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Abstract: In light of the dissemination of renewable energy connected to the power grid, it has become
necessary to consider the uncertainty in the generation of renewable energy as a unit commitment
(UC) problem. A methodology for solving the UC problem is presented by considering various
uncertainties, which are assumed to have a normal distribution, by using a Monte Carlo simulation.
Based on the constructed scenarios for load, wind, solar, and generator outages, a combination of
scenarios is found that meets the reserve requirement to secure the power balance of the power
grid. In those scenarios, the uncertainty integration method (UIM) identifies the best combination
by minimizing the additional reserve requirements caused by the uncertainty of power sources.
An integration process for uncertainties is formulated for stochastic unit commitment (SUC) problems
and optimized by the improved genetic algorithm (IGA). The IGA is composed of five procedures
and finds the optimal combination of unit status at the scheduled time, based on the determined
source data. According to the number of unit systems, the IGA demonstrates better performance
than the other optimization methods by applying reserve repairing and an approximation process.
To account for the result of the proposed method, various UC strategies are tested with a modified
24-h UC test system and compared.

Keywords: uncertainty integration method; unit commitment; scenario integration technique;
improved genetic algorithm; operating cost

1. Introduction

Global environmental problems are becoming a major issue in the power industry. Recently,
renewable energies such as wind and solar have become preferable, because they are economical and
relatively less adverse to the environment [1]. However, these renewable sources possess intermittent
characteristics, which may lead to significant unexpected loads and operational problems in power
grid. Power system operations are designed to address a limited amount of uncertainty in the system,
which does not consider changes due to the use of renewable energy at an unprecedented scale.
When renewable energy is associated with power system operation, their characteristic problems
appear larger [2]. To solve the intermittency problem, an accurate prediction of renewable sources that
considers volatility is needed [3]. Therefore, it is necessary to develop a framework not only to consider
the uncertainties of renewable energies, but also to improve the potential risks of the power grid.

The unit commitment (UC) problem is an optimization procedure that deducts the best
combinations of units in on and off status, which is important for power system operational planning.
Generally, the UC problem constitutes a process of calculating system operating cost by optimizing the
schedule of the generating units such that the load of time-varying is secured by taking account of
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the constraints of system. In the existing power system, it has become difficult to determine the UC
of various renewable sources that have been recently connected, and their intermittent nature makes
it difficult to optimize the operation of the system. Thus, it is necessary to find a UC solution that
considers the uncertainties of renewable energy and apply it to a framework to mitigate a risk caused
by uncertainties.

Many studies have been conducted to optimize UC problems, such as memetic algorithms [4],
bacterial foraging [5], second-order cone programming [6], mixed-integer programming [7], particle
swarm optimization [8], discrete differential evolution method [9], and genetic algorithms (GA) [10].
Based on these optimization algorithms, progress with UC problems has also been made by considering
the volatility, intermittency, and uncertainty of system constraints. A fuzzy mathematical programming
model has been suggested to resolve the problem of unit scheduling for solar and wind energy [11].
This fuzzy optimization method was designed to acquire optimal unit scheduling through fuzzy sets
and a membership function. A stochastic programming framework was implemented in ref. [12],
which was built as a multi-objective problem. In this model, uncertainties of load, solar, wind,
and market price are modeled, which is based on scenario stochastic programming. The interval
optimization approach and a stochastic model for security-constrained UC were illustrated in ref. [13].
The approach is formed by a mixed-integer programming problem that is composed of two approaches:
interval optimization solution and a scenario-based solution. In another study, a solution for a
long-term security-constrained UC was described [14]. Scenario-based stochastic unit commitment
(SUC), including a worst-case analysis, was described in ref. [15]. In this study, the management
is conducted with a loss of the load risk by using the conditional value-at-risk. The proposed SUC
problem is modeled in a mixed-integer linear programming formulation and solved by a modified
Benders decomposition algorithm with two enhancement strategies. In ref. [16], a robust optimization
was proposed that is based on the outer approximation technique and Benders decomposition
algorithm. In ref. [17], the authors introduced a UC solution that was based on the robust optimization
that accounted for the fluctuation scenario of the worst wind power. Recently, a profit-based UC
problem was solved through a hybrid optimization technique [18]. The technique is based on
the integration of binary successive approximation. In ref. [19], authors addressed the design of
a convex model that is based on conic relaxations with valid inequalities. To improve forecast accuracy,
the authors suggested a method that includes temperature variables from two thermal regions [20].
Short-term forecasting and UC are combined and formulated in the model. In ref. [21], a technique
to resolve the UC problem based on an imperialistic competition algorithm has been described by
using cluster algorithm. However, most of the models focused only on stochastic methods modeling,
which did not consider the correlation of uncertainties. Moreover, there was no extensive comparative
study of deterministic and stochastic UC solutions.

