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Abstract: For model-based state of charge (SOC) estimation methods, the battery model parameters
change with temperature, SOC, and so forth, causing the estimation error to increase. Constantly
updating model parameters during battery operation, also known as online parameter identification,
can effectively solve this problem. In this paper, a lithium-ion battery is modeled using the Thevenin
model. A variable forgetting factor (VFF) strategy is introduced to improve forgetting factor recursive
least squares (FFRLS) to variable forgetting factor recursive least squares (VFF-RLS). A novel method
based on VFF-RLS for the online identification of the Thevenin model is proposed. Experiments
verified that VFF-RLS gives more stable online parameter identification results than FFRLS. Combined
with an unscented Kalman filter (UKF) algorithm, a joint algorithm named VFF-RLS-UKF is proposed
for SOC estimation. In a variable-temperature environment, a battery SOC estimation experiment
was performed using the joint algorithm. The average error of the SOC estimation was as low as
0.595% in some experiments. Experiments showed that VFF-RLS can effectively track the changes
in model parameters. The joint algorithm improved the SOC estimation accuracy compared to the
method with the fixed forgetting factor.

Keywords: variable forgetting factor; recursive least squares; lithium-ion battery; online parameter
identification; state of charge

1. Introduction

Compared with other batteries, the performance of lithium-ion batteries is better in terms of power
capability, cycle life, thermal stability, and so forth [1]. Therefore, the lithium-ion battery industry has
developed rapidly, and the batteries have a wide range of commercial applications, such as in electric
vehicles, cell phones, laptop aviation products, and grid energy storage.

The battery management system (BMS) is one of the most important parts of an electric vehicle [2].
State of charge (SOC) represents the remaining charge of the battery and is an important assessment
of the battery state. The SOC cannot be directly measured. Therefore, the estimation of the SOC is
not only an important function of the BMS, but is also a fundamental research topic in terms of BMSs.
SOC estimation algorithms can be divided into two categories: model-based and non-model-based.
Model-based algorithms have better performance in general. Some battery model examples include
the Thevenin model, the Partnership for a New Generation of Vehicles (PNGV) model, the general
nonlinear (GNL) model, the Rint model, and so on [3]. The majority of existing model-based SOC
estimation algorithms use fixed model parameters, which are obtained by offline identification of
battery test data. Many model-based algorithms are proposed for SOC estimation, such as the
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nonlinear Kalman filter [4–9], particle filtering (PF) [10,11], sliding mode observer (SMO) [12,13],
the H∞ filter [14,15], and so on [16]. However, during the operation of an electric vehicle, factors
such as temperature, SOC, and battery aging affect the battery model parameters, resulting in an
increase in the SOC estimation error. Parameter identification is an important function of the BMS.
Accurate model parameters can improve the estimation accuracy for model-based SOC estimation
algorithms [17,18]. Constantly updating the parameters of the battery model, also known as online
parameter identification, can effectively solve this problem for BMSs. Online parameter identification
is a system identification problem, and research methods include the least-squares method [19–21],
Lyapunov’s direct method [22], the Kalman filter [23], and so on [24,25].

This paper proposes an online parameter identification algorithm and applies it to SOC estimation.
During the SOC estimation process, the model parameters are continuously updated to reduce the
SOC estimation error. As a result, the algorithm proposed in the paper provides a way to improve the
existing production vehicles and other production battery-pack systems for industrial applications.

In a previous work [26], the battery was modeled by the Thevenin model, and the online parameter
identification of the battery was realized by forgetting factor recursive least squares (FFRLS). A joint
algorithm based on FFRLS and the unscented Kalman filter (UKF) (FFRLS-UKF) that estimates the
SOC with model parameters constantly updating was proposed, and the methods were verified by
experiments. In the above work, the forgetting factor was a fixed value. At different stages of the
battery operation, according to the characteristics of the system, there are different requirements for
forgetting factors. As a result, a variable forgetting factor (VFF) strategy is possible for improving the
performance of FFRLS.

