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Abstract: Accurate and simple mathematical models are usually required to assess the performances
of photovoltaic devices. In particular, it is common practice to use explicit models to evaluate the
current–voltage (I–V) performance curves, mainly based on simple analytical expressions that enable
the parameters determination with a little computational effort. Six different explicit photovoltaic
models (i.e., explicit I–V equations) by different authors (Akbaba & Alattawi; El-Tayyan; Karmalkar &
Haneefa; Das/Saetre et al.; Das; and Pindado & Cubas) are analyzed and compared. This comparison
is carried out by fitting these models to eight I–V curves for different technologies, including Si,
Si polycrystalline, Ga–As, and plastic solar cells. The accuracy of each model depends on the
photovoltaic technology to which it is applied. The best fit to each I–V curve studied is normally
obtained with a different model, with an average deviation under 2% in terms of short-circuit current
(normalized RMSE). In general, the model proposed by Karmalkar & Haneefa shows the highest
level of accuracy, and is a good fit for all I–V curves studied.

Keywords: solar cell; solar panel; photovoltaic modeling; explicit equation; parameter extraction;
plastic solar cell

1. Introduction

The most common mathematical expression for simulating the behavior of photovoltaic devices
(solar cells/panels) is derived from the 1-diode/2-resistor equivalent circuit model (see Figure 1):

I = Ipv − ID1 −
V + IRs

Rsh
= Ipv − I0

[
exp

(
V + IRs

naVT

)
− 1
]
− V + IRs

Rsh
. (1)

This equation relates the output current of the photovoltaic device, I, to the output voltage,
V. This relationship is generally called the I–V curve of the solar cell/panel (see Figure 2), and
defines the behavior of the photovoltaic device at a constant temperature and specific irradiance
level. The equivalent circuit is comprised of a source that supplies the photocurrent, Ipv, a diode
allowing ID1 current through it, and the series and shunt resistors Rs and Rsh. As indicated in the
above mathematical expression, the diode is characterized by the saturation current, I0, the thermal
voltage, VT, (defined as a function of the temperature, the charge of the electron, and the Boltzmann
constant; see [1]), the ideality factor of the diode, a, and the number of series-connected cells in the
photovoltaic device, n.
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The above mathematical expression is, in fact, a simplified form of a more complex one involving
two diodes connected in parallel rather than one:

I = Ipv − I01

[
exp

(
V + IRs

na1VT

)
− 1
]
− I02

[
exp

(
V + IRs

na2VT

)
− 1
]
− V + IRs

Rsh
. (2)

In the past, this 2-diode/2-resistor equation was suggested for solar cell modeling where all
terms contain physical meaning [1]. Obviously, with the simplification to the 1-diode/2-resistor
equation applied to solar panels comprised of several connected cells (or based on more evolved
technologies such as multi-junction cells), the terms of Equation (1) have lost the direct modeling of
the physical effects involved in the solar energy generation process. Nevertheless, that equation still
retains physical meaning.
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values of parameters Ipv, I0, a, Rs, and Rsh) is usually a challenging process, not an immediate task. 
Many procedures and techniques have been developed to perform this extraction, see for example 
the works by Cotfas et al. [3], Tossa et al. [4], Ortiz-Conde et al. [5], Jena & Ramana [6], Chin et al. [7], 
Humada et al. [8], Ibrahim & Anani [9], and Abbassi et al. [10]. In addition, a number of calculations 
must be performed to work with Equation (1), as it is an implicit mathematical expression. In order 
to facilitate technical work with photovoltaic devices, explicit mathematical expressions have been 
proposed to obtain output current I directly, without using any algorithm, as a function of output 
voltage V. Obviously, these expressions have the following form: 
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Figure 1. Solar cell/panel 1-diode/2-resistor equivalent circuit model [1].
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Figure 2. Current–voltage (I–V) and power–voltage (P–V) curves of an RTC France Si solar cell [2].

The parameter extraction process required to work with Equation (1) (i.e., to establish the correct
values of parameters Ipv, I0, a, Rs, and Rsh) is usually a challenging process, not an immediate task.
Many procedures and techniques have been developed to perform this extraction, see for example
the works by Cotfas et al. [3], Tossa et al. [4], Ortiz-Conde et al. [5], Jena & Ramana [6], Chin et al. [7],
Humada et al. [8], Ibrahim & Anani [9], and Abbassi et al. [10]. In addition, a number of calculations
must be performed to work with Equation (1), as it is an implicit mathematical expression. In order
to facilitate technical work with photovoltaic devices, explicit mathematical expressions have been
proposed to obtain output current I directly, without using any algorithm, as a function of output
voltage V. Obviously, these expressions have the following form:

I = f (V, a1, a2, a3...), (3)
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where a1, a2, a3 . . . are the parameters to be adjusted.
One might wonder why it is necessary to develop such immediate expressions when it is

not difficult to accurately solve implicit equations by simply using commercial math software,
such as MATLAB®. On the one hand, not all professionals in the solar energy sector can spare
the resources (cost, training) to use such software. On the other, even skilled scientists/engineers
need to find quick solutions in the predesign stages of projects involving photovoltaic devices.
In these cases, the use of an appropriate explicit expression might be the best option. This need
was detected while programming the power subsystem module at ESA’s Concurrent Design Facility
(CDF) for the predesign of space missions at Instituto Universitario de Microgravedad “Ignacio Da
Riva” (IDR/UPM), apart from other needs arising from academic and research work on space power
systems at this institution [11–13]. Additionally, machine learning has become one of the most
promising methodologies for performing performance prediction [14,15] and fault diagnosis [16–19]
for solar energy systems. These methods normally include rather complicated 1-diode/2-resistor
or 2-diode/2-resistor equivalent circuit parameter extraction techniques [20,21], such as genetic
algorithms and particle swarm optimization [22–24]. The use of the explicit models included in
this article might be also possible in machine learning.