In this paper, an improved genetic algorithm (IGA)-based procedure is proposed to resolve the
UC problem. Uncertainties in wind power, solar power, and load are represented with a normal
distribution in a Monte Carlo simulation. The value of generator outages is given by a capacity outage
probability table. Within the range of reserve requirements to be secured, the best combination of
scenarios for load, wind, and solar is assembled by using the uncertainty integration method (UIM).
Based on the UIM, the stochastic unit commitment (SUC) problem is formulated with non-linear
optimization under various thermal unit constraints by using IGA, which consists of five processes.
In particular, a modified repair operator and an approximation process make IGA efficient. The result
of the UC problem with deterministic cases using IGA compared with other optimization methods
demonstrates the algorithm’s effectiveness.

The remainder of this paper is arranged as follows. The structure of the UIM is illustrated in
Section 2. Section 3 presents a mathematical formulation that take into account system constraints.
The IGA-based UC procedure is described in Section 4. The results of numerical studies are provided
in Section 5, along with an analysis of the computational time, reserve requirements, and operating
costs. The conclusions are given in Section 6.
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2. Uncertainty Integration Method

2.1. Uncertainty Modeling

In the UC problem, the forecasting of uncertainty is a key factor, because it is needed to protect the
power system from a sudden load increase. It also has an effect on calculations of the operating cost and
planning for the reserve requirement. Thus, to guarantee the economical operation and reliability of the
power grid, it is necessary to accurately predict uncertainty. Uncertainty in load forecasting could be
reasonably illustrated by a normal distribution that can be estimated from past experience and future
considerations. The uncertainty of load forecasting is expressed as a probability distribution where the
predicted peak load is expressed with a distribution mean and standard deviation. The probability
distribution can be divided into a discrete number of class intervals. The area of each class interval
represents the probability of the load, which is equal to the class interval mid-value. The mean absolute
percentage error is used as a basis for calculating the range of forecasting errors, and the range is set
from 2% to 4% for day-ahead load forecasting [22].

Generally, renewable energy is a fluctuating and uncontrollable power source. For this reason,
forecasting errors should be accurately measured when solving the UC problem. The active power of
wind is expressed as a function of the wind speed constant rated power between the rated wind speed
and the cutout wind speed. It is described in Equations (1)–(3).

Wgst = 0 for Vgst ≤ Vc and Vgst > Vo (1)

Wgst = Wrated
gst ×

[
Vgst −Vc

][
Vr −Vgst

] for Vgst ≥ Vc and Vgst ≤ Vr (2)

Wgst = Wrated
gst for Vgst ≥ Vr and Vgst ≤ Vo (3)

The active power of solar energy is expressed by the power density, ambient temperature at the
solar plant, and solar irradiation. It is represented in Equation (4).

Sgst = PSTC ×
n× EM

ESTC
[1 + k(TM − TSTC)] (4)

To obtain accurate predictions, the normal distribution is used as the joint probability density
function of short-term solar power and wind power output [23]. At each time interval, the expected
value of output from the renewable sources is selected as the mean value. The standard deviation is
then determined by a specific percentage of the mean value, and it depends on the level of forecasting
error. Based on this value, a large number of random computational scenarios are generated by Monte
Carlo simulation. Uncertainties distribution is shown in Figure 1.

In this study, generator outages are also considered to have a discrete probability distribution
and are shown in a probability table of a capacity outage [24]. The table provides the probability of
occurrence in each capacity of generator outage. To make the UIM simpler and ensure compatibility
by using the concept of net load, a similar generator can be applied to express the generator outage’s
uncertainty. If the generator has sudden outages, a scenario is created with the same demand growth,
and demand increases will happen during the period in which the generator is assumed to have an
outage. In our work, the outage rate of the expected forced generator is 2%. Duration and the outage
rate can be conformed according to the historical outage statistics for different generators.
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2.2. Scenario Integration Technique

The process of scenario generation is to choose measurements and predict inputs, parameters,
and disturbances to acquire the best solution. This process is used to resolve problems related to
uncertainty constraints with a normal distribution, and a probability distribution based on Monte Carlo
simulation. The value of uncertainty prediction for each of the wind, solar, load, and generator outages
is calculated through scenario generation. These uncertainties are integrated through the scenario
integration technique, which is the process of computing values by calculating the association between
uncertainties that occur as a result of considering various sources in the power grid. The values of load,
wind power, and solar power, including the predictions for each uncertainty, are selected to determine
the best scenario to meet the reserve needs. The process of uncertainty integration is as follows.

