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Abstract: Although many studies have been conducted to investigate the hydrates formation and
slurry flow during the transportation, studies on the hydrates slurry pressure drop properties using
spiral flow in a loop are still almost blank. In the current work, a series of experiments about
hydrate formation process and pressure drop properties were conducted in a spiral flow loop.
The experiments in this work were conducted in a spiral flow loop, the loop is 97 ms, and the internal
diameter is 25 mms. The experimental results showed that characteristics of hydrate formation
process in a spiral loop, and the twist rate of twist tape had an influence on hydrate slurry pressure.
Finally, the pressure drop model of hydrate slurry in a spiral flow loop was established, and the
relative error were within 10%. This work helped to understand the effects of spiral flow on the gas
hydrate formation process and slurry pressure drop, and provide an insight into the mechanism of
how spiral flow affect gas transportation.
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1. Introduction

With the development of the offshore oil and gas fields, the long distance transportation of the
untreated water bearing oil containing crude oil is key to the economic and efficient development
of the offshore oil and gas fields. However, with the development of offshore oil and gas fields in the
deep-sea and ultra deep-sea, the complex environment of deep-sea high pressure and the low temperature
will cause frequent problems of submarine oil and gas mixed transportation pipeline. Among them,
the formation and blockage by hydrates in the submarine pipeline is the focus in the study. Traditional
methods of prevention and control mainly destroy hydrate formation by temperature, pressure, and other
phase equilibrium conditions to completely inhibit hydrate formation, mainly including dehydration,
heating, depressurization, and injection of thermodynamic inhibitors [1,2]. However, these conventional
methods for inhibiting hydrate formation are costly or they reach their limit of action. Adding traditional
hydrate inhibitors will bring the negative impact of environmental protection and cost [3].

The key technology of deep-water hydrate technology as the flow assurance of risk control
of hydrate slurry transportation, slurry flow calculation of the pressure drop is very important in
engineering applications, and it is one of the most important topics in multiphase flow research
field, and is an important basis of determining the flow pump system and related power equipment
pipe and equipment design run time. As the fluid in the seabed pipe belongs to the oil-gas-water
multiphase flow, and the existence of the hydrate particles, the complexity of the flow is more
prominent. The researchers, starting with the study of the single phase of the hydrate slurry, gradually
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mastered the complex flow in the multiphase of the hydrate slurry. At present, no matter experimental
or theoretical research, the research of hydrate flow resistance characteristics has achieved some
research results [4,5], but there are still many microscopic mechanisms that still need to be explained.

Dholabhal [6] was one of the early pioneers of hydrate slurry flow and gave a qualitative analysis
of the effects of hydrate formation on fluid flow. Pauchard [7], Peysson [8], and Gainville [9] conducted
hydrate slurry flow experiments in the IFP-Lyon (The French oil and gas research center) multiphase
flow loop to study the viscosity of hydrate slurry, the aggregation characteristics of hydrate solid
particles, and the flow of friction, resistance coefficient and so on. Joshi [10], Turner [11], and Bexall [12]
studied hydrate slurry flow in the ExxonMobil, Delecase [13] studied hydrate slurry flow in the Tulsa
Flow Assurance Loop, Wang Wuchang, and Fan Shushi [14] studied the hydrate slurry flow and
the plugging experiments in the hydrated experimental circuit of the Guangzhou Institute of Energy
Research, Chinese Academy of Sciences. The effects of different experimental conditions on the flow
and plugging of hydrates were studied, and the conclusion was reached: high flow rate, low moisture
content favor the flow of hydrates, and pressure drop was related to different factors.

Sinquin and other [3] putted forward the calculation method of the scale distribution of hydrate
particles, and obtained the distribution law of the particle size in the loop. Then, the pressure
drop inside the tube was studied. It was found that, for the slurry turbulent flow, the formula
for friction coefficient that was proposed by Nikuradse could be used to predict the pressure drop.
P. Doron [15] put forward the pressure and the flow regime prediction model of solid-liquid two-phase
flow, the liquid-solid two-phase flow stress analysis, a two-layer model established pattern judgment
model, and the critical sediment concentration distribution, velocity, bed height parameter calculation,
model can be judged according to the accuracy of the hydrate slurry suspension flow and moving bed
flow state. Rao Yongchao [5] made a detailed review on the rheological properties of hydrate slurry
rheological property law: the main types of Newton fluid and Bingham fluid and pseudoplastic fluid
three, and the impact on the rheological properties of hydrate particle slurry review can be understood
as the effect of low concentration of hydrate particles of rheological property was not, but with the
hydrate concentration. Newton fluid began to transform to the Bingham fluid and the rheological
behavior of slurry changes.