It would be fair to cite some other lines of research, apart from explicit equations, developed
to facilitate work with photovoltaic I–V curves, or at least to reduce the difficulties of parameter
extraction when working with the 1-diode/2-resistor model. First, the work of Toledo et al. [25–28]
must be highlighted, as these researchers have developed different mathematical and iterative ways of
performing such parameter extraction based on a reduced number of points from the I–V curve. Second,
some approximations to the parameters in Equation (1) have been proposed, based on experimental
results. In this sense, a recent work by Gontean et al. [29] is worth mentioning, as these authors refer
to a rather large number of quick approximations to the equivalent circuit parameters published in
recent years.

The present study should be considered part of the research framework devoted to solar cell/panel
behavior carried out since 2013 at the IDR/UPM Institute and the Aerospace Engineering School
(Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio—ETSIAE) at the Polytechnic University
of Madrid (Universidad Politécnica de Madrid—UPM). This research framework mainly focuses on the
development of analytical models for studying solar cell/panel behavior for integration into more
complex spacecraft mission simulators [1,30–33].

This paper includes a review and comparison of six explicit expressions (see Table 1) developed
to describe the current–voltage behavior of solar cells/panels (i.e., the I–V curve; see Figure 2). Apart
from these six explicit equations for fitting the I–V behavior curve of a photovoltaic device, we have
found two more examples in the available literature. Xiao et al. proposed a six-order polynomial to
fit the I–V curve [34], which is, in fact, an interesting solution already used by other authors in their
work [35,36]. However, due to the large number of parameters to be adjusted, this approximation was
left out of the present study. In addition, Szabo and Gontean have very recently proposed the use of
Bézier curves [37], but this approach was not considered here.

Several I–V curves corresponding to different technologies were used to test the accuracy of these
explicit expressions (see Table 2). It must also be said that plastic solar cells (PSCs) were one of the
photovoltaic technologies used. PSCs have an I–V curve slightly different from other, more mature,
photovoltaic technologies (a much higher slope at the short-circuit point; see Figure 3). To the best of
the authors’ knowledge, the first attempt to analyze these cells using explicit models is presented here,
as an original contribution.

The explicit expressions were fitted using two methodologies:

• adjusting the parameters of the expression using only the three characteristic points of the I–V
curve commonly supplied by the manufacturer (the short-circuit, open-circuit, and maximum
power points; see Table 2), and
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• obtaining the best fit using a least squares method. This approach provides the most accurate
expression for each model (i.e., equation) in relation to the data, but might not fulfill the
characteristic conditions of the data (short-circuit, maximum power point, and open-circuit).

The explicit equations studied are described in Section 2, and Section 3 contains the results of the
fittings and further discussion. Finally, the conclusions are summarized in Section 4.

Table 1. Explicit equations for solar cell/panel behavior included in this study. The number of
parameters in each equation proposed is included in the table. The number of parameters in the
reduced equation refers to the number of parameters in the equation once it has been reduced to
non-dimensional variables (i.e., non-dimensional output current and output voltage; see Section 2).

Year Equation
Number of Parameters

Original Equation Reduced Equation

1995 Akbaba & Alattawi [38] 3 2
2006 El-Tayyan [39] 2 1
2008 Karmalkar & Haneefa [40] 2 2
2011 Das [41], Saetre et al. [42] 2 2
2013 Das [43] 2 2
2017 Pindado & Cubas [32] 1 1

Table 2. Solar cell/panel I–V curves used by the authors to compare explicit expressions (see Table 1).
The characteristic points (Isc, Imp, Vmp, and Voc) for these curves are included in the table.

Solar Cell/Panel Technology Isc [A] Imp [A] Vmp [V] Voc [V]

RTC France 1 Si 0.7605 0.6894 0.4507 0.5727
TNJ Spectrolab 2 GaInP2/GaAs/Ge 0.5239 0.4960 2.270 2.565
ZTJ Emcore 2 InGaP/InGaAs/Ge 0.4628 0.4389 2.410 2.726
Azur Space 3G30C 3 GaInP/GaAs/Ge 0.5202 0.5044 2.411 2.70
Photowatt PWP 201 1 Si 1.032 0.9255 12.493 16.778
Kyocera KC200GT-2 2 Si polycrystalline 8.210 7.610 26.30 32.90
Selex Galileo SPVS X5 4 GaInP/GaAs/Ge 0.50344 0.48476 12.099 13.575
Plastic Solar Cell 5 MDMO-PPV/PCBM [44] 7.5514 6 4.5379 6 0.56176 0.75365
1 From [2]. 2 Graphically extracted from the manufacturer’s datasheet. 3 Supplied by Azur Space. 4 Measured at
CIEMAT (Spain). 5 Graphically extracted from [45]. 6 Units: mA·cm−2.
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Figure 3. Non-dimensional current–voltage curves for three solar cells based on different technologies
(RTC France: silicon; TNJ Spectrolab: Ga–As triple junction; PSC: plastic solar cell. See Table 2).
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2. Explicit Equations Studied