Forecasting errors of the load, solar power, and wind power are represented in Equations (5)–(7).

Lst = L f orecasted,st × (1− load f orecasting error) (5)

Wgst = ∑
g∈Gw

W f orecasted,gst × (1− wind f orecasting error) (6)

Sgst = ∑
g∈GS

S f orecasted,gst × (1− solar f orecasting error) (7)

The prediction error of the energy sources meets the constraints using a spinning reserve of the
thermal unit. The reserve requirement considering the forecasting error constraint of the energy source
is expressed by Equations (8) and (9).

WLRst = Lerror,st × L f orecasted,st + ∑
g∈Gw

Werror,gst × ∑
g∈Gw

W f orecasted,gst

+ ∑
g∈Gs

Serror,gst × ∑
g∈Gs

S f orecasted,gst, s ∈ S, t ∈ T
(8)

Rtotal,st = Rst + WLRst, s ∈ S, t ∈ T (9)



Energies 2018, 11, 1387 5 of 18

To compensate for unpredicted fluctuation in energy sources, an additional reserve requirement
is estimated to be a percentage of the load in the power grid. Accordingly, the additional reserve
requirements are reformulated as Equations (10)–(12).

∑
g∈G

pgst + ∑
g∈Gw

Wgst + ∑
g∈Gs

Sgst ≥ Lst + Rst + WLRst, s ∈ S, t ∈ T (10)

Rtotal,st ≥ ∑
g∈G

Rgst + WLRst, s ∈ S, t ∈ T (11)

Net load = load− solar− wind (12)

The net load concept simplified the formulation of the UC problem. Due to the intermittency of
the energy sources, it is necessary to predetermine a schedule that meets the net load. Based on the
predicted values, hourly random loads, solar power, and wind power are considered in each scenario.
The probability of the scenario determines the value of each parameter, and the realization of future
random processes is represented by each of these scenarios. Figure 2 shows the structure of UIM.
A separate module or sub-module is represented by each function. The initial input data is calculated
with the forecasted value for each hour for day-ahead scheduling. Using Monte Carlo simulation,
a scenario is generated that considers forecasting error information. The output of the load, wind,
and solar scenarios is used with the prediction error to calculate reserve scenarios. An additional
reserve is calculated from the generator outages of a thermal generator. Uncertainties of the input
energy sources are integrated through the net load concept, and a 24-h net load scenario is created.

Energies 2018, 11, x FOR PEER REVIEW  5 of 17 

 

+ + + + , ,
w s

gst gst st st stgst
g G g G g G

p W S L R WLR s S t T
∈ ∈ ∈
∑ ∑ ∑ ≥ ∈ ∈  (10) 

TtSsWLRRR st
Gg

gststtotal ∈∈∑≥
∈

,,+,  (11) 

Netload load solar wind= - -  (12) 

The net load concept simplified the formulation of the UC problem. Due to the intermittency of 
the energy sources, it is necessary to predetermine a schedule that meets the net load. Based on the 
predicted values, hourly random loads, solar power, and wind power are considered in each scenario. 
The probability of the scenario determines the value of each parameter, and the realization of future 
random processes is represented by each of these scenarios. Figure 2 shows the structure of UIM. A 
separate module or sub-module is represented by each function. The initial input data is calculated 
with the forecasted value for each hour for day-ahead scheduling. Using Monte Carlo simulation, a 
scenario is generated that considers forecasting error information. The output of the load, wind, and 
solar scenarios is used with the prediction error to calculate reserve scenarios. An additional reserve 
is calculated from the generator outages of a thermal generator. Uncertainties of the input energy 
sources are integrated through the net load concept, and a 24-h net load scenario is created. 

 
Figure 2. Structure of the uncertainty integration method (UIM). 

3. Proposed Stochastic Unit Commitment Formulation 

Generally, the current UC problems have been formulated with many additional operation 
constraints, namely emissions, transmission, and other services [25,26]. However, in this paper, we 
focused on the effects of uncertainties constraints, which do not consider emission, transmission 
constraints, and other services in this SUC model. 

