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Abstract: Economic load dispatch (ELD) is an important optimization problem for operating and
controlling modern power systems, and if ELD is effectively executed, power systems work stably
and economically. The main objective of this paper is to develop a novel method to solve the ELD
with the purpose of minimizing the total fuel cost of all available generating units while requirements
are to satisfy all constraints regarding thermal units, generators, and transmission power networks.
The proposed high performance cuckoo search algorithm (HPCSA) is developed from the efficient
technique for the second new solution generation of conventional cuckoo search algorithm (CCSA),
called adaptive mutation technique. This proposed technique diversifies the local search ability
based on a new comparison criterion. The HPCSA is verified on difference systems under special
conditions, namely the 10-unit system with multi fuels, 15-unit system considering prohibited
operating zones, and three IEEE systems with 30, 57, and 118 buses considering transmission
power network constraints. The specific evaluation of the HPCSA is compared to that of Lagrange
optimization-based methods (LMS), neural network-based methods (NNMS), CCSA, and other
popular methods such as Particle swarm optimization (PSO) variants, Differential evolution (DE)
variants, Genetic Algorithm (GA) variants, and state-of-the-art methods. In comparison with CCSA,
the proposed method is always more effective and more robust since the proposed method can find
most solutions with better quality and faster convergence speed. In comparison with LMS and NNMS,
the proposed method can also find solutions with approximate or equal quality. In comparison with
popular methods and state-of-the-art methods, the proposed method has more potential since it can
reach faster convergence to valid solutions with approximate or better quality. Consequently, it can be
concluded that the proposed HPCSA is an effective optimization tool for dealing with ELD problems.

Keywords: cuckoo search algorithm; valve point loading effects; prohibited operating zone;
transmission network constraints; IEEE networks

1. Introduction

Over the past decades, a high number of researchers have been devoted to solving optimization
problems in engineering by applying conventional optimization algorithms or proposing improved
algorithms. Even though there are some wider application areas where these works are applied, this
study narrows down to the economic load dispatch (ELD) problem, which is to minimize the total
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electricity generation fuel cost of all thermal generating units and to satisfy all constraints of the units
and other constraints related to transmission power networks [1,2]. For the considered problems,
we consider five systems, in which the first system, namely the 10-unit system, considers multiple
types of fuel; the second system, the 15-unit system, considers single fuel, prohibited zones, and
spinning reserve for power systems; and the three remaining systems, IEEE 30, 57, and 118 buses,
power networks and consider single fuel and all constraints.

So far, a large number of methods have been successfully applied for dealing with the five
cases of the problem in which methods applied to the case of multi-fuel options are conventional
Hopfield neural network (HNN) [3], hierarchical approach (HA) [4], adaptive Hopfield neural network
(AHNN) [5], improved Lagrangian neural network (ILNN) [6], hybrid real-coded genetic algorithm
(HRCGA) [7], differential evolution (DE) [8], modified evolutionary programming (MEP) [9], artificial
immune system algorithm (AIS) [10] and hybrid differential evolution and dynamic programming
(HDEDP) [11], and cuckoo search algorithm (CSA) [12]. Among these methods, ones based on neural
network and numerical method have the same disadvantages, such as the hard task of tuning control
parameters and stopping application for systems with non-differentiable functions. On the contrary,
the remaining methods, DE, HRCGA, AISA, and CSA, can overcome such drawbacks, but they cope
with other restrictions much depending on randomization and taking much time for tuning control
parameters. Among methods belonging to neural networks, IALHN can be considered the most
powerful method while CSA can be the most promising meta-heuristic method in the second group.

For the second system, with consideration of prohibited operating zones (POZ) constraints,
several methods as CSA [12], the combination of decomposition method and Lagrange relaxation
(DLR) [13], lambda iteration method (LIM) [14], particle swarm optimization (PSO) [15], improved
quantum-inspired evolutionary algorithm (IQIEA) [16], and improved augmented Lagrange-Hopfield
network (IALHN) [17] have been successfully applied with promising results, but most of these
methods have not been evaluated in terms of convergence speed because iterations and execution
time have not been reported. It is clear that the systems considering POZ constraints have attracted
both conventional algorithms and recent meta-heuristic algorithms. Among the mentioned methods,
DLR and LIM are the first two methods applied for handling such complicated constraints, and they
have obtained optimal solutions with higher objective function than most other remaining methods
excluding the comparison of LIM with PSO.