Sun Changyu [16] and Yao Haiyuan [17,18] et al. focused on the problems of the pipeline
transportation process to design technology that is encountered with the field application of new
hydrate chemical inhibitors in offshore oil and gas fields. The diameter is 25.4 mm. On the 20 m
length of horizontal transparent experiment ring road, for the first time in the field collection of
offshore condensate oil and gas oil, water and gas in natural gas component configuration as
experimental material, joining the domestic self-developed anti agglomerant of hydrate, the pressure
drop experiment of hydrate slurry is carried out. The initial water content of the experiment was
5%, 15%, 20%, 25%, and 30%, respectively. The variation of the pressure drop parameters of the
flow in the hydrate slurry under different experimental conditions was obtained. By analyzing the
experimental results and by using the theory of liquid, solid two-phase flow, which is a method of
calculating the pressure drop of the hydrates slurry pipe, is established. Based on the experimental
data, this method can be used to calculate the pressure drop of the hydrate slurry flow in the actual
pipeline. Wang and other [19] studied the hydrate volume flow characteristics of CH3CCl2F hydrate
slurry in 10–70%, the experimental results show that when the hydrate volume fraction reaches 30–40%,
the pipeline resistance pressure began to show obvious change, therefore, the volume fraction is related
to pipe flow safety. In the range of experiment, the Fanne coefficient of hydrate slurry is in 0.38–0.5.
Peysson Y and other’s [20] is also based on the IFP-Lyon experimental loop, observing the flow with
a low liquid volume of light naphtha hydrate inhibitor in constant flow under the condition that
the volume fraction of hydrate slurry is a constant. It can be assumed that the friction coefficient of
quasi single phase of hydrate slurry flow is constant. According to the regression of experimental
data, the friction coefficients of three moisture contents are 0.011 (10 wt %), 0.0105 (20 wt %), and
0.0130 (30 wt %), respectively, which are quite different from those that were calculated by Nikurade
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and Wood Colebrook. Li Wenqing [21] had researched and analyzed the effect of particle size on the
friction coefficient of gas hydrate slurry. The results show that when the water content is at 15–25%,
the apparent diameter of the gas hydrate particles is 0.974 mm, and the friction coefficient is about
0.22. The research results provided an experimental basis of simulating the flow of natural gas hydrate
slurry, and lay the foundation for designing and arranging the process of mixed pipeline correctly.
Gong [22,23], Zhao Jiankui [24], and Shi Bohui [25] established a model that can describe gas hydrate
slurry stratified flow based on gas-hydrate slurry two-phase flow of gas-liquid two-phase two-fluid
theory. The coupling of thermodynamics and fluid dynamics can predict the liquid holdup and
pressure drop under this flow condition. Zerpa [26] and Rao [27] established a slug flow model for
gas-water system hydrates. The results showed that the slip between water and hydrate particles
was the main cause of hydrate particle deposition, but due to differences between gas-water systems
and gas-oil-water systems, the experimental results need further research. Tang [28] et al. studied the
pressure drop and the plugging regulation of hydrate slurry under different working conditions.

In the present work, a series of hydrates experiments were conducted in a spiral flow loop.
The aim at this work was to describe the influence of spiral flow on hydrate formation process and
hydrate slurry pressure drop. Firstly, the visualization experiment on the hydrate formation process
was carried out to observe the formation properties. Furthermore, the influence of twist rate on hydrate
slurry pressure was put forward. Finally, the pressure drop model of hydrate slurry in a spiral flow
loop was established.

2. Experiments

2.1. Spiral Flow Loop

The experiments in this work are conducted in a spiral flow loop, which is constructed by the
Jiangsu Key Laboratory of Oil-gas Storage and Transportation Technology. The loop is 97 m long and
the internal diameter is 25 mm. The design pressure is 8 MPa and the design temperature ranges
from −5 to 30 ◦C. The gas and liquid can be injected into the loop by a plunger compressor and
a magnetic centrifugal pump, respectively. Flow parameters, such as pressure, temperature, flow
rate, and pressure drop, can be collected by the sensors that are equipped on the loop. The hydrate
formation unit is the core component of the hydrate spiral flow loop, and the sensors equipped are
the core component of hydrate formation unit. The spiral flow loop is shown in Figure 1, the sensors
equipped are shown in Figure 2, and the high-definition camera is shown in Figure 3, and the Schematic
diagram of the loop is shown in Figure 4. There were six observation points, which were defined as
VA1, VA2, VA3, VA4, VA5, and VA6, respectively. The six observation points and the data collection
points in a spiral flow loop are distributed in unequal intervals. The origin of the pipeline is taken as
the coordinate origin, and the coordinates of the various observation points and data collection points
are shown in Table 1.
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Table 1. The coordinates of the various observation points and data collection points.