3.1. Objective Function 

The objective function involves status of unit and power outputs for distributed power 
generators at each time in respective scenario. The purpose of the function is to minimize the 
operating cost. The objective function is described as Equation (13): 

Figure 2. Structure of the uncertainty integration method (UIM).

3. Proposed Stochastic Unit Commitment Formulation

Generally, the current UC problems have been formulated with many additional operation
constraints, namely emissions, transmission, and other services [25,26]. However, in this paper,
we focused on the effects of uncertainties constraints, which do not consider emission, transmission
constraints, and other services in this SUC model.
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3.1. Objective Function

The objective function involves status of unit and power outputs for distributed power generators
at each time in respective scenario. The purpose of the function is to minimize the operating cost.
The objective function is described as Equation (13):

Min ∑
g∈G

∑
s∈S

∑
t∈T

πs{(FGg pgst)ugst + Sgsgst} (13)

This function consists of three parts: start-up cost, shut-down cost, and the fuel cost of all of
the thermal generators. The fuel cost of a thermal generator is generally represented by a quadratic
function. Here, the operating costs of wind turbines and solar turbines are generally excluded when
computing total operating costs. (

FCg pgst
)
= ai + bi + pgt + ci × p2

gt (14)

The start-up cost and shut-down cost of the thermal unit is calculated by the following
linear function.

Sgsgst = SUg
(
1− sgs,t−1

)
sgst + SDg

(
1− xgst

)
xgs,t−1

xgst = 0, xgs,t−1 = 1
(15)

3.2. System Constraints

The load for every combination to satisfy the constraints of the power balance should equal the
total generated power over each time interval in each scenario. Power balance constraints are described
as Equation (16).

∑
g∈G

pgst = Lst, s ∈ S, t ∈ T (16)

In the power system, some amount of reserve is needed to complement unbalance between the
load and the power output. It is shown in Equations (17)–(20).

∑
g∈G

pgst ≥ Lst + Rst, s ∈ S, t ∈ T (17)

∑
g∈G

USgst ≥ Rst, s ∈ S, t ∈ T (18)

∑
g∈G

Rgst ≥ Rst, s ∈ S, t ∈ T (19)

0 ≤ Rgst ≤ Rgugst (20)

An amount of spinning reserve should be prepared so that even if one unit is lost, the system
frequency will not drop too much. The up-spinning reserve complements a sudden increase in load by
ramping up the capacity of the unit when the load is suddenly increased.

3.3. Thermal Unit Constraints

The minimum and maximum power output limits must be satisfied in each thermal unit. It is
represented by following formulation:

Pgugst ≤ pgstugst + Rgst ≤ Pgugst, t ∈ T, s ∈ S, g ∈ G (21)

The minimum time limits of each unit’s on and off g are expressed as:

ugst − ugs,t−1 ≤ 1− ugst, t ≥ 2, τ = t + 1, . . . , min
{

t + UTg − 1, T
}

(22)
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ugs,t−1 − ugst ≤ 1− ugst, t ≥ 2, τ = t + 1, . . . , min
{

t + DTg − 1, T
}

(23)

The power output of the thermal unit cannot be altered by more than a certain amount for time t
of the optimization period. This is because sudden fluctuations in the power output of the generator
can cause damage to the turbine. For each generator, the constraints of the operating ramp rate are
formulated in Equations (24)and (25).

pgst − pgs,t−1 + Rgst ≤ RUgugs,t−1 + SURg
(
1− ugs,t−1

)
, t ∈ T, s ∈ S, g ∈ G (24)

pgs,t−1 − pgst ≤ RDgugst + SDRg
(
1− ugst

)
, t ∈ T, s ∈ S, g ∈ G (25)

Constraints of the shut-down costs and start-up costs are represented in Equation (26):

SUgstugst ≥ SUg
(
ugst − ugs,t−1

)
, t ∈ T, s ∈ S, g ∈ G (26)