Many ways to adjust forgetting factors have been proposed in the literature. The Gauss–Newton
variable forgetting factor recursive least squares (GN-VFF-RLS) algorithm uses the second derivatives
of the cost function as the increase in the forgetting factor. GN-VFF-RLS has a higher tracking
capability for parameter estimation [27]. Gradient-based variable forgetting factor recursive least
squares (GVFF-RLS) uses a gradient-based method to modify the forgetting factor [28]. The gradient is
derived from an improved mean-square-error analysis of recursive least squares. For an unknown
system, the output is corrupted by a noise-like signal. This signal should be recovered in the filter.
On the basis of this condition, another method for the variable forgetting factor recursive least squares
(VFF-RLS) algorithm was designed for parameter identification [29]. For impulsive noises, a novel
recursive logarithmic least-mean pth (RLLMP) algorithm can enhance the tracking performance in the
Volterra system [30]. On the basis of local polynomial modeling of the unknown time-varying (TV)
system, a novel diffusion variable forgetting factor recursive least squares (Diff-VFF-RLS) algorithm
was proposed [31]. Chen proposed a VFF algorithm using the exponential function [32]. Another
method to change the forgetting factor is based on the curve of the inverse cotangent function [33].

This paper analyzes the possible ways to improve recursive least squares with a fixed forgetting
factor. A VFF strategy is added to improve the FFRLS. A novel method for online parameter
identification is proposed for lithium-ion batteries. Combined with the UKF, the VFF-RLS-UKF
algorithm for SOC estimation is proposed. A series of experiments verified that the VFF strategy
can improve the identification stability. The comparison with the measured value shows that the
VFF-RLS-UKF algorithm can accurately estimate the battery SOC and terminal voltage.

This paper is arranged as follows: Section 2 introduces the FFRLS and analyzes the characteristics
of forgetting factors. The VFF strategy is introduced to adapt to the requirements of the system, forming
the VFF-RLS algorithm. In Section 3, a lithium-ion battery is modeled using the Thevenin model.
An online parameter identification method based on the VFF-RLS algorithm is proposed. Combined
with UKF, the VFF-RLS-UKF algorithm is proposed for SOC estimation. In Section 4, the experiments
are introduced. The results of the online parameter identification by FFRLS and VFF-RLS are shown.
The SOC and terminal voltage were estimated by the UKF, FFRLS-UKF, and VFF-RLS-UKF. In Section 5,
the conclusions are summarized.
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2. Method and Analysis of Variable Forgetting Factor Strategy for Recursive Least Squares

2.1. Features of Forgetting Factor Recursive Least Squares

As a classic approach for system identification, the recursive least squares (RLS) algorithm
identifies the parameters of the system model by minimizing the sum of squares of the generalized
errors. On the basis of RLS, the FFRLS algorithm was developed for systems with time-varying
parameters. The process of FFRLS is briefly presented below [34].

A single-input, single-output system is described as

A(z−1)y(k) = z−dB(z−1)u(k) + ξ(k) (1)

where u(k) is the input, y(k) is the output, ξ(k) is the white noise, and z is the unit delay operator; na, nb,
and d are known, and {

A
(
z−1) = 1 + a1z−1 + a2z−2 + · · ·+ ana z−na

B
(
z−1) = b0 + b1z−1 + b2z−2 + · · ·+ bnb z−nb

(2)

On the basis of the measurable data of the input and output, the following (na + nb + 1) parameters
are obtained by FFRLS:

a1, a2, · · · , ana ; b0, b1, b2, · · · , bnb .

