
energies

Article

Hybrid Decomposition-Reconfiguration Models for
Long-Term Solar Radiation Prediction Only Using
Historical Radiation Records

Si-Ya Wang 1, Jun Qiu 2,3,* and Fang-Fang Li 1,3,* ID

1 College of Water Resources & Civil Engineering, China Agricultural University; Beijing 100083, China;
wangsy0405@163.com

2 State Key Laboratory of Hydroscience & Engineering, Tsinghua University, Beijing 100084, China
3 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
* Correspondence: aeroengine@mail.tsinghua.edu.cn (J.Q.); liff@cau.edu.cn (F.-F.L.);

Tel.: +86-138-1066-7527 (J.Q.) +86-138-1120-4521 (F.-F.L.)

Received: 8 April 2018; Accepted: 22 May 2018; Published: 29 May 2018
����������
�������

Abstract: Solar radiation prediction is significant for solar energy utilization. This paper presents
hybrid methods following the decomposition-prediction-reconfiguration paradigm using only
historical radiation records with different combination of decomposition methods, Ensemble
Empirical Mode Decomposition (EEMD) and Wavelet Analysis (WA), and the reconfiguration
methods, regression model (RE) and Artificial Neural Network (ANN). The application in west
China indicates that these hybrid decomposition-reconfiguration models perform well for monthly
prediction, while the comparisons of the daily prediction show that the hybrid EEMD-RE model
has a higher degree of fitting and a better prediction effect in long-term prediction of solar radiation
intensity, which verifies (1) decomposition of original solar radiation data results in components with
regular characteristics; (2) the relationship between the original solar radiation sequence and the
derived intrinsic mode functions (IMFs) is linear; and (3) EEMD has strong adaptivity for non-linear
and non-stationary series. The proposed hybrid decomposition-reconfiguration models have great
application prospect for monthly long-term prediction of solar radiation intensity, especially in the
areas where complex climate data is difficult to obtain, and the EEMD-RE model is recommended for
the daily long-term prediction.

Keywords: long-term prediction; solar radiation; hybrid model; decomposition-reconfiguration

1. Introduction

Solar energy is one of the most favorable renewable energy sources, it has been continuously
explored in recent years. Solar radiation data is the fundamental input for solar energy applications,
and its reliability appears important to designing, developing and evaluating solar technologies [1].
Optimal design of solar power systems needs the expected long-term solar radiation on the horizontal
plane. For example, sizing the projects is related to solar collector and PV systems [2]. Moreover, when
solar energy is produced on large-scale and grid-connected, an accurate knowledge of long-term solar
radiation makes a lot of sense for balancing the energy supply and demand [3].

Various researches on solar radiation forecasting methods have been reported, classified into
physical models and statistical methods. Physical models are based on the physical state and dynamic
motions of the atmosphere, also known as Numerical Weather Prediction (NWP) models [4], which
was believed the most appropriate for day-ahead and “multi-day forecast horizons [5]. However,
the NWP models are greatly affected by weather factors, such as cloudiness, cloud evolution and
optical properties in the forecast area [6]. Generally, such models result in good predictions in clear
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sky conditions, while with the effect of clouds, the prediction results become worse [7]. Besides,
the application of such physical models [8] on long-term daily solar radiation prediction is also limited
by their computational complexity. There are two types of statistical models: mathematical statistics
and machine learning algorithms. Mathematical statistics mainly includes regression analysis [9], time
series analysis [10], fuzzy theory [11], wavelet analysis [12] and Kalman filtering [13]. Regression
analysis determines the best combination of the independent variables to predict the dependent
variable, but the selection procedure is not always easy [14]. Nourani found that Auto Regressive
Integrated Moving Average (ARIMA) model had a limited ability to capture non-stationarities and
non-linearities [15]. In practice, the predictional accuracy of the statistical methods is not as high as the
NWP models, as the parameters change over time due to various factors [16]. Typical machine learning
algorithms include: Artificial Neural Networks (ANN) [17], Support Vector Machines (SVM) [18] and
heuristic intelligent optimization algorithms [19]. Gala et al. believed that hybrid artificial intelligence
systems are quite effective for solar energy prediction [20]. Lauret et al. found that the improvement of
the machine learning techniques for hour ahead solar forecasting appears to be more pronounced in
case of unstable sky conditions [18].