4. IGA-Based SUC Problem Solution

4.1. Improved Genetic Algorithm

The SUC problem is a generally non-linear optimization problem under various constraints.
However, in order to obtain a UC solution, a proposed SUC model is linearized and approximated in
the formulation and optimization procedure. The problem is constructed by considering generation
scheduling and inequality constraints on unit on/off states. The results of the optimal UC schedule
should be economical and reliable. The results obtained in the deterministic UC may not be accurate
due to the uncertainty of energy sources, whereas the stochastic model allows for a more accurate
estimation of the variability of energy sources, which are considered with respect to each other through
the UIM. To solve this problem, we propose an IGA-based solution that is a development of the
conventional GA [10]. A GA is better suited to solving UC problems using binary representations than
other methods for parameter optimization. However, conventional GAs only work efficiently in the
optimization of objective functions without constraints. The binding constraints disturb the efficiency
of the search process in a GA. Moreover, the existing GA has a problem in that the computational time
is very long when the system size is large, as well as when it operates in a wide search space including
infeasible solutions. On the other hand, the IGA offers some advantages compared with the standard
GA. First, it does not work in a broad search space with infeasible solutions, but it does work with a
feasible solution to reduce the search area. The IGA also consumes less computation, and thus, the best
solution can be determined through the violation of constraints using a repair and approximation
procedure. To provide a feasible solution to the problem, the constraints are formulated as penalty
objective functions.

Therefore, in the IGA, this is accomplished through crossover, swap mutation, repair operators,
approximation operators, and selection. The IGA offers economic efficiency and stability compared
with the standard GA. The algorithm is implemented as shown below.

(1) Crossover: During the evolution process, as shown in Figure 3, a crossover operation is performed
to find new patterns of genetic strings. Crossover probability is fixed at 0.7 [27].
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(2) Swap mutation: Figure 4 shows the swap mutation process, which is sorted in descending order
in accordance with the operating cost of each generator. The probability of initial mutation is
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0.2. Operating cost is obtained by considering the heat rate of the fuel cost at a full load time.
If the average operating cost of the i-th unit is lower than that of the j-th unit, and the units are
“ON” and “OFF”, respectively, the states of the i-th and j-th units are switched with each other.
This procedure is performed for each scheduled time, which helps to lower the operating cost.
The swap mutation process is shown in Figure 4.Energies 2018, 11, x FOR PEER REVIEW  8 of 17 
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(3) Repairing: The repairing operator modifies an infeasible solution by considering the minimum-up
and minimum-down constraints. The state of the generator is checked every time interval, and if
the minimum-up and minimum-down time constraint is limited at a given time t, the state of the
unit is reversed and updated at that time.

(4) Approximation: This operator approximates an infeasible solution under conditions that satisfy
demand and spinning reserve constraints. The demand and spinning reserve constraints are
examined every hour to determine whether to change the state of the unit or not.

(5) Selection: Entire units are displayed in descending order. The best solution is gained by
considering fuel cost and various constraints. Maximum iteration value is 300.

4.2. Solution Procedure of Unit Commitment

Figure 5 summarizes the proposed solution process for SUC problems. The procedure is
implemented sequentially. Initial input data is calculated based on available system information
and predictions. A scenario is generated by using Monte Carlo simulation, and the SUC problem is
then formulated. After generating energy sources that take uncertainty into account, additional
reserve requirements are calculated from Equations (10) and (11). In this process, we find the
combination of scenarios for energy sources generated through UIM that best complement each other’s
uncertainties. Here, the power system balance will be checked, including the reserve requirement.
If the balance is not satisfied, the system goes back to the initial state, and restarts the first process
again. The net load scenario is calculated by considering Equation (12). In this process, we find that
several random scenarios obtain a better combination, and then the UC problem is optimized through
IGA. This procedure makes repetition continuously to gain the best solution.
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5. Simulation Results

5.1. Performance Comparison of Optimization Algorithm

To show the performance of IGA, IGA was compared with other optimization algorithms in the
deterministic cases [28–35]. Power systems of 10, 20, 40, 60, 80, and 100 units with a planning horizon
of 24 h are simulated in each test case. The base case is a 10-unit power system. The parameter and
load demands of the base case during a 24-h cycle can be found in ref. [36]. Each power system is
obtained by using the 10-unit base case, while the demands are altered in part of the size of the system.
In our study, the spinning reserve is supposed to be 10% of the load demand. IGA is executed with
30 runs on each test case. For other parameters used in the IGA, the iteration number is 200. IGA is
also implemented in MATLAB and simulated on a laptop computer with an Intel quad-core 3.20 GHz
processor, 8 GB of memory, and a 64-bit Windows 7 operating system.