Equation (1) can be converted to

y(k) = −a1y(k− 1)−· · ·− ana y(k− na)+ b0u(k− d)+ · · ·+ bnb u(k− d− na)+ ξ(k) = ϕT(k)θ + ξ(k),
(3)

where data vector ϕ(k) and parameter vector θ are{
ϕ(k) = [−y(k− 1), · · · ,−y(k− na), u(k− d), · · · , u(k− d− na)]

T ∈ R(na+nb+1)×1

θ =
[
a1, · · · , ana , b0, · · · , bnb

]T ∈ R(na+nb+1)×1 (4)

The cumulative squared error can be described as

J0 =
L

∑
k=1

λL−k
[
y(k)− ϕT(k)θ̂

]2
, (5)

where L is the number of observations and λ is the forgetting factor. In order to minimize the
cumulative squared error, recursive formulas are deduced as

θ̂(k) = θ̂(k− 1) + K(k)
[
y(k)− ϕT(k)θ̂(k− 1)

]
K(k) = P(k−1)θ(k)

λ+ϕT(k)P(k−1)ϕ(k)
P(k) = 1

λ

[
I − K(k)ϕT(k)

]
P(k− 1)

(6)

The value of the forgetting factor λ has a significant effect on the performance of the system
identification. According to Equation (5), J0 is the weighted sum of squared errors at different times.
The weight of the Lth observation is 1, while the weight of the (L-n)th observation is λn. As time
passes, the impact of early data gradually diminishes. The value of the forgetting factor affects the
rate of data weight attenuation. When the forgetting factor goes to lower values, the latest data has a
significant impact on J0. That is to say, FFRLS can track the changes of the parameters quickly. However,
at the same time, the stability of the algorithm is reduced, and it is easy for it to diverge. When the
forgetting factor approaches 1, the stability of FFRLS is high, but the ability to track time-varying
parameters is weak. We note that, when the forgetting factor is equal to 1, the algorithm degenerates
into ordinary RLS.
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2.2. Variable Forgetting Factor Strategy Considering Errors

In previous work [26], FFRLS was used to identify the parameters of the Thevenin model online.
During battery operation, FFRLS-UKF estimates the SOC with model parameters constantly updated.
In the above work, the forgetting factor was a fixed value. However, at different moments of the
battery operation, there are different requirements for forgetting factors [29]. Therefore, a VFF strategy
is possible for improving the performance of online parameter identification and SOC estimation.

As shown in Equation (7), the error of FFRLS is defined as the difference between the output
observation and the predicted value:

e(k) = y(k)− ϕT(k)θ̂. (7)

The stability degree of the algorithm can be indicated by the error. In practical applications,
the parameter change does not maintain a certain predictable trend, and the error in the calculation
process will change with time. Therefore, RLS with a fixed forgetting factor can be improved by
adjusting the forgetting factor constantly. The forgetting factor, if adjusted according to the change
in the error at different moments, will possibly improve the performance. When the error is large,
the algorithm tends to be unstable, and the parameters may have obvious changes. At this time,
the forgetting factor should be properly reduced so that the performance of parameter tracking can
be improved. When the error is small, this indicates that the current parameter identification result
is close to the real value. At this time, no major modification of the parameters is needed, but the
stability of the algorithm needs to be improved. Therefore, the forgetting factor should be increased
appropriately. On the basis of the above analysis and the idea of the VFF designs in Section 1, a VFF
strategy is introduced as follows.

On the basis of the VFF strategy, methods of online parameter identification and SOC estimation
were developed and verified by experiments, which is relevant given the minor improvements to
state-of-the art methods.

The VFF can be derived as {
λ(k) = λmin + (1− λmin)

α(k)

α(k) = 2ρe2(k) (8)

where λmin and ρ are fixed parameters.
Considering that e(k) can be either positive or negative, e2(k) is used to describe the error. It can

be seen from the Equation (7) that when e2(k) approaches 0, α(k) and λ(k) approach 1; when e2(k)
approaches infinity, α(k) approaches infinity and λ(k) approaches λmin.

Setting λmin = 0.8 and ρ = 10,000, we observe that λ(k) changes with e(k). In Figure 1, the solid blue
line indicates λ(k), and the two red broken lines indicate the maximum value of 1 and the minimum
value of 0.8 for λ(k).
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It can be seen that when e2(k) = 0 and λ(k) = 1, when e2(k) increases, λ(k) gradually decreases;
when e2(k) approaches infinity, λ(k) approaches λmin = 0.8. The strategy to adjust the forgetting factor
is in line with expectations. We note that in this case, the values of λmin and ρ are arbitrary, and the
values do not affect the shape of the curve.