As for long-term solar radiation prediction, a limited number of related publications can be
found, most of which focus on the characteristic analysis rather than prediction. The complexity of
the relationship between solar radiation and meteorological, terrestrial, and extra-terrestrial variables
makes it difficult to make long-term solar radiation prediction [21]. Coelho and Boaventura-Cunha [22]
found even their proposed method combining support vector regression and Markov chains performed
poorly when the prediction was sixty-step ahead after comparing linear autoregressive, nonlinear
autoregressive, and support vector models on long-term solar prediction.

With the development of the big data-mining technology in recent decades, the machine learning
algorithms have drawn much attention. As one of the most commonly used methods, ANN have been
successfully applied to solar radiation prediction and solar systems design [3] since it has strong ability
to solve non-linear function estimation, pattern detection and data sorting. Cao [16,23] predicted
solar radiation in Shanghai and Baoshan by using a BP (back propagation) neural network after
preprocessing the data with wavelet analysis, and found that the recursive BP network combined with
wavelet analysis improves in both speed and accuracy. Paoli et al. [24] used mixed models to predict
total daily solar radiation in three sites in France. They first used the seasonal index adjustment method
to preprocess the original solar radiation sequence, and then applied daily multi-layer perceptive
neural network (MLPNN) on daily solar radiation prediction. Amrouche and Le Pivert [25] used
spatial models and ANNs to predict the daily solar radiation intensity at four US sites. Pedro and
Coimbra [26] compared ARIMA, k-nearest neighbors (kNNs), ANN and Genetic Algorithm (GA)
optimized neural networks (GA/ANN). It was found that the neural network optimized by GA
is superior to other algorithms in hourly prediction. Khatib et al. [27] compared existing methods
including linear, nonlinear and ANN models and pointed out that compared with linear and nonlinear
models, ANNs are more accurate to predict solar energy. At the same time, it was found that the
sunshine ratio, the ambient temperature and the relative humidity are the most relevant coefficients
for predicting solar radiation. Yadav and Chandel [28] chose different ANN models based on different
geographical locations for prediction, and found that the reasonable choice of model parameters had a
great influence on the prediction results. Voyant et al. [29] found that the predictive effects of these
methods were affected by the weather and seasonal factors by comparing the ARIMA model, an ANN
using only endogenous inputs (univariate) of pretreatment and an ANN using both endogenous
and exogenous inputs for pretreatment. Ozgoren et al. [30] used the ANN model based on Multiple
Nonlinear Regression (MNLR) to predict the monthly average solar radiation in Turkey. The method
requires the input of latitude, longitude, altitude, monthly temperature and monthly minimum
temperature, maximum temperature, average temperature, soil temperature, relative humidity, wind
speed, rainfall, barometric pressure, vapor pressure, cloud cover and sunshine duration and other
variables, and the MNLR method is used to determine the most appropriate independent input
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variables. Koca et al. [31] applied ANN model to the prediction of the monthly mean solar radiation in
the Mediterranean region of Anatolia in Turkey by inputting different parameters, and found that the
number of the input parameters was the most effective parameter. Generally, the existing ANN model
needs a lot of meteorological parameters when applied to radiation prediction to make the results
more accurate [3]. The input parameters are basically a certain combination of meteorological and
topographical data, which include day of the year, wind speed, rainfall, relative humidity, temperature,
latitude, longitude, altitude and so on. [32–34]. Thus there exists great limitation when applying ANNs
in some areas where meteorological data is hard to obtain.

As to the long-term time sequence itself, the information in historical data needs to be explored
fully. The Wavelet Analysis (WA) and the Ensemble Empirical Mode Decomposition (EEMD) are two
typical decomposition methods to extract the regular components from a fluctuant time series.

WA was developed on the basis of the Fourier Transform (FT) in the early 1980s, overcoming the
shortcomings of traditional spectral analysis methods and satisfying the local variation requirements
in the time and frequency domains by a variable window [35]. Almasria et al. [36] applied WA to
the empirical study of Swedish temperature data from 1850 to 1999. Kisi [37] predicted monthly
runoff using wavelet regression instead of ANN. Nourani et al. [15] combined WA and ANN
to predict the runoff in the Ligvanchai valley of Tabriz, Iran. Partal [38] conducted a reference
evapotranspiration estimation using the wavelet transform and the feedforward neural network
methods to evaluate climate data (temperature, solar radiation, wind speed, relative humidity) at two
stations in the United States.