Table 1 represents a comparison of the operating costs of the schedules obtained by each algorithm.
IGA presents the lowest operating cost over most power system sizes, except for the 10-unit test system,
whereas LR (Lagrangian Relaxation) and ES-PSO (Expert System-Particle Swarm Optimization) offer
the lowest operating cost in a 10-unit test system. In general, because the differences between the best
and worst of each case could represent the algorithms’ robustness, large differences between cases
means that the result of the algorithm’s optimization has high volatility, and it cannot guarantee a stable
result. Comparing each test case, IGA provides better performance, because the difference between
best and worst is smaller than with other algorithms. The operating costs of the UC calculated by IGA
are smaller than those from PSO (Particle Swarm Optimization), IBPSO (Improved Binary Particle
Swarm Optimization), QBPSO (Quantum-inspired binary Particle Swarm Optimization), and ES-PSO,
especially for test cases of a large number of units. The results demonstrate that the reserve repairing
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and approximation process that commit/decommit units for a successive period of hours can improve
the efficiency and lower the operating cost.

Table 1. Comparison of operating costs.

Algorithms Generation Cost ($) for Each Unit Size

10 20 40 60 80 100

PSO [32]
Best 563,977 1,124,038 2,243,256 3,362,881 4,482,940 5,603,749

Average 564,502 1,125,406 2,245,966 3,366,801 4,488,982 5,609,274
Worst 565,186 1,125,836 2,247,688 3,368,559 4,493,069 5,611,131

LR [30]
EP [28]
GA [29]

563,938 1,122,637 2,243,245 3,363,376 4,484,915 5,604,470
Best 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885
Best 565,825 1,126,243 2,251,911 3,376,625 4,504,933 5,627,437

ES-PSO [31]
Best 563,938 1,123,003 2,242,167 3,362,084 4,481,863 5,602,039

Average 563,942 1,123,474 2,243,517 3,364,719 4,483,992 5,603,815
Worst 563,977 1,124,540 2,246,305 3,368,112 4,487,569 5,606,491

PSO-LR [33] Best 565,869 1,128,072 2,251,116 3,376,407 4,496,717 5,623,607

IBPSO [34]
Best 563,977 1,125,216 2,248,581 3,367,865 4,491,083 5,610,293

Average 564,155 1,125,448 2,248,875 3,368,278 4,491,681 5,611,181
Worst 565,312 1,125,730 2,249,302 3,368,779 4,492,686 5,612,265

QBPSO [35]
Best 563,977 1,123,297 2,242,957 3,361,980 4,482,085 5,602,486

Average 563,977 1,123,981 2,244,657 3,363,763 4,485,410 5,604,275
Worst 563,977 1,124,294 2,245,941 3,365,707 4,487,168 5,606,178

IGA
Best 564,037 1,122,035 2,242,031 3,360,324 4,481,714 5,601,771

Average 564,314 1,122,216 2,242,217 3,360,514 4,481,896 5,601,924
Worst 564,537 1,122,424 2,242,462 3,360,717 4,482,028 5,602,136

The computational time is a critical factor in proving the efficiency of the algorithm. However,
because the computational time of an optimization algorithm is measured on different performance
computers, it is necessary to standardize the time over the computational time measurements. Here,
to show the efficiency of the algorithm, time is converted to values over a common base CPU (central
processing unit) frequency of 1.5 GHz [29]. The computational time of the IGA is the average value of
the 30 runs. The scaled time is computed as:

Scaled time =
CPU Frequency

1.5 GHz
×Original time (27)

Table 2 shows the analysis of the algorithms in terms of performance. QBPSO requires the
longest scaled computational time on most of the test systems, except for the 10-unit test system,
because it requires a long time to iteratively linearize the objective function. Figure 6 illustrates the
computational time of the IGA for each system size. The IGA has a fast computational time, and it
possesses the desirable characteristic of a computational time that grows linearly with the system size.
Unit decommitment and the reserve repairing need more execution time as the system size grows,
whereas the computational framework of the IGA is less affected. Since the beginning search area of
the IGA is an adjacent area, and the UC scheduling is highly likely to produce possible near-optimal
schedules, the search convergence is significantly expedited for each unit size.



Energies 2018, 11, 1387 11 of 18

Table 2. Comparison of computational time.