2.3. Effect of Strategy Parameters on Variable Forgetting Factor

The curve of the forgetting factor λ(k) as a function of the error e(k) is affected by the strategy
parameters λmin and ρ; λmin determines the minimum value of λ(k). For any e(k), λmin ≤ λ(k) ≤ 1.
The parameter ρ adjusts the sensitivity of the forgetting factor to the error. When ρ is set to a large
value, λ(k) is sensitive to e(k), and a slight increase in e(k) can reduce λ(k) significantly. When ρ is set to
a small value, e(k) needs to be larger to obtain a small λ(k).

We define the judging indicator as

J =
L

∑
k=1

[
y(k)− ϕT(k)θ̂

]2
. (9)

As the sum of squared errors at different times with equal weights, J can be used to evaluate
whether the values of λmin and ρ are appropriate.

3. Novel Methods for Lithium-Ion Battery Online Parameter Identification and State of
Charge Estimation

3.1. Battery Modeling

The Thevenin model is used as the equivalent circuit model for a lithium-ion battery. As shown
in Figure 2, the Thevenin model is made up of a voltage source uoc, ohmic resistance R0, a parallel link
of polarization resistor Rp, and a polarization capacitor Cp; i and ut the indicate current and terminal
voltages, respectively, and up is the voltage of the resistor-capacitor (RC) link.
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According to Kichhoff’s law, uoc can be expressed as:

uoc = ut + iR0 + up. (10)

Based on the relationship between the current and voltage of Cp, we can derive:

Cp
dup

dt
+

up

Rp
= i. (11)

The value of the voltage source is written as uoc because the voltage of the voltage source is
equal to the open-circuit voltage (OCV). When a battery is left unpowered for a long enough period of
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time, the terminal voltage tends to be a certain stable value, known as the OCV. There is a one-to-one
correspondence between the OCV and SOC, and the OCV–SOC curve is one of the basic characteristics
of a battery.

3.2. Method for Online Parameter Identification on the Basis of Variable Forgetting Factor Recursive
Least Squares

There are several definitions of state of health (SOH). In this paper, the ohmic resistance R0 is
used to evaluate the SOH of lithium-ion batteries. The results of online parameter identification can
also be used to evaluate the battery’s SOH.

Equations (10) and (11) are processed by the Laplace transform and discretization as

(
RpCp

T + 1)(ut − uoc)(k) =
RpCp

T (ut − uoc)(k− 1)− (
R0RpCp

T + R0 + Rp)i(k) +
R0RpCp

T i(k− 1), (12)

where T is the sampling period. Equation (12) can be converted to the simplest form:

(ut − uoc)(k) = −k1(ut − uoc)(k− 1) + k2i(k) + k3i(k− 1) (13)

The format of Equation (13) is the same that of as Equation (3). The current i is set as the input,
and the voltage difference (ut − uoc) is set as the output; k1, k2, and k3 can be identified by VFF-RLS,
and R0, Rp, and Cp can be derived as follows:

R0 = − k3
k1

Rp = − k2+R0
k1+1

Cp =
( 1

k1+1−1)T
Rp

(14)

It can be seen that the SOH (ohmic resistance) can also be estimated by the VFF-RLS algorithm.

3.3. Joint Algorithm of State of Charge Estimation

The definition of SOC is

SOC(t) = SOC(t0)−
∫ t

t0
idt

Cn
, (15)

where Cn denotes the nominal capacity of the battery.
The UKF is a nonlinear Kalman filter algorithm that is suitable for strong nonlinear systems.

The process equation of a lithium battery can be derived from Equations (11) and (15) as

x(k) =

(
1 0
0 1− T

CpRp

)
x(k− 1) +

(
− T

Cn
T

Cp

)
i(k) (16)

where x(k) is the state vector:

x(k) =

(
SOC(k)
up(k)

)
. (17)

The measurement equation of the UKF can be derived from Equations (10) and (15) as

ut(k) = uoc(k)− i(k)R0 − up(k), (18)

where ut(k) is the measurement vector and uoc(k) = f [SOC(k)] is a nonlinear function. According to
the process equation and the measurement equation, the state vector can be estimated by the UKF,
and the SOC can be obtained.