In this section, the six explicit equations analyzed are described, along with their analytical fitting
to photovoltaic I–V curves. As mentioned in the previous section, this fitting has been developed based
on the three characteristic points of the I–V curves: the short-circuit, open-circuit, and maximum power
points. It should be also underlined that this information is generally supplied by the photovoltaic
device manufacturer at Standard Test Conditions (STC), that is, at a specific level of irradiance and
at a specific temperature of the solar cell/panel. In order to obtain the aforementioned characteristic
points at different irradiance and temperature conditions, some authors, such as Bellini et al. [46],
Siddiqui et al. [47], and Ibrahim & Anani [48], have suggested different procedures. These procedures
were successfully used in a previous work related to spacecraft solar panel characterization with
natural sun irradiance performed at the IDR/UPM Institute [49].

2.1. Akbaba & Alattawi (1995)

Akbaba & Alattawi suggested the following model for solar cell/panel behavior based on the
following equation [38]:

I =
Voc −V

A + BV2 − CV
, (4)

where A, B, and C are the parameters to be adjusted.
In order to adjust parameters A, B, and C using the aforementioned characteristic points of the

I–V curve, the above equation can be rewritten in terms of non-dimensional variables (i = I/Isc and
v = V/Voc):

i =
1− v

1 + av2 − bv
, (5)

bearing in mind that

A =
Voc

Isc
; B =

a
IscVoc

; C =
b
Isc

. (6)

Please note that the number of parameters to be adjusted in Equation (4) has been reduced to
two (a and b) in Equation (5), as mentioned in Section 1 (Table 1). If the equations for the maximum
power point

(v, i)|mp = (α, β)
∂i
∂v

∣∣∣
mp

= − β
α

, (7)

are taken into account, it is possible to derive the following equations:

β =
1− α

1 + aα2 − bα
, (8)

− ∂i
∂v

=
β

α
=

(
1 + aα2 − bα

)
+ (1− α)(2aα− b)

(1 + aα2 − bα)
2 , (9)

where, according to Equations (7), α = Vmp/Voc and β = Imp/Isc. The following solutions can then
be obtained:

a = β−α

α2β

b = 2β−1
αβ

. (10)

Therefore, going back to Equations (6):

B = 1
Vmp

(
Voc

IscVmp
− 1

Imp

)
C = Voc

Vmp

(
2 1

Isc
− 1

Imp

) . (11)
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2.2. El-Tayyan (2006)

El-Tayyan proposed a rather simple equation, relying on only two coefficients, C1 and C2:

I = Isc − C1 exp
(
−Voc

C2

)[
exp

(
V
C2

)
− 1
]

, (12)

that can either be estimated or calculated based on the characteristic points of the I–V curve [50].
The approximate solution proposed by El-Tayyan is as follows:

C1 = Isc

1−exp
(
− Voc

C2

)
C2 =

Vmp−Vsc

ln
(

1− Imp
Isc

) . (13)

El-Tayyan’s equation is a rather simple mathematical expression. In fact, if we use the
non-dimensional variables i = I/Isc and v = V/Voc, it can be reduced to a simpler form:

i = 1− exp(av)− 1
exp(a)− 1

, (14)

dependent on only one parameter (a = Voc/C2), once the equation has proven to fulfill the short-circuit
and open-circuit conditions, (i, v) = (1, 0) and (i, v) = (0, 1), respectively.

This implies that only one of the two conditions at the maximum power point (Equation (7))
can be fulfilled. The solution proposed by El-Tayyan fulfills the first condition; i.e., it fits the point
(I, V) = (Imp, Vmp).

We found another solution that fulfills the second condition at the maximum power point
(i.e., maximum power when V = Vmp). The following equation can be derived from the maximum
power condition:

∂I
∂V

∣∣∣∣
mp

= −
Imp

Vmp
= −C1

C2
exp

(
−Voc

C2

)
exp

(
Vmp

C2

)
. (15)

Using the expression for C1 derived from the open-circuit condition (the first in Equation (13)), it
is then possible to derive the following equation:

Imp

Vmp
C2 exp

(
−

Vmp

C2

)
=

Isc

1− exp
(
−Voc

C2

) exp
(
−Voc

C2

)
, (16)

where, assuming Voc/C2 >> 1:

C2 =
IscVmp

Imp
exp

(
Vmp −Voc

C2

)
, (17)

which can be solved using the negative branch of the Lambert function, W−1(z):

C2 =
Vmp −Voc

W−1

[(
1− Voc

Vmp

)
Imp
Isc

] . (18)

It is worth mentioning that a model very similar to El-Tayyan’s equation, which also considers
changes in cell temperature, was proposed by Massi Pavan et al. [51,52]. Finally, it must also be said
that after a thorough review of the available literature, we found evidence indicating that this model
had been proposed before El-Tayyan’s work [53].
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2.3. Karmalkar & Haneefa (2008)

Karmalkar & Haneefa proposed the following model [40,54]:

i = 1− (1− γ)v− γvm, (19)

where i and v are the non-dimensional output current and output voltage (see Section 2.1), and γ and
m are parameters to be calculated with the current and voltage levels at points v = 0.6 and i = 0.6.