For IEEE 30, 57, and 118 buses power networks, complicated constraints of transmission
power networks such as power and voltage limitations of generators, limitations of transformer tap,
limitations of capacitor banks, capacity of transmission lines, and active and reactive power balance are
taken into consideration. On the other hand, for the cases of considering the constraints associated with
transmission power networks, the ELD problem can be also called optimal power flow (OPF) problem.
For the complicated OPF problem, the three most popular IEEE systems with 30, 57 and 118 buses
have been employed to test performance of optimization methods in terms of the ability to handle all
constraints, quality of solutions, and processing speed. Most methods are the family of meta-heuristic
algorithms in which conventional methods, modified methods, combination of two different methods,
and hybrid methods have been developed widely. In fact, there have been a huge number of applied
methods such as the integration of improved genetic algorithm and effective decoupled quadratic load
flow (IGA-EDQLF) [18], hybrid IGA with incremental power flow model (HIGA) [19], HIGA with
boundary method (HIGA-BM) [20], differential evolution [21,22], conventional PSO [23], Evolving ant
direction particle swarm optimization (EADPSO) [24], PSO with Pseudo-Gradient and constriction
factor (PG-CF-PSO) [25], Biogeography-based optimization algorithm (BBOAA) [26] and adaptive
real-coded biogeography-based optimization algorithm (ARCBBOA) [27], teaching–learning-based
optimization algorithm (TLBO) [28], improved TLBO (ITLBO) [29], gravitational search algorithm
(GSA) [30], Artificial bee colony algorithm (ABCA) [31], Grey wolf optimizer (GWO) [32], modified
electromagnetism-like mechanism algorithm (MELMA) [33], modified Colliding Bodies Optimization
algorithm (MCBOA) [34], moth swarm algorithm (MSA) [35], improved imperialist competitive
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algorithm (IICA) [36], cuckoo optimization algorithm (COA) [37], Gaussian bare-bones imperialist
competitive algorithm (GBBICA) [38], and mathematical programming algorithm (MPA) [39].
In [18–20], different variants of GA have been developed in which GA has been improved first
and then combined with another method for handling constraints of OPF problem. In fact, Decoupled
Quadratic Load Flow has been used in [18] for dealing with OPF problem while IGA has acted as an
optimization tool for searching optimal solutions. Hybrid IGA has been applied in both [19,20] while
incremental power flow model has been employed in [19], but boundary method has been used in [20].
Conventional PSO and two other improved versions have been suggested, respectively, for each OPF
problem in [23–25]. In [19], five velocity-updating formulas have been proposed for EADPSO while ant
colony search (ACS) has acted as operator for choosing the most appropriate model for each solution.
Contrary, EADPSO and PG-CF-PSO have determined more effective direction for updating velocity by
using pseudo-gradient theory and used constriction factor (CF) for focusing on potential search zone.
The final comparison results have revealed that EADPSO has become more efficient than conventional
PSO but less effective than PG-CF-PSO in terms of solution quality and solution searching speed.
The authors in [27,29] have made a big effort in improving the performance of improved versions of
BBOA and TLBO. However, the obtained results compared to BBOA and TLBO could not show any
superiority of ARCBBOA and ITLBO over BBOA and TLBO. Among remaining methods, MSA is a
new method applied to the problem and the comparison results show its strong search ability and
stand out over other methods including most above-mentioned methods.

In order to solve the above-mentioned complicated problem, this paper proposes a method
to modify the conventional cuckoo search algorithm, namely, the high-performance cuckoo search
algorithm (HPCSA). In this paper, the proposed HPCSA is first developed by carrying an adaptive
mutation technique with two modifications of the original mutation of conventional cuckoo search
algorithm (CCSA) [40]. The first proposes two more equations for updating new solutions, adding to
the original mutation model. However, only one out of the three equations needs to be determined for
using the adaptive mutation technique for each considered solution depending on the solution’s fitness
function value. Thus, the second is proposed to establish a decision of using the most appropriate
equation for each solution by comparing the fitness function index of each solution compared to the
fitness of the best solution and the average fitness index of all solutions compared to the best solution.
The second modification is used for the purpose of supporting the first one effectively in its function,
so that it can produce high quality solutions. Through the adaptive mutation technique, the proposed
method can diversify its search due to exploiting local search and global search in between small and
large zones.