Observation Points and
Data Collection Points

Location Coordinates of Observation
Points and Data Collection Points/m

1# 6.42
2# 30.14
3# 37.38
4# 61.10
5# 68.34
6# 92.06

2.2. Apparatus and Procedures

The hydrate formation unit was the core component of the hydrate spiral flow loop. It was the
place of gas hydrate formation and flow. The schematic diagram of the hydrates formation unit was
shown in Figure 5. The gas hydrate formation loop was designed to be folded, consisting of 24 parallels
folded pipes, each of which was 3 m. The design of gas hydrate experimental loop was a sleeve type
structure, gas/water/gas hydrate mixture in a loop. The cool water jacket layer away from the low
temperature cool water supply device was provided, and to control the temperature inside the loop,
the loop insulation layer applied to avoid the loss of cool loop. The spiral flow was produced by the
twist tape, which was shown in Figure 6. In this experiment, three types of twist tapes were selected,
and the Y was 6.2, 7.4, and 8.8. The twist rate Y is related to all pitch H and twist tape width B.
The calculation formula of twist tape is as follows.

Y = H/B (1)
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The monitoring and data acquisition system was mainly composed of high resolution monitor,
cold light source, high pressure reactor precision controller, data acquisition card, digital hard disk
video recorder, and so on. It was a miniature photoelectric detection system that can visualize real-time
observation and record in the water environment with high pressure, low temperature, and narrow
space structure. The visualization and quantitative simulation experiments of the state change and
phase transition law in a spiral flow loop to enhance the hydrate formation can be realized.

The main technological parameters were as follows: (1) the initial pressure was from 3 to 6.5 MPa
and the temperature was from 3.5 to 8.5 ◦C; (2) CO2 gas purity (mol) ≥ 99%; and, (3) the gas-liquid
two-phase flow rate in the loop was from 10 to 90%. Six phenomena observations and data acquisition
points were arranged in a spiral flow loop.

The experimental procedures: (1) Installed the twist tape and opened the low temperature
cool water supply device, so that the temperature of hydrate formation and the temperature of
transportation loop was controlled by cool water at 6.5–8.5 ◦C; (2) By controlling the gas flow, the CO2

gas entered the experimental loop at a steady flow velocity, so that the pressure in a spiral flow loop
reached the predetermined value, and the continuous intake was maintained; (3) When the inlet
volume of the loop reached the requirement, the liquid was released. By controlling the liquid flow,
the liquid entered the hydrate formation loop at a constant flow rate and the spiral diffusion flow
pattern was induced by the twisting zone. When the pressure in the hydrate formation loop reached
the predetermined value, the continuous liquid intake was maintained; (4) The pressure in the hydrate
formation loop reached the predetermined value. Under the condition of keeping continuous air intake
and liquid injection, the formation and flow of CO2 hydrate in the loop was obtained by connecting
hard disk display to the camera, and the temperature and pressure that were collected from each
phenomenon observation and the data acquisition point were recorded. Then starting the computer
monitoring system to search for CO2 hydrate induction time; (5) After the end of the experiment, in
order to close the gas bottle valve, gas booster pump, liquid booster pump, air compressor, cool water
circulation device, observation, and data acquisition device. The data of CO2 hydrate formation and
flow process, such as video, temperature, and pressure, were collected and analyzed.

3. Results and Discussion

3.1. Hydrate Formation Process

The camera that was installed on the hydrate formation loop transfers the immediate phenomenon
of hydrate formation in the loop to the hard disk video recorder for video recording. At the same time,
the immediate phenomenon of hydrate formation was displayed on the computer terminal display.
There were observation points in the loop. The hydrate formation properties were described by the
experimental phenomena of 5# window, and the hydrate formation process was shown in Figure 7.

