
2.3 (21)

A comparison of the measurements and predictions of NO with the derived correlation
Equation (18) and directly fitted correlation (20), respectively, is presented in Figure 14a.
Good accordance was found between measured and the calculated result for each correlation.
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The results with directly fitted correlation (20) were closer to experimental data than that of derived
correlation Equation (18). This should be associated with the accumulated errors as each equation
during the deriving process was based on fittings. The same comparison was performed for EINO,
using the measured data and Equations (19) and (21), as shown in Figure 14b, the result of comparison
was similar to that of NO.
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Figure 14. Predictions of NO and EINO from their directly fitted correlation and derived correlation:
(a) NO; (b) EINO.

Moreover, in quest of the EINO scaling, the EINO scaled with (ρue/d) is plotted in Figure 15 along
with jet Froude number, Fr, as defined in Equation (2). It can be found that EINO (ρue/d) increased
with an increase in Fr, and also with an increase in ṁF/ṁpri ratio. The correlation is presented in
Equation (22):

EINO (ρue/d) = 1.23 × 104Fr0.42(
.

mF/
.

mpri)
2.08 (22)

The prediction of EINO (ρue/d) with correlation Equation (22) was compared to the measurement
as depicted in Figure 16. Good accordance was found between measured and the calculated results.
This implied the fitting for obtaining the correlation Equation (22) is appropriate. In previous NO
scaling with pure fuel, EINO(ρue/d) was proportional to Fr0.6 [19–22], the present NO scaling with
the addition of primary air to fuel indicated EINO (ρue/d) was proportional to Fr0.42, the exponent
decreased from 0.6 to 0.42. This decline indicated that addition of primary air in the fuel could cause a
decrease in the exponent of Fr power function, which may due to the decrease in flame length when
primary air is added to fuel [43], thus affecting the flame residence time and NO.
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3.5. CO Emission

The formation reaction of CO is shown in Equations (8) and (9), where Equation (8) is the CO
production reaction, and Equation (9) is the CO consumption reaction. The presence of the CO in the
exhaust gas in large quantities is a reflection of incomplete combustion of fuel caused by insufficient
burning rates in flame zone, inadequate mixing of fuel and air, the chilling influence of liner coolant,
and/or insufficient residence time.

In present measurement, the impacts of combustor pressure under different ṁF/ṁpri ratios on CO
and EICO are presented in Figure 17. The CO emission index EICO is defined as the ratio of the mass
rate of CO produced to the mass of fuel supplied, as given by Equation (23)

EICO =
.

mCO/
.

mF (23)

The results showed that the CO and EICO decreased gradually with the raise in P at a fixed
ṁF/ṁpri ratio. This can be attributed to two reasons: one of the reasons is that the flame volume
got shrunk at higher P, leading to less CH4 captured and burned in a timely way by the flame,
therefore resulting in the less CO formation through Equation (8). This also corresponded to the
less O2 consumption at higher P as mentioned before. Another reason is that the increasing pressure
accelerated chemical reaction kinetics to promote the conversion of CO to CO2 through the Equation (9).
Furthermore, the dissociation was suppressed as high pressure favors CO2 over CO and O2 [44].
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It also can be observed that CO and EICO increased with the increment in ṁF/ṁpri ratio at a given
P, which is explained by the escalating CO formation through Equation (8) as more CH4 participated
in the combustion. Fitting the data in Figure 17 with the power function y = Cx1

ax2
b, the correlations

for the influences of P and ṁF/ṁpri ratio on CO and EICO are described by Equations (24) and (25):

CO = 1196P−0.35(
.

mF/
.

mpri)
0.72 (24)

EICO = 65P−0.4(
.

mF/
.

mpri)
0.75 (25)

The prediction of CO with the correlation in Equation (24) was compared to the measurement
as shown in Figure 18a. Good accordance is found between measured and the calculated results.
This implied the fitting for obtaining the correlation Equation (24) is appropriate. The same comparison
was performed for EICO, using the measured data and Equation (25), as shown in Figure 18b,
the difference between experimental data and predicting the result is reasonable.
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The correlation Equations (20), (21) and (24), (25) are similar to Equation (5) in terms of their forms,
they are composed of a product of the power functions of parameters. The NO and CO correlations
obtained in present paper may help in understanding the emissions behavior of non-premixed flame
with the partial premixing of fuel and primary air at elevated pressure.