A joint SOC estimation method based on VFF-RLS and the UKF with online parameter
identification is proposed. Figure 3 illustrates the schematic of the VFF-RLS-UKF algorithm.
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(VFF-RLS-UKF) algorithm.

The algorithm is explained as follows: First, initialize all the variables used in the algorithm.
In each step of the loop operation, it is necessary to measure the battery operating current and
terminal voltage. Calculate the error on the basis of the measured terminal voltage, the last SOC
estimate, and the OCV–SOC curve. Next, the new forgetting factor is calculated, and the battery model
parameters are updated. According to the battery model parameters and measured values, the current
SOC is estimated and output. Then, the algorithm goes to the next cycle. We note that the OCV–SOC
curve was measured experimentally.

4. Experiment and Discussion

4.1. Capacity Test and OCV–SOC Curve Test of Lithium-Ion Battery

In general, there are three types of packages of lithium-ion batteries: cylindrical, pouch,
and prismatic [35]. These have similar electrochemical principles and charge–discharge characteristics.
The technology for producing cylindrical batteries is the earliest and most mature. The 18650 battery,
a typical cylindrical battery, has reached a very high level of consistency and safety, although its capacity
is relatively small. Many battery packs in electric vehicles are made up of 18650 batteries, such as the
Tesla Model S. In experiments, the Samsung ICR18650-22P battery was chosen as the experimental
object, which was representative of the research into lithium-ion batteries of electric vehicles.

Figure 4 illustrates the configuration of the battery test bench. In the experiment, the charge
and discharge program was designed on a personal computer (PC). The subject in the experiment
was lithium-ion batteries (ICR18650-22P, Samsung, Seoul, South Korea). A battery testing system
(BT-5HC, Arbin, College Station, TX, USA) received instructions from the PC to charge and discharge
the battery. The voltage, current and temperature data were measured by the battery testing system



Energies 2018, 11, 1358 8 of 15

and transported to the PC. During the experiment, a temperature chamber (SC-80-CC-2, Sanwood,
Dongguan, China) provided the battery with the desired working temperature.
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Figure 4. Test bench configuration.

As the basis for other experiments, the nominal capacity of the battery was measured in the
experiment. The temperature was set to 25 ◦C, and the battery was discharged from full to no charge.
The amount of electricity discharged during the process gave the capacity of the battery. After three
repetitions, the average value was obtained as the measured capacity of the battery. The battery
capacity in the experiment was 2.039 Ah.

As stated in Section 3.1, the OCV–SOC curve is one of the basic characteristics of a battery and is
essential in online parameter identification and SOC estimation. The experimental temperature was
25 ◦C. In the case of multiple SOCs (13 SOCs in this experiment), after long enough periods of rest,
the OCVs were recorded and plotted in the coordinate system. Polynomial fitting was performed on
the 13 measured points to obtain the functional relationship between the OCV and SOC. The curve is
shown in Figure 5, and the function is

OCV = 14.461·SOC6 − 36.156·SOC5 + 30.283·SOC4 − 8.660·SOC3 − 0.044·SOC2 + 0.861·SOC + 3.4453 (19)
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4.2. Results of Online Parameter Identification by FFRLS and VFF-RLS

At 25 ◦C, the New European Driving Cycle (NEDC) was loaded on the battery to simulate the
working process of the battery in an electric vehicle. Gaussian white noise was added to the original
data to simulate the real situation. In Section 3.2, Equation (13) is the battery model in the least-squares
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form. The FFRLS and VFF-RLS algorithms could be used to identify the model parameters R0, Rp,

and Cp online.
For FFRLS, the value of the fixed forgetting factor λ affected the identification results. After several

tests, it was found that when λ = 0.97, the judging indicator from Equation (9) reached the minimum
value of J = 0.0413. At this point, the overall error could be considered to be minimal. Similarly, for
VFF-RLS, when selecting a different (λmin, ρ) set, the values of J were as shown in Figure 6. It can
be seen that the surface was continuous and the optimal (λmin, ρ) set was unique for J to reach the
minimum. When λmin = 0.75 and ρ = 33000, J reached the minimum at J = 0.0390. It can be seen that
VFF-RLS could make the overall error of the system smaller compared with FFRLS.
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Figure 6. Judging indicator by variable forgetting factor recursive least squares (VFF-RLS) with
different (λmin, ρ) sets.