Taking into account the characteristic points of the I–V curve and the equations corresponding to
the maximum power point (Equation (7)), the following equations can be derived for γ and m:

γ = 2β−1
αm(m−1)

m =
W−1

(
− α
− 1

C ln α
C

)
ln α + 1

C + 1

, (20)

where α = Vmp/Voc, β = Imp/Isc, and the new parameter C is defined as

C =
1− β− α

2β− 1
. (21)

These are the exact solutions for γ and m, obtained from the maximum power conditions.
Nevertheless, if we take into account that (1 − γ) << 1, the following approximated (and simpler)
solutions are obtained:

γ = 1 + 1−β
α

m = ln(1−β)
ln α

. (22)

In addition, considering the approximation proposed by Deihimi et al. [55]:

∂i
∂v

∣∣∣∣
v=1

∼=
1

∂i
∂v

∣∣∣
v=0

, (23)

another simple equation can be obtained for γ, and the following solution can be derived:

γ = 2−m
1−m

m = ln(1−β)
ln α

. (24)

Finally, it is fair to say that in 2015, Dash et al. [56] proposed a very similar equation to the one
proposed by Karmalkar and Haneefa, but dependent on three parameters rather than two in the
reduced form (non-dimensional variables).

2.4. Das; Saetre et al. (2011)

Das [41] and Saetre et al. [42] independently proposed the following equation:

I
Isc

=

[
1−

(
V

Voc

) f
] 1

g

, (25)

where the model parameters f and g are estimated with output current measurements at V/Voc = 0.8
and V/Voc = 0.9.
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Apart from this procedure, it is possible to derive a solution for parameters f and g. From the
maximum power point conditions (7), the following equations are obtained:

βg = 1− α f , (26)

gβg = f α f , (27)

if we assume αf << 1, then
g ln(β) = ln

(
1− α f

)
≈ −α f . (28)

Therefore, the equations for the two parameters are finally defined as

f = − 1
ln(β)

g = − α f

ln(β)

. (29)

2.5. Das (2013)

Das proposed a simplified version of the previous model:

I
Isc

=
1−

(
V

Voc

)k

1 + h
(

V
Voc

) , (30)

where h and k are calculated with the slope of the I–V curve at the short-circuit and open-circuit
points [43]. Leaving this approach to extract the values of parameters h and k aside, it is possible to
obtain an exact solution based on the maximum power point Equation (7). These equations, applied to
the above expression, are

β =
1− αk

1 + hα
, (31)

− ∂i
∂v

=
β

α
=

kαk−1

1 + hα
+

h
(

1− αk
)

(1 + hα)2 . (32)

From those equations, the following exact solution can be derived:

k = W−1[β ln(α)]
ln(α)

h = 1
α

(
1
β −

1
k − 1

) . (33)

As in the case of the aforementioned equation proposed by Dash et al. [56], which was very
similar to Karmalkar and Haneefa’s model, a modification to this implicit equation was suggested
by Miceli et al. [57]. However, the reduced equation for this model depends on three parameters,
making a solution based on the maximum power point conditions impossible.

2.6. Pindado & Cubas (2017)

Pindado & Cubas proposed a 2-expression equation to define the I–V behavior of a photovoltaic
device [32]:

I =


Isc

[
1−

(
1− Imp

Isc

)(
V

Vmp

) Imp
Isc−Imp

]
; V ≤ Vmp

Imp
Vmp

V

[
1−

(
V−Vmp

Voc−Vmp

)η]
; V ≥ Vmp

. (34)
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Only one parameter, η, needs to be adjusted in this case. In addition, it must be highlighted
that the maximum power point conditions (Equation (7)) are fulfilled by the above mathematical
expressions (see [32]). The proposed equation for parameter η is:

η =
Isc

Imp

(
Isc

Isc − Imp

)(
Voc −Vmp

Voc

)
. (35)

However, it must be mentioned that the accuracy can be increased if data from one point between
the maximum power point and the open-circuit point, V* and I*, is available. In this case

η =
ln
(
Vmp Imp −V ∗ I∗

)
− ln

(
Vmp Imp

)
ln
(
V ∗ −Vmp

)
− ln

(
Voc −Vmp

) . (36)

3. Results and Discussion

Figures 4–11 show the results of the explicit models studied (Akbaba & Alattawi: Ak-Al; El-Tayyan:
ET; Karmalkar & Haneefa: Kr–Hn; Das/Saetra et al.: Da/Str; Das: Ds; Pindado & Cubas: Pn–Cb),
fitted analytically to the measured I–V curves using the characteristic point. Two graphs are included
in these figures. The one on the left is a comparison of each model fitted to the experimental data.
Since it is very difficult to appreciate the differences between the models on these graphs, a second one
(on the left) has been included, in each case, to indicate the differences between the models and the
original data; i.e., I − Imeas.

Tables 3–8 include the coefficients of each model in relation to the measured data used in this
benchmark. The coefficients corresponding to the best fit, obtained computationally, are also included
in these tables.

The model represented in Figures 4–11 is the one suggested by El-Tayyan (leaving aside suggested
Equation (18)). Karmalkar & Haneefa’s equation model was solved with Equation (20). Both were the
best options, as explained below.