The EEMD is an improved version of the empirical mode decomposition (EMD) [39]. EEMD
overcomes the essential defect of EMD modalities and is an adaptive data processing method adapted
to nonlinear and nonstationary time series. EMD and EEMD have been widely used in some complex
system models. Monjoly et al. [40] compared the data processing methods, EMD, EEMD and WA, using
classical prediction model (Auto-Regression, AR) and nonlinear method to predict solar radiation
intensity and found that the multi-step prediction hybrid approach led to additional improvements.

In this study, an attempt to rollingly predict long-term solar radiation by only using historical
radiation data is carried out. WA and EEMD are firstly used to decompose the historical daily sequence
of solar radiation into regular and predictable sub sequences, and then the relationships between these
sub components and the original sequence are established by Regression Equation or ANN model.
Different combination of the decomposition methods and the relational models are tested, including
EEMD-RE, EEMD-ANN, WA-RE, WA-ANN. The Autoregressive Integrated Moving Average model
(ARIMA) is also compared. The results show that the EEMD-RE model performs superior to the other
ones, which is capable of capturing the main characteristics of solar radiation in the next year. With
daily data of ten years, the monthly means prediction almost has the same accuracy as the published
studies using diverse meteorological and topographic data. The method can be employed for the
study and design of solar projects, particularly in underdeveloped areas where it is difficult to obtain
complex data.

The rest of the paper is organized as follows: the method used in this study is explained in
Section 2. Simulative experiments with different methods are presented in Section 3. Section 4 contains
the comparison results. Sections 5 and 6 present the discussion and conclusion, respectively.

2. Methodology

2.1. Empirical Mode Decomposition (EMD)

The EMD is efficient to analyze non-linear and non-stationary signal sequences with high
signal-to-noise ratio, which decomposes a complex signal into a finite number of intrinsic mode
functions (IMF) with local characteristics of different time scales.

Each IMF needs to meet the following two requirements: (1) Throughout the data sequence,
the number of extremums and zero values across the entire sample dataset must be equal or differ
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by one; (2) the mean of the envelope formed by the local maximum and the local minimum is zero
at any point of the sequence. Taking signal s(t) as an example, the process of screening programs is
summarized as follows:

Step 1: Find all the local maxima and local minima in s(t), and connect all local maxima by a cubic
spline line to configure the upper envelope; This process is repeated with a local minima to produce
the lower envelope.

Step 2: Construct the mean envelope m1(t) with the average of the upper and lower envelopes.
Step 3: The average envelope is subtracted from the original signal s(t) to derive the first

component h1(t):
h1(t) = s(t)−m1(t) (1)

Step 4: Check if h1(t) meets the IMF’s conditions. If not, go back to Step 1 and use h1(t) as the
original signal for the second screening:

h2(t) = h1(t)−m2(t) (2)

Repeat screening for k times, until hk(t) meets the IMF’s conditions, when the first IMF component
c1(t) is derived:

c1(t) = hk(t) (3)

Step 5: Subtract c1(t) from the original signal s(t) to get the residual r1(t):

r1(t) = s(t)− c1(t) (4)

Step 6: Take r1(t) as the new original signal, and perform step 1 to step 5 to obtain a new residual
r2(t). Repeat the steps above for n times. When the nth residual rn(t) becomes a monotonic function,
the IMF cannot be decomposed anymore and the entire EMD is completed. The original signal s(t) can
be expressed as a combination of n IMF components and an average trend component rn(t), as shown
in Equation (5):

s(t) =
n

∑
k=1

ck(t) + rn(t) (5)

With the Hilbert transform, the IMFs yield instantaneous frequencies as functions of time that
give sharp identifications of imbedded structures. Each IMF can be either linear or non-linear with
corresponding physical background.

2.2. Ensemble Empirical Mode Decomposition (EEMD)

Although the EMD shows great superiority in the analysis of non-linear and non-stationary
signals, the mode mixing problem resulting from the intermittency of signals still exists. The EEMD
adds white Gaussian noise to the EMD to solve such problem. The basic idea is to eliminate the
intermittency of the original signal in the frequency domain by using the statistical characteristics of
uniformly distributed Gauss white noise, so that the mode mixing can be avoided.