According to the shape of the surface, it can be seen that the surface was flat near the optimal
(λmin, ρ) set, which means that if the (λmin, ρ) set changed within a certain range, J did not change
greatly. That is to say, the VFF-RLS algorithm can achieve good results when the (λmin, ρ) values are
set within a certain range.

When λmin = 0.75 and ρ = 33,000, the curve of the forgetting factor versus time and the curve of
the error versus time were as shown in Figure 7. The forgetting factor and error at all times of the
NEDC test were as shown in Figure 7a,b. Figure 7c,d shows parts of Figure 7a,b, respectively. It can
be seen that when the absolute value of the error was large, the value of the forgetting factor was
relatively small; when the absolute value of the error was small, the value of the forgetting factor was
close to 1. This was consistent with the theory.

The results of the online parameter identification are shown in Figure 8. It is shown that both
methods converged quickly and achieved stable values. The results of the VFF-RLS algorithm
fluctuated less compared to the FFRLS algorithm. The reference values in the figure were identified by
the offline method [36]. In general, the ohmic resistance identified offline in a constant temperature
environment was considered quite accurate. However, other results of offline identification were
considered to have considerable errors.
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Figure 8. Results of online parameter identification: (a) ohmic resistance R0; (b) polarization resistor
Rp; (c) polarization capacitor Cp.

4.3. Results of SOC and Terminal Voltage Estimation by UKF, FFRLS-UKF, and VFF-RLS-UKF

In the SOC estimation experiment, the battery was loaded with the NEDC current under
variable-temperature ambient conditions. The temperature ranged from 5 to 45 ◦C, imitating the
actual working environment of an electric vehicle. The NEDC is a driving cycle that is designed to
assess passenger cars. It was simulated to obtain current data in ADVISOR [37,38]. Considering the
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experimental battery the loaded current in the experiment was scaled to a maximum current of 5 A.
The purpose of the experimental setup was to simulate the operation of batteries in an electric vehicle.

Because the battery parameters are mainly affected by the temperature, SOC, and aging degree,
the temperature and SOC changed significantly during the experiment, causing significant changes in
the model parameters. As a result, the experiment was representative to test the ability of the SOC
estimation algorithm to overcome the effect of parameter changes.

The current, voltage, and temperature of the SOC estimation experiment are shown in Figure 9.
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Figure 9. Results of New European Driving Cycle (NEDC) test in variable-temperature environment:
(a) current; (b) terminal voltage; (c) temperature.

On the basis of the battery test data, the SOC was estimated separately by the UKF, FFRLS-UKF,
and VFF-RLS-UKF. The results of the SOC estimation are listed in Table 1 and shown in Figure 10.
The reference value of the SOC was obtained by the ampere-hour integral method, as this measurement
is very accurate.

During the UKF operation, the model parameters were regarded as constant. As a result,
the SOC estimation error by the UKF had the largest average and maximum values among the three
methods. The average errors of FFRLS-UKF or VFF-RLS-UKF were less than 1%, indicating that they
effectively tracked the changes of the battery model parameters. Compared with FFRLS-UKF, the SOC
estimate of VFF-RLS-UKF was more accurate, indicating that the VFF improved the performance of
RLS. The root-mean-square error (RMSE) assesses the stability of estimation results. The result of
VFF-RLS-UKF was the most stable of the three methods.

Table 1. Results of state of charge (SOC) estimation.