In the aforementioned figures, it is sometimes possible to distinguish the explicit model that
provides the worst approximation to the data, but it is not possible to choose the best option with a
proper criterion beyond a visual impression. For this reason, the results have been analyzed using the
normalized RMSE:

ξ =
1
Isc

√√√√ 1
N

N

∑
j=1

(
Icalc,j − Ij

)2
. (37)
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Figure 4. Curves for the explicit models analyzed, fitted to the RTC France solar cell data using the
analytical methods proposed; see Section 2 (left). The error in relation to the data is also included in
the figure (right).
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Figure 5. Curves for the explicit models analyzed, fitted to the TNJ Spectrolab solar cell data using the
analytical methods proposed; see Section 2 (left). The error in relation to the data is also included in
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Figure 6. Curves for the explicit models analyzed, fitted to the ZTJ Emcore solar cell data using the
analytical methods proposed; see Section 2 (left). The error in relation to the data is also included in
the figure (right).
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Figure 7. Curves for the explicit models analyzed, fitted to the Azur Space 3G30C solar cell data using
the analytical methods proposed; see Section 2 (left). The error in relation to the data is also included
in the figure (right).
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Figure 8. Curves for the explicit models analyzed, fitted to the Photowatt PWP 201 solar panel data
using the analytical methods proposed; see Section 2 (left). The error in relation to the data is also
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Figure 9. Curves for the explicit models analyzed, fitted to the Photowatt KC200GT-2 solar panel data
using the analytical methods proposed; see Section 2 (left). The error in relation to the data is also
included in the figure (right).
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Figure 10. Curves for the explicit models analyzed, fitted to the Selex Galileo SPVSX5 solar cell module
data using the analytical methods proposed; see Section 2 (left). The error in relation to the data is also
included in the figure (right).
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Figure 11. Curves for the explicit models analyzed, fitted to the plastic solar cell data using the
analytical methods proposed; see Section 2 (left). The error in relation to the data is also included in
the figure (right).

Table 3. Parameters from Akbaba and Alattawi’s explicit model (Equation (4)), fitted to the I–V curves
for the photovoltaic devices studied (see Table 1). The fittings were performed numerically (Best fit),
and using the proposed method (Equations (6), (10), and (11)). The normalized RMSE values of the
fittings, ξ, and ξ*, are included in the table.

Proposed Method

Solar Cell/Panel A B C ξ [%] ξ* [%]

RTC France 0.7531 0.4888 1.4985 3.89 0.35
TNJ Spectrolab 4.8960 0.0620 2.0355 18.79 1.14

ZTJ Emcore 5.8902 0.0687 2.3110 4.02 0.92
Azur Space 3G30C 5.1903 0.0706 2.0853 3.43 1.67

Photowatt PWP 201 16.2578 0.0177 1.1516 3.31 0.36
Kyocera KC200GT-2 4.0073 0.0008 0.1404 4.38 1.60

Selex Galileo SPVS X5 26.9645 0.0137 2.1428 4.96 1.77
Plastic Solar Cell 0.0998 −0.0760 0.0597 1.50 0.71

Best Fit

Solar Cell/Panel A B C ξ [%] ξ* [%]

RTC France 0.7769 0.6531 1.6127 2.35 2.82
TNJ Spectrolab 5.3856 0.2520 2.6813 7.41 2.49

ZTJ Emcore 6.1190 0.1413 2.5732 2.46 2.10
Azur Space 3G30C 5.242 0.069 2.0733 5.13 12.6

Photowatt PWP 201 16.7912 0.0194 1.2047 2.17 2.39
Kyocera KC200GT-2 4.2460 0.0011 0.1578 3.03 3.63

Selex Galileo SPVS X5 27.8239 0.0144 2.2076 2.84 5.57
Plastic Solar Cell 0.09919 −0.0612 0.06756 0.67 0.26
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Table 4. Parameters from El-Tayyan’s explicit model Equation (12), fitted to the I–V curves for the
photovoltaic devices studied (see Table 1). The fittings were performed numerically (best fit) with
El-Tayyan’s formulae (Equation (13)), and using the proposed method (Equations (16) and (18)).
The normalized RMSE values of the fittings, ξ, and ξ*, are included in the table.

El-Tayyan

Solar Cell/Panel C1 C2 ξ [%] ξ* [%]

RTC France 0.760511 0.051479 2.20 0.46
TNJ Spectrolab 0.5239 0.100591 5.73 0.87

ZTJ Emcore 0.4628 0.106634 0.57 0.32
Azur Space 3G30C 0.5202 0.082708 1.83 2.10

Photowatt PWP 201 1.032142 1.886743 3.03 0.61
Kyocera KC200GT-2 8.210018 2.522764 2.30 1.34

Selex Galileo SPVS X5 0.50344 0.448086 2.09 2.42
Plastic Solar Cell 7.761823 0.208889 6.51 3.06

Proposed Method

Solar Cell/Panel C1 C2 ξ [%] ξ* [%]

RTC France 0.760526 0.055762 1.35 1.74
TNJ Spectrolab 0.5239 0.089816 5.93 1.51

ZTJ Emcore 0.4628 0.096659 1.59 1.43
Azur Space 3G30C 0.5202 0.085861 1.96 2.62

Photowatt PWP 201 1.033214 2.486822 4.06 7.23
Kyocera KC200GT-2 8.210093 2.888953 2.38 4.32

Selex Galileo SPVS X5 0.50344 0.440492 2.02 2.25
Plastic Solar Cell 7.551822 0.07677 19.99 30.82

Best Fit

Solar Cell/Panel C1 C2 ξ [%] ξ* [%]

RTC France 0.779278 0.054729 1.14 1.57
TNJ Spectrolab 0.426484 0.11064 1.03 0.67

ZTJ Emcore 0.465412 0.107437 0.54 0.42
Azur Space 3G30C 0.477218 0.083789 1.42 1.88

Photowatt PWP 201 1.064269 2.042269 1.54 2.10
Kyocera KC200GT-2 8.377373 2.630488 1.68 2.38

Selex Galileo SPVS X5 0.489023 0.422192 1.81 1.82
Plastic Solar Cell 7.2669 0.3061 4.65 2.71

Table 5. Parameters from Karmalkar and Haneefa’s explicit model Equation (19)), fitted to the I–V
curves for the photovoltaic devices studied (see Table 1). The fittings were performed numerically (best
fit), and using the methodologies proposed (proposed method 1: Equation (20); (proposed method 2:
Equation (22); and (proposed method 3: Equation (24)). The normalized RMSE values of the fittings, ξ,
and ξ*, are included in the table.