The specific decomposition steps of EEMD are as follows:

Step 1: A series of random Gauss white noise signals wi(t) are added to the original signal s(t) to
get a total signal X(t):

Xi(t) = s(t) + kwi(t) (6)

where wi(t) indicates the total signal after the ith time adding noise. k is the amplitude coefficient of
wi(t), usually 0.05 < k < 0.5.
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Step 2: Decompose Xi(t) in accordance with step 1 to 6 in Section 2.1. However, it’s necessary to
replace spline interpolation with piecewise cubic Hermite interpolation in the first step of 2.1 section
to obtain the maximum and minimum envelope of signal:

Xi(t) =
n

∑
j=1

cij(t) + ri(t) (7)

where cij(t) represents the jth IMF after the noise is added i times.
Step 3: To obtain the average values of all IMF and residuals obtained by the above steps, as in

Equations (8) and (9):

cj(t) =
M

∑
i=1

cij(t)/M (8)

rj(t) =
M

∑
i=1

ri(t)/M (9)

where cj(t) and rj(t) stand for the jth IMF and jth residual component obtained by EMD technique.
M denotes the number of the Gaussian white noise, usually M = 100.

2.3. Wavelet Analysis (WA)

The WA is a time-frequency localization analysis method with fixed time-frequency window area
but changing time window and frequency window. Through the wavelet transforming of the original
data sequence and mapping it to a different time-frequency domain, the inverse transforming of each
frequency-domain component can be obtained. The separate analysis of these components helps
understand their variation law in different frequency domains. Select the mother wavelet Y(t), where t
stands for time, and the wavelet sequence Yj,k(t) can be obtained by expanding and transforming Y(t).
In computation and practical application, a discrete wavelet sequence is usually used, which can be
obtained by Equation (10):

Yj,k(t) = A−j/2
0 Y

[
t− kAj

0B0

Aj
0

]
= A−j/2

0

(
A−j

0 − kB0

)
j, k = 0,±1,±2, . . . (10)

where A−j
0 is a scale factor, kAj

0B0 is a shift factor. When A0 = 2, B0 = 1, the above formula is a binary
wavelet sequence. Let ϕ(t) be the scaling function corresponding to the mother wavelet Y(t); then the
sequence of the binary functions ϕj,k(t) is:

ϕj,k(t) = 2−
j
2 ϕ
(

2−jt− k
)

j, k = 0,±1,±2, . . . (11)

After the decomposition of the original data f (m), the corresponding low-frequency series aN and
the high-frequency series d1, d2, ..., dN can be obtained. The specific relationship is as follows:

f (m) = d1 + d2 + . . . + dN + aN (12)

The results of the wavelet decomposition vary according to the chosen mother wavelet; the
resulting frequency domain alias also has different degrees. The more severe the alias in the frequency
domain, the less obvious the variation of the components in the frequency domain. Therefore,
the selection of the mother wavelet should be excluded from the frequency domain caused by the
phenomenon of alias serious mother wavelet.
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2.4. Back Propagation-Artificial Neural Network (BP-ANN)

Due to its strong ability of non-linear mapping, learning as well as fault tolerance, ANNs have been
widely applied to nonlinear forecasting problems. The Kolmogorov continuity theorem guarantees the
feasibility and validity of using neural networks for time series prediction mathematically. BP-ANN
back propagation includes input layer, hidden layer and output layer. The existence theorem of
Kolmogorov three-layer neural network has proved that any continuous function can be mapped to a
three-layer BP network.

The output En of a neuron j on the BP-ANN hidden layer and output layer is given by
Equation (13):

En = f j
(

Netj
)
= f j

(
∑ wijei + θj

)
(13)

where fj is the aviation function corresponding to the neuron j, and usually Sigmoid function f (x)
= 1/(1 + exp(−x)) is adopted; θj represents the threshold of the neuron j; ei is the input of neuron j;
wij indicates the connection weight of the corresponding input and the neuron.