With the reaction, there were clumps of crystals in a spiral loop, and the light transmittance
gradually decreased. Then, the clumps of crystals increased gradually, and the nucleation formation
period finished. Subsequently, with the continuous coalescence of the nucleus, milky white cloud
hydrates appeared in the loop, and as the reaction progressed, the white cloud hydrates gradually
spread to the whole loop, and the hydrate formation finished.
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Figure 7. Hydrate formation process in the loop: (a) Clear gas-liquid two-phase flow; (b) Vague
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3.2. Pressure

During gas hydrates forming processes, the pressure was obtained by six pressure sensors that
were installed in the loop, which was shown in Figure 8. As shown in Figure 8, in the whole reaction
process, the pressure drop in the loop showed the following characteristics: (1) The change trend of
the pressure that was collected by each observation point is basically the same; (2) The pressure in
the loop will drop rapidly after the injection was finished, because a large amount of CO2 gas was
dissolved in the liquid phase, and the process lasted about 10 min; (3) After the dissolution of CO2 gas,
the pressure drop in the loop slowed down, but after a certain period of time, the pressure that was
collected at each observation point would drop suddenly, and there was a large amount of hydrate
formation; (4) After the formation of CO2 hydrate, the pressure drop in the loop was more slowly,
and the pressure in the loop tended to be stable, and the formation of CO2 hydrate was over.
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3.3. Effect of Twist Rate on Pressure Drop

The effect of different twist rate on the hydrate slurry flow pressure drop was shown in Figure 9.
The hydrate slurry flow pressure drop gradually decreased with the increase of twist rate under
the same conditions of temperature, pressure, and slurry velocity. The hydrate slurry flow can be
regarded as single-phase flow, and the hydrate slurry total pressure drop was divided into frictional
pressure drop, local resistance pressure drop, heavy pressure drop, and accelerating pressure drop.
In view of the actual flow situation of this experiment, local resistance pressure drop, acceleration
pressure drop and heavy pressure drop can be ignored, and the friction resistance pressure drop was
mainly considered (according to the classical theory, total pressure drop was divided into frictional
pressure drop, local resistance pressure drop, heavy pressure drop, and accelerating pressure drop.
Because the loop in the experiment is a horizontal pipe, heavy pressure drop and local resistance
pressure drop can be ignored. Accelerating pressure drop is the pressure drop due to the changes in
fluid density or velocity. In this experiment, the density of hydrate slurry does not change. Therefore,
the accelerating pressure drop is ignored). The influence of twist rate on hydrate slurry flow pressure
drop act on the flow direction. When the twist rate increased gradually, the spiral effect of twist tape
on hydrate slurry gradually decreased, and tangential velocity gradually decreased, and the friction
degree between the hydrate slurry and loop wall gradually weakened, so the hydrate slurry flow
pressure drop gradually decreased.
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3.4. Pressure Drop Model

The flow of hydrate slurry is a complex liquid solid two phase flow. The research methods of
frictional characteristics of liquid solid two phase flow can be roughly divided into two categories: one
is based on experimental data, and the other is based on phenomenological model. Generally speaking,
theoretical models are difficult for practical applications, because many of their governing equations
are difficult to obtain, and empirical formulas have a certain range of applications, including flow
regime and flow medium range. The three layer model of sand and water two phase flow is established
in document [29] and the document [30] that were applied the model to the ice slurry flow in a loop.
The reference documents are the per unit length of hydrate slurry flow friction calculation formula.

∆P0

∆X
=

2
d

ρhVh
2 fh(HI)ω (2)

In the formula, ∆P0 is the flow resistance of the hydrate slurry, Pa; ∆X is the length of the loop, m;
d is the loop diameter, m; ρh is the average density of hydrate slurry kg/m3; Vh is the average velocity
of hydrate slurry, m/s; fh is the average friction coefficient of fluid flow in hydrate slurry; HI is the
ratio of the mass of crystal particles to the total mass of hydrate slurry in the hydrate slurry; and, ω is
a constant, as determined by the experiment.

For the average density of hydrate slurry ρh, the calculation formula is as follows:

ρh = ρL(1 − HI) + ρS HI (3)

In the formula, ρL is the density of water solution, kg/m3; ρS is the crystal density of hydrate,
kg/m3.

fh is the average friction coefficient of the hydrate slurry flow and the formula is calculated, as
follows:

fh = αRe−β (4)

In the formula, Re is Reynolds number, Re = sVd/ν; α and β are constants; and, ν is the viscosity
coefficient of water solution, m2/s.