Proposed Method 1

Solar Cell/Panel γ m ξ [%] ξ* [%]

RTC France 0.995576 10.03258 1.16 0.10
TNJ Spectrolab 0.977798 27.58755 5.67 0.21

ZTJ Emcore 0.980239 27.24165 0.97 0.37
Azur Space 3G30C 1.001705 30.44769 1.90 2.30

Photowatt PWP 201 1.039624 6.980368 1.50 0.30
Kyocera KC200GT-2 1.014374 11.09593 1.70 1.74

Selex Galileo SPVS X5 0.99441 29.82097 1.95 2.35
Plastic Solar Cell 0.492245 10.80094 1.48 0.79
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Table 5. Cont.

Proposed Method 2

Solar Cell/Panel γ m ξ [%] ξ* [%]

RTC France 0.881202 9.892669 5.20 8.11
TNJ Spectrolab 0.939825 24.00316 7.61 5.62

ZTJ Emcore 0.941586 24.05203 4.09 4.92
Azur Space 3G30C 0.965986 30.86475 3.42 5.09

Photowatt PWP 201 0.861406 7.701285 5.33 8.67
Kyocera KC200GT-2 0.908579 11.68439 4.54 7.96

Selex Galileo SPVS X5 0.958369 28.61693 2.55 4.91
Plastic Solar Cell 0.464614 3.126127 11.95 17.67

Proposed Method 3

Solar Cell/Panel γ m ξ [%] ξ* [%]

RTC France 0.887548 9.892669 4.90 7.67
TNJ Spectrolab 0.956528 24.00316 6.90 4.30

ZTJ Emcore 0.95662 24.05203 3.01 3.69
Azur Space 3G30C 0.966516 30.86475 3.39 5.05

Photowatt PWP 201 0.850775 7.701285 5.79 9.34
Kyocera KC200GT-2 0.906406 11.68439 4.65 8.11

Selex Galileo SPVS X5 0.96379 28.61693 2.41 4.53
Plastic Solar Cell 0.529661 3.126127 10.54 15.33

Best Fit

Solar Cell/Panel γ m ξ [%] ξ* [%]

RTC France 0.99864 9.527542 0.75 0.99
TNJ Spectrolab 0.990878 26.22912 5.62 0.37

ZTJ Emcore 0.99264 24.94796 0.39 0.32
Azur Space 3G30C 1.02156 32.02944 1.37 0.28

Photowatt PWP 201 0.999352 7.281532 0.99 1.25
Kyocera KC200GT-2 0.98725 11.87327 1.40 2.08

Selex Galileo SPVS X5 0.966682 35.30549 0.94 1.49
Plastic Solar Cell 0.5219 10.2671 0.95 1.21

Table 6. Parameters from Das/Saetre’s explicit model (Equation (25)), fitted to the I–V curves for the
photovoltaic devices studied (see Table 1). The fittings were performed numerically (best fit), and
using the proposed method (Equation (29)). The normalized RMSE values of the fittings, ξ, and ξ*,
are included in the table.

Proposed Method

Solar Cell/Panel f g ξ [%] ξ* [%]

RTC France 10.18802 0.887425 0.67 0.58
TNJ Spectrolab 18.27322 1.959794 2.71 0.44

ZTJ Emcore 18.8596 1.846621 3.22 0.42
Azur Space 3G30C 32.42148 0.82562 2.32 2.56

Photowatt PWP 201 9.181066 0.61241 4.04 0.60
Kyocera KC200GT-2 13.17701 0.689418 4.33 2.14

Selex Galileo SPVS X5 26.4476 1.259683 1.97 2.34
Plastic Solar Cell 1.96357 1.102704 8.73 11.55

Best Fit

Solar Cell/Panel f g ξ [%] ξ* [%]

RTC France 10.14692 0.918014 0.47 0.32
TNJ Spectrolab 15.64659 2.224713 2.96 1.46

ZTJ Emcore 24.21497 1.00582 0.56 0.47
Azur Space 3G30C 35.38547 0.943688 1.47 0.98

Photowatt PWP 201 7.868017 0.904468 0.67 0.37
Kyocera KC200GT-2 12.56928 0.904071 1.25 0.99

Selex Galileo SPVS X5 32.68295 0.998938 1.82 1.85
Plastic Solar Cell 1.0808 2.4296 1.74 1.74
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Table 7. Parameters from Das’s explicit model (Equation (30)), fitted to the I–V curves for the
photovoltaic devices studied (see Table 1). The fittings were performed numerically (best fit), and
using the proposed method (Equation (33)). The normalized RMSE values of the fittings, ξ, and ξ*, are
included in the table.