2.5. Regression Model (RE)

Generalized linear models (GLM) are a unified class of regression methods for discrete and
continuous response variables. There are some special cases, such as Logistic regression for binary
responses, linear regression for continuous responses, log-linear models for counts, and some survival
analysis methods. The systematic component and the random component compose a GLM. For the
systematic component, one relates Y to x by assuming the average among individuals with a common
value of x, η = λ(Y), satisfing:

g(η) = x1α1 + x2α2 + . . . + xrαr (14)

where g is a prespecified function known as the ‘link function’. α are regression coefficients.
In this study, the liner regression model is selected, the coefficients of which are determined by

the least square method.

2.6. Hybrid EEMD/WA-RE Model

The basic idea of the hybrid EEMD/WA-RE method proposed in this study follows
the decomposition-prediction-reconfiguration paradigm. The main purpose of EEMD or WA
decomposition is to better extract valid information from the data, simplify the original goal, and
decompose it to more regular components for predictable sub-goals. First, the EEMD or the WA is
used to decompose the long disordered sequence into several sub-sequences (IMFs for EEMD, and
sequences with different frequencies for WA). Theoretically, EEMD can be applied to any time series
without the requirements for stationarity, and does not require the default basic functionality For WA,
the key technique to alleviate the aliasing phenomenon is the selection of the mother wavelet. In this
study, db7 is set as the mother wavelet according to the previous study and testing results [41].

The daily average solar radiation sequence of 1~T year is decomposed into sub-sequences by
EEMD or WA, which are used as the independent variables in RE, and the data of 2~(T + 1) year is
taken as the dependent variable. The regression equation g is then established to predict the daily
average solar radiation.

2.7. Hybrid EEMD/WA-ANN Model

The sub-sequences obtained by EEMD or WA using radiation data of 1~T years can also be used
as the input to the ANN model, and the data of 2~(T + 1) year is the output. After training the ANN
model, it can be used for prediction in the future.

The decomposition-prediction-reconfiguration idea derives four different combination of hybrid
models in this study: EEMD-RE, WA-RE, EEMD-ANN, and WA-ANN, which are compared and



Energies 2018, 11, 1376 7 of 17

evaluated. Figure 1 shows the flowchart of these four models. The step 1 and 2 with black circles aim
at training the model, and establishing the relationship between X1~T and X2~(T+1); while step 3 to 5
with bule circle use such model to predict XT+2. The part with blue background indicates predicting
process in Figure 1.
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3. Case Study

3.1. Study Case

The Qinghai province is located in west China with an average elevation of above 3000 m. It has
good atmospheric transparency, high sunlight transmittance, long sunshine duration and abundant
solar energy resources. The annual sunshine hours in eastern Qinghai Province are 3000 to 3200 h,
and the annual solar radiation is 5860 to 6700 MJ/m2 [42], ranking the second in the country. The whole
Qinghai province has about 200,000 km2 unused desert, which is suitable for the large-scale solar
energy exploration [43].
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In the past 10 years, the solar energy industry in Qinghai province has been developing vigorously,
with a speed of ’one watt per watt’. By the end of 2017, the installation capacity of the photovoltaic
(PV) power in the Qinghai Province had reached 7910 MW [44], and more projects are planned
for construction.

The design of a PV power station needs accurate long-term radiation prediction. Gonghe County
in Qinghai province, where a large scale PV power station is panned, is taken as the research area
in this study. Solar radiation intensity data used in this experiment was obtained from NASA. The
sample data is from 1st January 1984 to 31st December 1995.

3.2. Implementation

Using EEMD, daily average solar radiation intensity data of the area from 1 January of the year
1984 to 31 December of the year 1993 are decomposed to obtain 12 IMFs. The 12 IMFs are taken as
independent variables, and the data from 1 January of the year 1985 to 31 December of the year 1994 is
taken as dependent variables to establish the regression equation, as in Equation (15):

Y =
n

∑
i=1

ζiCi (15)

where ζi are the regression coefficients and Ci is the IMFs. Equation (15) is then used to predict the
solar radiation of the year 1995.

The 12 IMFs derived from EEMD using the data from 1984 to 1993 can also be taken as the input
to train an ANN model, and the data of the year 1985 to 1994 is the output. The number of hidden
layer neurons of the ANN model in this study is 10 and the output layer neurons is 1.After training
the BP-ANN model, it is used to predict the daily radiation sequence of the year 1995 with the data of
the IMFs from 1985 to 1994.