Method UKF 1 FFRLS-UKF 2 VFF-RLS-UKF 3

Mean error 0.04398 0.00926 0.00595
Max error 0.06001 0.01391 0.00871
RMSE 4 0.04767 0.00989 0.00630

1 unscented Kalman filter (UKF) 2 forgetting factor recursive least squares unscented Kalman filter (FFRLS-UKF)
3 variable forgetting factor recursive least squares unscented Kalman filter (VFF-RLS-UKF) 4 root-mean-square
error (RMSE).
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Figure 10. Results of state of charge (SOC) estimation by unscented Kalman filter (UKF),
forgetting factor recursive least squares–UKF (FFRLS-UKF), and variable forgetting factor RLS–UKF
(VFF-RLS-UKF): (a) SOC estimation; (b) SOC estimation error.

Because the terminal voltage is a measurement vector in the UKF, it is constantly being estimated
during the operation of the algorithm. The performances of the three methods can be visually compared
in terms of the estimated and measured values of the terminal voltage. The results of the terminal
voltage estimation are listed in Table 2 and shown in Figure 11.

It can be seen that all three algorithms could correctly estimate the terminal voltage. Regarding
the average of the error, the maximum value of the error, and the RMSE, shown in Table 2, the UKF
had the worst effect, and VFF-RLS-UKF was slightly better than FFRLS-UKF.
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Figure 11. Results of terminal voltage estimation by unscented Kalman filter (UKF), forgetting factor
recursive least squares–UKF (FFRLS-UKF), and variable forgetting factor RLS–UKF (VFF-RLS-UKF):
(a) terminal voltage estimation; (b) terminal voltage estimation error.
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Table 2. Results of terminal voltage estimation.

Method UKF FFRLS-UKF VFF-RLS-UKF

Mean error 0.02696 0.00843 0.00687
Max error 0.45917 0.24947 0.24345

RMSE 0.04112 0.01393 0.01224

5. Conclusions

A VFF strategy is introduced in this paper to automatically adjust the forgetting factor and
improve the performance of RLS. A judging indicator that represents the overall system error is
proposed as a reference for parameter selection. The lithium-ion battery is modeled by the Thevenin
model. The online identification method of the battery model parameters is proposed on the basis
of the VFF-RLS algorithm. A battery was tested with the NEDC at a constant temperature of 25 ◦C.
The FFRLS and VFF-RLS algorithms were used to identify the model parameters of the battery online.
It could be seen that the model parameters identified by VFF-RLS became stable quickly, and the
ohmic resistance was close to the offline measurement values. The results of VFF-RLS were more
stable than those of the identification of FFRLS. In combination with the UKF, the VFF-RLS-UKF
algorithm is proposed and can be used for SOC estimation. The SOC and terminal voltage can be used
to verify the algorithm. The NEDC was used in an environment of variable temperature. The SOC and
terminal voltage were estimated using the UKF, FFRLS-UKF, and VFF-RLS-UKF algorithms. For SOC
estimation, the UKF estimation error that did not consider the parameter change problem was the
largest, with an average error of 4.398%. FFRLS-UKF was significantly more accurate, with an average
error of 0.926%. When the VFF-RLS-UKF algorithm set a proper strategy for the VFF, this further
improved the accuracy, with an average error of 0.595%. For terminal voltage estimation, the average
errors of the UKF, FFRLS-UKF, and VFF-RLF-UKF were 2.696%, 0.843%, and 0.687%, respectively.
The trend was the same as for the SOC estimation. The results show that VFF-RLS-UKF can accurately
estimate the battery status and verify that the VFF strategy can improve the performance of RLS.
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Acronyms

BMS Battery management system
FFRLS Forgetting factor recursive least squares
GNL General nonlinear
NEDC New European Driving Cycle
OCV Open-circuit voltage
PC Personal computer
PF Particle filtering
PNGV Partnership for a New Generation of Vehicles
RLS Recursive least squares
RMSE Root-mean-square error
SMO Sliding mode observer
SOC State of charge
SOH State of health
UKF Unscented Kalman filter
VFF Variable forgetting factor
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