Proposed Method

Solar Cell/Panel k h ξ [%] ξ* [%]

RTC France 10.03677 0.004447 1.15 0.10
TNJ Spectrolab 27.60477 0.022627 5.67 0.21

ZTJ Emcore 27.25743 0.020097 0.97 0.37
Azur Space 3G30C 30.44602 −0.0017 1.90 2.30

Photowatt PWP 201 6.93745 −0.03904 1.50 0.30
Kyocera KC200GT-2 11.08133 −0.01426 1.70 1.74

Selex Galileo SPVS X5 29.8261 0.005618 1.95 2.35
Plastic Solar Cell 1.96357 1.102704 8.73 11.55

Best Fit

Solar Cell/Panel k h ξ [%] ξ* [%]

RTC France 9.529659 0.001406 0.75 0.99
TNJ Spectrolab 26.23845 0.009205 5.62 0.37

ZTJ Emcore 24.95463 0.007404 0.39 0.32
Azur Space 3G30C 32.00393 −0.02119 1.37 0.28

Photowatt PWP 201 7.2774 0.0001 0.99 1.23
Kyocera KC200GT-2 11.6717 0.0051 1.42 1.91

Selex Galileo SPVS X5 32.1567 0.0304 1.28 2.41
Plastic Solar Cell 8.3139 0.604 1.82 2.48

Table 8. Parameters from Pindado and Cubas’s explicit model (Equation (34)), fitted to the I-V curves
for the photovoltaic devices studied (see Table 1). The fittings were performed numerically (Best fit),
and using the proposed method (Equation (35)). The normalized RMSE values of the fittings, ξ, and ξ*,
are included in the table.

Proposed Method

Solar Cell/Panel η ξ [%] ξ* [%]

RTC France 2.5136 0.41 0.14
TNJ Spectrolab 2.2811 14.57 2.48

ZTJ Emcore 2.3669 1.89 0.90
Azur Space 3G30C 3.6345 1.81 1.74

Photowatt PWP 201 2.7596 1.40 0.30
Kyocera KC200GT-2 2.9614 1.36 1.41

Selex Galileo SPVS X5 3.0433 2.67 2.31
Plastic Solar Cell 1.0617 7.19 0.51

Best Fit

Solar Cell/Panel η ξ [%] ξ* [%]

RTC France 2.520 0.41 0.15
TNJ Spectrolab 3.560 13.73 1.10

ZTJ Emcore 2.900 0.56 0.35
Azur Space 3G30C 3.720 1.79 1.72

Photowatt PWP 201 2.480 0.68 0.22
Kyocera KC200GT-2 2.850 1.26 1.46

Selex Galileo SPVS X5 3.850 1.80 1.41
Plastic Solar Cell 3.300 1.85 0.51
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Considering that the maximum power point is the optimum working point for a photovoltaic
system, a second normalized RMSE value, ξ*, has been defined with the data within a ±5% bracket
of the open-circuit voltage, Voc, around the maximum power point voltage, Vmp. These results
are included in Tables 3–8. Figure 12 includes the normalized RMSE values corresponding to the
analytical fitting performed. In this figure, it seems that in the case of El-Tayyan’s model, the proposed
methodology (Equation (18)) is less accurate when compared to the one proposed by this author
(Equation (13)). Accordingly, if the fittings obtained with Karmalkar & Haneefa’s method are analyzed,
it can be said that the first method proposed (Equation (20)) better fits the I–V curves than the other
two methodologies considered (Equations (22) and (23)). In addition, the normalized RMSE values
corresponding to the best fittings of the explicit models are included in Tables 3–8 and Figure 13.
The results shown in this figure are obviously better than the ones in Figure 12. However, it must be
considered that an explicit model is, indeed, a simplification when approaching a photovoltaic I–V
curve. Therefore, it might not make sense to use such simple equations and extract the parameters
with a computational procedure. In any case, in order to establish a general comparison, all results
from Figures 12 and 13 have been averaged in Figure 14. Besides, the explicit models studied are
ranked in Table 9, according to the data shown in Figure 14. Finally, the results corresponding to the
1-diode/2-resistor equivalent circuit model fitted to all the studied I–V curves have been included in
Table 10. Bearing in mind all of these results, it can be stated that:

• Comparing the normalized RMSE values from the explicit models (Tables 3–8) with the ones from
the 1-diode/2-resistor equivalent circuit model (Table 10), it can be observed that the accuracy of
the explicit models is similar to the accuracy of the 1-diode/2-resistor model.

• The explicit model proposed by Karmalkar & Haneefa is the best one, taking into account all
behavior (I–V curves) of the different photovoltaic technologies used in this benchmark.

• The model proposed by Das is also very accurate. However, when applied to plastic solar cell
behavior, the results are very poor, in terms of accuracy.

• The model proposed by Pindado & Cubas represents the best approach to the oldest silicon
photovoltaic technology.

• Surprisingly, Akbaba & Alattawi’s model is the one that best fits the behavior of the plastic
solar cells, even though its results are the worst when applied to the other photovoltaic
technologies studied.