Algorithms Normal/Scaled
Computational Time (s) for Each Unit Size

10 20 40 60 80 100

LR [30]
Normal 10 14 25 39 64 80
Scaled 11.5 16.2 28.8 44.9 73.8 92.2

EP [28]
Normal 100 340 1176 2267 3584 6120
Scaled 10.6 36.2 125.4 241.8 382.2 652.8

GA [29]
Normal 221 733 2697 5840 10,036 15,733
Scaled 7.3 24.4 89.9 194.6 334.5 524.4

ES-PSO [31]
Normal 12 19 42 56 113 162
Scaled 19.2 30.4 67.2 89.6 180.8 259.2

PSO-LR [33]
Normal 42 91 213 360 543 730
Scaled 28 60.6 142 240 362 486.6

IBPSO [34]
Normal 27 55 110 172 235 295
Scaled 27 55 110 172 235 295

QBPSO [35]
Normal 18 50 158 328 554 833
Scaled 24 66.67 210.6 437.3 738.6 1110.6

IGA
Normal 3.4 5.25 9.6 13.2 16.9 21.6
Scaled 7.1 11.4 20.5 28.2 36.3 46.3
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5.2. Result of UC Problem

A modified 24-h UC test system was used to schedule the UC problem [37]. In this system, we run
the computational experiments at different forecast levels to compare the performance of each case.
The capacity of solar and wind energy are supposed to be 100 MW and 200 MW, respectively. Thus,
the total capacity of renewable sources is 300 MW, which is 20% of the peak load.

Table 3 shows four stochastic and five deterministic cases of UC strategies. The spinning reserve
requirement of all of the deterministic cases is set to 10% of the load demand in the day-ahead UC
scheduling. On the other hand, stochastic cases examine each reserve strategies with a prediction
for renewable sources. Additional reserve requirements are set to recompense for the uncertainties
that may not be covered by the basic spinning reserve. The summation for forecasting values of solar
and wind power are also applied for setting different reserve strategies in the four stochastic cases.
For each simulation case, 100 scenarios have been generated for each uncertainty of energy sources,
such as wind, solar, load, and generator outage uncertainties.
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Table 3. Unit commitment (UC) strategies.

Case Descriptions UC

Det1 No forecast

Deterministic
Det2 Point forecast
Det3 Perfect forecast
Det4 20% quantile forecast
Det5 80% quantile forecast

Stc1 Standard reserve
(Load forecast (10%))

Stochastic
Stc2 Additional reserve

(Load forecast (15%))

Stc3 Additional reserve
(Point forecast (50%))

Stc4 Additional reserve
(Point forecast − quantile forecast (10%))

Table 4 lists the scheduled operating cost in the day-ahead UC decision for each test case.
For deterministic cases, one scenario is simulated with renewable energy, and the result is a single value
of operating cost. When comparing four deterministic cases, the highest operating cost corresponds to
the no-forecast case of Det1, because the cost of renewable generation is regarded as zero in this case.
Certainly, the larger proportion of renewable generation penetration will lead to a smaller generation
cost, and vice versa. The penetration of renewable sources is moderate in Det2, so operating cost also
stays at moderate levels. Det4 obtains the second-highest operating cost because it uses a conservative
20% quantile forecast of renewable sources, while Det5 has the lowest cost of all of the deterministic
cases due to the positive forecast. Therefore, the order of operating costs from the lowest to the highest
is Det5 < Det2 < Det3 < Det4 < Det1.

Table 4. Comparison of UC operating costs and reserve requirement.

Approach Case Operating Cost ($) Reserve Requirement (MW) Value

Deterministic

Det1 564,037.89 4320 Single
Det2 520,075.37 6684 Single
Det3 524,832.56 6791 Single
Det4 539,245.17 7124 Single
Det5 496,781.24 6418 Single

Stochastic

Without UIM

Stc1 535,827.21 6935 Forecast
Stc2 544,177.81 7273 Forecast
Stc3 539,124.56 7162 Forecast
Stc4 539,651.24 7184 Forecast

With UIM

Stc1 521,024.26 6733 Forecast
Stc2 536,544.17 7076 Forecast
Stc3 535,926.34 6943 Forecast
Stc4 536,274.94 6989 Forecast

In the stochastic cases, 100 scenarios are considered for the UIM for load and renewable source,
and the cost is an expected value. As shown in Table 4, the result of the overall operating cost with the
UIM is lower than that without the UIM in all of the cases. On the other hand, the reserve requirement
with the UIM is higher than that without the UIM. The UIM complements the uncertainties with each
other, thus reducing the total operating cost and reserve requirements. The order of the SUC cost and
reserve requirement is the same with or without UIM. Therefore, operating costs from the lowest to
the highest are Stc1 < Stc3 < Stc4 < Stc2.
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Comparing the results of the deterministic and stochastic cases, it can be seen that there is a large
difference in the operating cost between each case in the deterministic strategy. On the contrary in
the stochastic cases, there is a relatively small difference in the operating cost. Since the probability of
each deterministic case implies that it is more likely to differ from the real value than the stochastic
cases, in the end, the stochastic strategy provides a better solution when making decisions to solve
UC problems.