4. Conclusions

The NO and CO emissions for a swirl convergent-divergent nozzle were examined experimentally
at elevated combustor pressure; The NO and CO correlations were obtained in terms of pressure P
and fuel to primary air ratio ṁF/ṁpri. The flame shape and length, exit gas oxygen concentration
and temperature, and global flame residence time were also determined to analyze the NO and CO
characteristics. The main findings of the present paper include:

(1) With the increment of P at a fixed ṁF/ṁpri ratio, flame volume became smaller, and flame length
decreased proportionally to P−0.49; while increasing ṁF/ṁpri ratio at a given P, flame volume
became larger, and flame length increased proportionally to (ṁF/ṁpri)0.73.

(2) With the rise in P at a fixed ṁF/ṁpri ratio, combustor exit gas O2 volume fraction became larger,
and exit temperature decreased; with the increasing of ṁF/ṁpri ratio at a given P, exit O2 volume
fraction became smaller, and exit temperature increased.

(3) With the increasing P at a fixed ṁF/ṁpri ratio, the global flame residence time lessened
proportionally to P−0.43; with the increasing of ṁF/ṁpri ratio at a given P, the global flame
residence time extended proportionally to (ṁF/ṁpri)2.07.
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(4) As P increased at a fixed ṁF/ṁpri ratio, the NO and EINO decreased proportionally to P−0.53 and
P−0.6, respectively, but increased proportionally to (ṁF/ṁpri)2.02 and (ṁF/ṁpri)2.3 separately as
the ṁF/ṁpri ratio increased at a given P. This is mainly attributed to the influence of global flame
residence time; the NO and EINO nearly increased proportionally with the increasing global
flame residence time.

(5) With the addition of primary air in fuel, the EINO scaling EINO(ρue/d) was proportional to Fr0.42.
Which indicated the dilution of primary air to fuel could cause a decrease in the exponent of Fr
power function comparing with Fr0.6 for pure fuel.

(6) As P increased at a fixed ṁF/ṁpri ratio, the CO and EICO decreased proportionally to P−0.35 and
P−0.4 respectively, due to the increased unburned methane and high pressure which accelerated
chemical reaction kinetics to promote the conversion of CO to CO2. However, the CO and EICO
enlarged proportionally to (ṁF/ṁpri)0.72 and (ṁF/ṁpri)0.75 separately as ṁF/ṁpri ratio increased
at a given P, due to the increased fuel participating in combustion.
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Appendix A

Table A1. The NO and CO correlations in the open literature. Scale equations.

Reference Model Equation Model Parameter

Rizk and Mongia [45] EINOx = 15× 1014 · t0.5
res · exp

(
−71, 100/Tf l

)
· P3
−0.03 · (∆P3/P3)

−0.5 Tres, Tfl, P3, ∆P3

Lipfert [46] EINOx = 0.17282 · exp(0.00676593T3) T3
AECMA [46] EINOx = 2 + 28.5 · (P3/3100)0.5exp((T3 − 825)/250) P3, T3

Becker et al. [47] NOx(ppm) = 5.73× 10−6 · exp(0.00833Tf l)P3
0.5 Tfl, P3

Odgers and Kretchmer [44] EINOx = 29 · exp
(
−21, 670/Tf l)P3

0.66(1− exp(−250t f orm) Tfl, P3, tform

Lefebvre [26] EINOx = 0.459× 10−8 · P3
0.25 · F · tres · exp

(
0.01

(
Tf l + 273

))
P3, F, tres, Tfl

Rokke et al. [27] EINOx = 1.46P1.42 .
mair

0.3 f f ar
0.72 mair, ffar = mfuel/mai

General Electric [48] EINOx = 2.2 + 0.1235 · P3
0.4 · exp(T3/194.4− hum · 1000/53.2) P3,T3,hum

AERONOX [48] EINOx = 1.5 · (P3/100)0.6 · exp(−600/T4) · t0.7
res P3, T4, tres

Levebvre [26] EICO =
0.333×1010·exp(−0.00275·TPZ)

F·P3
1.5·(tres−0.55·tevap)·(∆P3/P3)

0.5 Tpz, F, P3, tres, tevap, ∆P3

Rizk and Mongia [49] EICO = 0.18 · 109exp(7800/TPZ)/P2(t− 0.4te)(∆P/P)0.5 TPZ, P, t, te, ∆P
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