To continue with the results of the explicit models applied to plastic solar cells, Figure 15 shows
the curves for the Akkbaba & Alattawi and Karmalkar & Haneefa models, along with three different
fittings [1] of the 1-diode/2-resistor equivalent circuit model (Equation (1)): the best fit (performed
computationally), analytical fitting with a = 1.3, and analytical fitting with a = 2.44 (close to the best
value for this parameter). The figure shows that the explicit models (where ξ = 1.50% and 1.48%;
see Tables 3 and 5) are as accurate as the 1-diode/2-resistor equivalent circuit model (where ξ = 0.72%,
2.35% and 1.30%; see Table 10).
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Figure 12. Comparison of the different explicit models studied, analytically fitted to the I–V curves
selected for the benchmark (Table 2). Normalized RMSE, ξ, (Equation (37)), and normalized RMSE
within ±5% of Voc around the maximum power point, ξ*. See also Tables 3–8. El-Tayyan (1) indicates
Equation (13), whereas El-Tayyan (2) refers to Equation (18). Karmalkar & Haneefa (1) indicates
Equation (20), Karmalkar & Haneefa (2) refers to Equation (22), and Karmalkar & Haneefa (3) indicates
Equation (24).
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Figure 13. Comparison of the different explicit models studied, computationally fitted (best fit) to the
I–V curves selected for the benchmark (Table 2). Normalized RMSE, ξ, (Equation (37)), and normalized
RMSE within ±5% of Voc around the maximum power point, ξ*. See also Tables 3–8.
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Figure 14. General comparison of the explicit models studied for photovoltaic behavior (I–V curves).
Averaged values of data from Figures 13 and 15.
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Figure 15. Curves from the Akbaba & Alattawi and Karmalkar & Haneefa explicit models, fitted to
plastic solar cell data using the analytical methods proposed (see Section 2), along with three fittings of
the 1-diode/2-resistor equivalent circuit model defined by Equation (1) (above). The error in relation to
the data is also included in the figure (below).
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Table 9. Ranking of the explicit models studied, based on accuracy results (see Figure 15),
by photovoltaic technology (see Tables 1 and 2).

Model RTC
France

TNJ
Spectrolab

ZTJ
Emcore

Az-Sp
3G30C

Photowatt
PWP 201

Kyocera
KC200GT-2

Slx-Ga
SPVS X5 PSC

Karmalkar & Haneefa 4 3 2 1 3 3 1 2
Das 3 3 2 1 2 2 3 6

Pindado & Cubas 1 6 4 2 1 1 5 3
El-Tayyan 5 2 1 3 5 4 4 4

Das/Saetre et al. 2 1 5 4 4 5 2 5
Akbaba & Alattawi 6 5 6 5 6 6 6 1

Table 10. Parameters from the 1-diode/2-resistor equivalent circuit model fitted to all studied curves.
The values related to the plastic solar cell (PSC) I–V curve are best fit (calculated as the correspondent
to the other technologies, see also [32]); analytical fitting where a = 1.30; and analytical fitting where
a = 2.44). The normalized RMSE values of the fittings, ξ, and ξ*, are included in the table.

Model a Ipv [A] I0 [A] Rs [Ω] Rsh [Ω] ξ [%] ξ* [%]

RTC France 1.48 7.61 × 10−1 3.20 × 10−7 3.62 × 10−2 5.20 × 101 0.09 0.07
TNJ Spectrolab 1.01 5.24 × 10−1 3.49 × 10−15 5.51 × 10−2 2.08 × 102 5.43 0.32

ZTJ Emcore 1.07 4.63 × 10−1 2.78 × 10−15 7.41 × 10−2 2.73 × 102 0.70 0.32
Azur Space 3G30C 0.9 5.20 × 10−1 9.55 × 10−18 7.95 × 10−2 2.62 × 103 2.45 2.62

Photowatt PWP 201 1.25 1.03 1.28 × 10−6 1.56 3.55 × 103 1.19 0.27
Kyocera KC200GT-2 1 8.23 4.03 × 10−10 3.36 × 10−1 1.59 × 102 3.84 2.04

Selex Galileo SPVS X5 1.15 5.03 × 10−1 1.48 × 10−14 2.40 × 10−2 9.69 × 103 1.97 2.30
PSC 1 2.4473 7.7065 2.42·10−5 1.8448 199 0.72 0.75

PSC (a = 1.3) 1 1.30 8.2371 1.14·10−9 16.133 178 2.35 0.87
PSC (a = 2.44) 1 2.44 7.5967 3.11·10−5 0.48212 199 1.30 0.76

1 PSC current units: mA·cm−2.

4. Conclusions

This study analyzes six different explicit mathematical expressions (i.e., explicit models) for
describing the behavior of a solar cell/panel (by Akbaba & Alattawi; El-Tayyan; Karmalkar & Haneefa;
Das/Saetre et al.; Das; and Pindado & Cubas). The models were fitted to the I–V curves for eight
different photovoltaic technologies.

The fittings were performed using the three characteristic points of the I–V curves (short-circuit,
maximum power, and open-circuit). A new definition of the parameters for each explicit model has
been proposed. In order to compare across models, the best fitting of each model to the I–V curves
was also performed.

The major conclusions resulting from this study are:

• The explicit models showed a performance as accurate as the 1-diode/2-resistor equivalent
circuit model.

• The explicit model that best fits in every case is the one proposed by Karmalkar & Haneefa.
The second best in terms of accuracy is the one proposed by Das (However, its results were poor
in the case of the plastic cell I–V curve).

• The accuracy of the explicit models studied depends on the photovoltaic technology. In the case
of Si monocrystalline technology, the model proposed by Pindado & Cubas achieved the best
results, whereas the simpler model by Akbaba & Alattawi fit extremely well to the plastic solar
cell I–V curve (with almost the same accuracy achieved by the 1-diode/2-resistor equivalent
circuit model).
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