Figure 7 shows the results for the reserve requirement with the UIM. All of the UC strategies
satisfied the reserve requirement for each hour. Depending on the uncertainty forecast, the total reserve
requirement for each stochastic case may vary. It should be noted that according to the results of SUC
scheduling and forecast, the reserve requirement to be secured varies during each hour. Stc1 is the
standard case, and its level of the spinning reserve requirement and operating cost are the lowest of all
the stochastic cases, whereas Stc2 required the highest reserve level and led to the highest cost.
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Figure 8 shows the number of turned-on units with the UIM. The on and off operation of each unit
is closely related to the amount of reserve requirement. Stc1 has the fewest units turned on for most
hour intervals. This is because Stc1 has a lesser reserve requirement than other cases. Conversely, Stc2
has the most units turned on for most hour intervals, because Stc2 has a higher reserve requirement
(15% of load forecast) than the other stochastic cases. Additionally, the unit behavior of the best SUC
solution for each case is shown in Appendix A.
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6. Conclusions

In this paper, an IGA-based UC solution was proposed with the UIM considering renewable
energy. Uncertainties of energy sources were supposed to have a normal distribution in a Monte
Carlo simulation. To deal with uncertainties of various sources in the UC problem, the UIM was
proposed by using a combination of scenarios that were selected considering the correlation of energy
sources. The SUC problem was formulated with a simplified objective function by using the net load
concept. To acquire better optimization results for the SUC problem, the IGA was applied, including
an approximation process. To demonstrate the effectiveness of the IGA, computational time and
operating costs were compared with other optimization methods for deterministic cases. The IGA
showed better performance compared with other optimization methods. The UIM is the process of
finding the best combination, considering the correlation of uncertainties based on the generated
scenarios of load, wind, and solar power. It can also be seen that renewable energy source penetration
can help relieve strict reserve requirements. Therefore, the system operator can obtain a suitable
solution to determine unit scheduling with fast computational time through the proposed IGA-based
SUC procedure. Further research work will focus on how to formulate more efficient SUC problems,
including various operational constraints such as emission, transmission, and other services.
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Nomenclature

Constants

πs probability of scenario occurrence
FCg fuel cost function of unit
Sg unit’s start-up/shut down cost
ai, bi, ci fuel cost coefficients of fitted parameters for each unit
SUg unit’s start-up cost
SDg unit’s shut-down cost
Pg, Pg generator capacity value at minimum and maximum
Rg generator ramping rate value of maximum
UTi, DTi minimum up and down times for unit
RUg unit’s ramping-up rate
SURg unit’s start-up ramping rate
RDg unit’s ramping-down rate
SDRg unit’s shut-down ramping rate
Vc cut-in speed of wind
Vo cut-out speed of wind
Vr rated speed of wind

Variables

Lst load scenario at time t
Lforecasted,st predicted value of load
Wgst wind power of unit g
Wforecasted,st predicted value of wind power
Sgst solar power of unit g
Sforecasted,st predicted value of solar power
WLRst additional reserve requirement
Lerror,st forecasting error of load
Werror,st forecasting error of wind
Serror,st forecasting error of solar
Rst basic reserve requirement
Rgst basic reserve requirement of unit g
Pgst maximum capacity of unit g
pgst power output of unit g
ugst commitment of unit g
sgst start-up binary indicator of unit g
xgst shut-down binary indicator of generator g
Rst, Rst minimum and maximum value of basic reserve requirement
Wrated

gst rated output of wind power
USgst up-spinning reserve of unit g
SUgst start-up cost for unit g
ESTC irradiance in standard condition
PSTC maximum power in standard condition
k temperature coefficient of the solar power
TM temperature of solar module
TSTC reference temperature
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Indices

g generator index
n number of modules in the solar plant
s scenario index
t time index (hour)
st scenario s at time t
gst unit g at time t in scenario s
i thermal unit index

Appendix A

Table A1. Unit State Combination of Stc1.

Unit
Time (h)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0
8 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

Table A2. Unit State Combination of Stc2.

Unit
Time (h)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
7 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
8 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

Table A3. Unit State Combination of Stc3.

Unit
Time (h)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
8 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0



Energies 2018, 11, 1387 17 of 18

Table A4. Unit State Combination of Stc4.

Unit
Time (h)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0
8 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
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