Backstepping from experimental data can be obtained, the constant ω is 1.17; the constants α and
β are 1.95 and 0.13, respectively.

The flow of hydrate slurry under the spiral flow system is explained by the following conditions:
1© During the whole experiment, some of the microhydrate particles were distributed evenly in the

slurry due to the role of the spin generator, which was similar to the consistency of particles in hydrate
slurry; 2© According to the research of Wang and other [7,30], when the volume fraction of hydrate
is at 10–70% and the hydrate volume fraction of CH3CCl2F hydrate slurry reaches 30–40%, there is a
significant change in the pressure resistance in the loop. In this experiment, due to the long loop length,
the content of hydrate particles is relatively low, generally below 10%, which is similar to hydrate
particles and it does not affect the pressure drop characteristics of the main flow; 3© In the whole
process of the experiment, the flow velocity of the slurry is generally low, which is generally in the
laminar flow area; 4© As the content of hydrate particles is low and the flow velocity is slow, the flow
of hydrate slurry is considered as Newtonian fluid; 5© In this experiment, the hydrate slurry flows
along the tube in the state of spiral flow, and the flow resistance is closely related to the twist rate.

The model of the pressure drop of the spiral flow in the hydrate slurry is as follows:

∆Ph
∆P0

= a·Yb (5)

In the formula, ∆Ph—the pressure drop of the spiral flow in the hydrate slurry; ∆P0—the pressure
drop of the hydrate slurry flow; Y—the twist rate; a, b—the pressure drop coefficient, are determined
by the experimental data.
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According to the experimental data, a and b are 1.29 and 0.85, respectively. Therefore, the pressure
drop formula of the spiral flow in the hydrate slurry in the horizontal tube can be expressed, as follows:

∆Ph
∆P0

= 1.29·Y0.85 (6)

3.5. Model Verification

In order to facilitate the verification of pressure drop model, sorting out the expression for the
hydraulic gradient:

i =
∆Ph
∆X

(7)

In order to verify the accuracy of the model, the typical data points in the experiment are selected
and the calculated values are compared with the measured values. Figure 10 showed that the Equation
(6) was used to calculate the error of the pressure drop model and the experimental value of the spiral
flow in the hydrate slurry in the horizontal tube. Through the analysis, it was found that the average
error between the calculated value and the actual measured value is within 10%. In a spiral flow loop,
the flow resistance of hydrate slurry was closely related to its flow field and the concentration field
in heterogeneous flow, so its flow resistance would be influenced by many factors. A pressure drop
model for hydrate flow in a loop was established based on the sand water two phase flow model.
It was limited by the experimental conditions in the modeling process, and it was difficult to consider
the influence of multiple factors on the flow resistance of hydrate slurry. In general, the hydraulic drop
model of the spiral flow slurry showed a stable prediction performance.
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Figure 10. Comparison of predicted and experimental data of pressure drop.

4. Conclusions

This work investigates gas hydrate formation process and pressure drop properties in a spiral
loop. The main conclusions are as follows:

(1) The hydrate formation process in a spiral loop was similar to ordinary flow loop. With the
reaction, there were clumps of crystals in a spiral loop, and the light transmittance gradually
decreased. Then, the clumps of crystals increased gradually, and the nucleation formation period
finished. Subsequently, with the continuous coalescence of the nucleus, milky white cloud
hydrates appeared in the loop, and as the reaction progressed, the white cloud hydrates gradually
spread to the whole loop, and the hydrate formation finished.

(2) The hydrate slurry flow pressure drop gradually decreased with the increase of twist rate under
the same conditions of temperature, pressure, and slurry velocity. The influence of twist rate on
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hydrate slurry flow pressure drop act on the flow direction. When twist rate increased gradually,
the spiral effect of twist tape on hydrate slurry gradually decreased, and tangential velocity
gradually decreased, and the friction degree between hydrate slurry and loop wall gradually
weakened, so the hydrate slurry flow pressure drop gradually decreased.

(3) The hydraulic gradient rule of hydrate slurry was summarized. With the reaction, the loop
hydraulic gradient decreased gradually. Besides, a pressure drop model of hydrate slurry in a
spiral flow loop was established. The model prediction results ensure that the relative error was
less than 8%, and it showed a stable prediction performance. It provided the experimental basis
of the flow and the transportation of hydrates slurry, and it led the foundation for the correct
design and hydrates slurry arrangement in a loop.
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