Taking db7 as the mother wavelet, the three-scale Mallat pyramid wavelet decomposition of
the solar radiation data series is carried out to obtain the low frequency sequence a3 and the high
frequency series d1, d2 and d3 of the solar radiation. Then the similar process is carried out as the
EEMD-RE model and the EEMD-ANN model to establish the regression equation and the ANN model
to predict the radiation for 1995.

Another typical prediction method for the ARIMA time series is also tested for comparison.
The ARIMA model (3,0,4) × (0,0,1) is chosen after auto regression, partial regression and unit root test
for daily data, while the ARIMA model (5,0,5) is chosen for monthly data.

To compare the predictive effect in different time scales, the daily, ten-day, and monthly results
are calculated with the daily prediction. On the other hand, to verify the data mining effect by
decomposition methods, the monthly data is also used for the four hybrid models to derive the
monthly prediction, which is compared with the monthly statistics from daily predictions.

3.3. Model Evaluation Criteria

The standard root mean square error (RMSE), the mean absolute percentage error (MAPE),
the correlation coefficient (r) and the coefficient of determination (R2) are chosen as the evaluation
criteria of the predictive value, as defined in Equations (16)–(19). RMSE reflects the extent to which the
predicted data deviates from the true value. The smaller the RMSE value, the better the prediction.
MAPE can be used to measure the quality of a model prediction; the smaller the MAPE value, the better
the prediction. r and R2 reflect the fitting degree of the model; the closer the r and R2 to 1, the better
the fitting degree of the model:

RMSE =

√
1
n

n

∑
i=1

(Xhist,i − Xpred,i)
2 (16)
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MAPE =

(
1
n

n

∑
i=1
|
Xhist,i − Xpred,i

Xhist,i
|
)
× 100% (17)

r =
∑n

i=1

(
Xhist,i − Xhist)(Xpred,i−Xpred

)
√

∑n
i=1
(
Xhist,i − Xhist

)2
(

Xpred,i − Xpred

)2
(18)

R2 =
∑n

i=1 (Xpred,i−Xhist,i)
2

∑n
i=1 (Xhist,i − Xhist)

2 (19)

where the subscript hist represents historical data, and the subscript pred represents the
predictive results.

4. Results

Figure 2 shows the 12 IMFs obtained from the EEMD decomposition and the subsequences
with different frequencies obtained from the WA using daily solar radiation intensity from the year
1984 to 1993, and 1985 to 1994, respectively; Figure 3 shows the 7 IMFs and sequences with different
frequencies derived from monthly data from 1984 to 1993, and from 1985 to 1994, respectively.
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Figure 2. IMFs obtained from EEMD using daily solar radiation data of (a) 1984–1993, (b) 1985–1994;
and sub sequences with different frequencies derived from WA using daily solar radiation data of (c)
1984–1993, (d) 1985–1994.
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Figure 3. IMFs obtained from EEMD using monthly solar radiation data of (a) 1984–1993, (b) 1985–1994,
sequences with different frequencies obtained from WA using monthly solar radiation data of (c)
1984–1993, (d) 1985–1994.

Figure 4 shows the daily prediction results by different prediction models, as well as the its
statistical results with a time step of 10 days and 1 month.
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The predictive accuracy of the different models and time scales are shown in Tables 1–4. Important
cases where the computational definition of R2 can yield negative values, depending on the definition
used, arise where the predictions that are being compared to the corresponding outcomes have not been
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derived from a model-fitting procedure using those data, and where linear regression is conducted
without including an intercept [43]. Additionally, negative values of R2 may occur when fitting
non-linear functions to data [44]. In cases where negative values arise, the mean of the data provides a
better fit to the outcomes than do the fitted function values, according to this particular criterion [45,46].

Table 1. Predictive accuracy of different models with daily data.

Methods RMSE MAPE (%) r R2

EEMD-RE 1.135 22.11 0.748 0.5484
EEMD-ANN 1.474 29.47 0.590 0.2387

WA-RE 1.181 22.58 0.723 0.5116
WA-ANN 1.188 22.56 0.725 0.5052
ARIMA 1.948 33.21 0.035 -0.3097

Table 2. Predictive accuracy of statistical results using daily data with 10 days interval.

Methods RMSE MAPE (%) r R2

EEMD-RE 0.571 10.23 0.918 0.8247
EEMD-ANN 0.935 16.92 0.812 0.5297

WA-RE 0.637 12.03 0.897 0.7810
WA-ANN 0.619 11.34 0.904 0.7913
ARIMA 1.666 27.60 0.060 −0.4945

Table 3. Predictive accuracy of statistical results using daily data with 1 month interval.

Methods RMSE MAPE (%) r R2

EEMD-RE 0.417 4.25 0.957 0.8973
EEMD-ANN 0.775 14.87 0.883 0.6454

WA-RE 0.416 8.07 0.970 0.8979
WA-ANN 0.467 8.49 0.950 0.8712
ARIMA 1.607 27.01 0.040 0.5256

Table 4. Predictive accuracy of different models with monthly data.

Methods RMSE MAPE (%) r R2

EEMD-RE 0.339 6.00 0.979 0.9319
EEMD-ANN 0.362 5.66 0.966 0.9226

WA-RE 0.305 5.23 0.980 0.9450
WA-ANN 0.377 6.83 0.959 0.9161
ARIMA 0.368 6.79 0.967 0.9199

5. Discussion

The decomposition results shown in Figure 2 show that there are 12 IMFs derived from EEMD,
while four sub-sequences derived from WA as a comparison. It can be inferred that EEMD has stronger
ability in mining more sufficient information with regularity. The comparison of the decomposed
results by EEMD and WA with monthly data in Figure 3 also shows that the IMFs from EEMD for
different time series seems more regular than the sub sequences from WA in Figure 3c,d, which vary
distinctly for different years. It can be seen from Figure 4 that the predictive result by EEMD-RE model
is the most stable one compared with other models, which indicates that EEMD-RE model can capture
the stable information in the data instead of paying attention to the uncertainties. The statistical
results in Tables 1–3 also confirm that the EEMD-RE model has the highest predictive accuracy with
daily data compared to other models, with a smaller RMSE and higher model fitting degree. The
comparison between the EEMD-RE and EEMD-ANN implies that the relationship between the original
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solar radiation sequence and the derived IMFs is linear. Thus the superiority of ANNs for complex
non-linear problem does not work for solar radiation data. The comparison between EEMD and
WA verifies the strong adaptivity of EEMD for non-linear and non-stationary series; while the WA
relies greatly on the mother wavelet, while it may lead to virtual fluctuations. Especially in Figure 4c,
which shows that the four kinds of hybrid models, including EEMD-RE, EEMD-ANN, WA-RE, and
WA-ANN all perform well when predicting monthly solar radiation for the next year with historical
daily data. Such results verify the validity and effectiveness of the idea that decomposing time series
into sub sequences with more regularity is helpful for long-term prediction. Interestingly, the monthly
predictive effects with monthly data in Figure 5 and Table 4 are better than those with daily data.
Although we thought more information could be explored for data with smaller time intervals, it
seems that more randomness and uncertainty were introduced for daily data compared to monthly
data, and some errors in the prediction with shorter time interval might be smoothed in the statistical
process for the longer time interval. The model fitting degree of the ARIMA model is low using daily
data, indicating that it is not suitable for long-term prediction with large amount of data. The proposed
EEMD-RE model is thus recommended for long-term solar radiation predictions.
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6. Conclusions

The solar radiation forecast is important for solar energy utilization. The causes of variations
in solar radiation are various. There exists a complicated coupling relationship between the solar
radiation intensity and the meteorological elements and terrain factors, but the data of complicated
climate conditions is often difficult to obtain.

In this paper, hybrid methods following the decomposition-prediction-reconfiguration paradigm
are proposed with different combination of EEMD, WA, RE, and ANN, which is only based on
historical solar radiation data. The application on the west of China shows that basically these hybrid
decomposition-reconfiguration models perform well for monthly prediction using monthly historical
data; while for the daily prediction, the EEMD-RE model outperforms other models, since (1) the
decomposition results in components with regular characteristics; (2) the relationship between the
original solar radiation sequence and the derived IMFs is linear; and (3) the EEMD has strong adaptivity
for non-linear and non-stationary series. The proposed hybrid decomposition-reconfiguration models
only relying on the historical radiation records have great practical value for long-term prediction of
solar radiation intensity, especially in the areas where complex climate data is difficult to obtain.
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