The proposed method and CCSA are implemented based on the numerical results through the
tests on other systems with different types of objective functions and adifferent set of constraints to
demonstrate the effectiveness and robustness of the proposed technique. In addition, the proposed
method is also compared to other existing methods, and then, its efficiency is analyzed and concluded.
The main contributions to power system optimization field are as follows:

(i) Point out drawbacks of conventional Cuckoo search algorithm clearly and propose improvements
on conventional Cuckoo search algorithm effectively

(ii) Present a clear description for handling constraints, namely selection of decision variables and
calculation of dependent variables.

(iii) Investigate performance of the proposed method by testing on different systems with different
constraints ranging from small-scale systems to large-scale systems, from simple constraint set to
complicated constraint set related to thermal generating units and transmission power networks.

This paper is organized as follows: The introduction is presented in Section 1. Section 2 analyzes
the economic load dispatch problem formulation. The classical cuckoo search algorithm is recalled,
and the proposed method is developed in Section 3. The implementation of proposed method for
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solving load dispatch problems is introduced in Section 4. The study cases and discussion of the results
are given in Section 5 and Appendix A. Finally, the conclusions are stated in Section 6.

2. Analysis for Economic Load Dispatch

2.1. Objective Function

Minimizing the total cost of electricity generation, the objective function of the ELD problem is
considered as follows.

Min F =
N

∑
i=1

Fi(Pi) (1)

where Fi(Pi) the ith fuel cost function, and can be represented in quadratic form as follows [2]:

Fi(Pi) = ai + biPi + ciP2
i (2)

Considering the valve-point loading effects of the generating units, this fuel cost function has
non-convex form, as shown in Equation (3). For better comparison of the complex between the
quadratic form without valve point loading effects and the non-convex form with the valve effects,
Figure 1 is constructed. As seen from the figure, non-convex form is a challenge for optimization tools.

Fi(Pi) = ai + biPi + ciP2
i + |ei × sin( fi × (Pi,min − Pi))| (3)
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The fuel cost function for the generating units, which are supplied with multiple fuel options,
is mathematically formulated described as follows [21]:

Fi(Pi) =


ai1 + bi1Pi + ci1P2

i , fuel 1, Pi,min ≤ Pi ≤ Pi1,max
ai2 + bi2Pi + ci2P2

i , fuel 2, Pi2,min ≤ Pi ≤ Pi2,max
...
aij + bijPi + cijP2

i , fuel j, Pij,min ≤ Pi ≤ Pij,max

(4)
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The fuel cost function can combine multiple fuel (MF) options and valve point effects (VPF),
as depicted in Figure 2 and expressed by [15]:

Fi(Pi) =


ai1 + bi1Pi + ci1P2

i + |ei1 × sin( fi1 × (Pi1,min − Pi))|, for fuel 1, Pi,min ≤ Pi ≤ Pi1,max

ai2 + bi2Pi + ci2P2
i + |ei2 × sin( fi2 × (Pi2,min − Pi))|, for fuel 2, Pi2,min ≤ Pi ≤ Pi2,max , j = 1, . . . , mi

...
aij + bijPi + cijP2

i +
∣∣eij × sin( fij × (Pij,min − Pi))

∣∣, for fuel j, Pij,min ≤ Pi ≤ Pij,max

(5)

where eij and fij are fuel cost coefficients for fuel type jth of unit ith reflecting valve-point effects and mi
is the number of fuel types of the thermal unit ith.
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2.2. Constraints

Thermal Generating Unit

Operating Generator constraints: Active and reactive power and working voltage of each
generator must satisfy the following inequalities.

Pi,min ≤ Pi ≤ Pi,max; i = 1, . . . , N (6)

Qi,min ≤ Qi ≤ Qi,max; i = 1, . . . , N (7)

Vi,min ≤ Vi ≤ Vi,max; i = 1, . . . , N (8)

where Qi,min and Qi,max are the lower and upper reactive power output of generator ith, respectively;
Vi,min and Vi,max are the allowed minimum and maximum voltage of generator ith, respectively; Qi and
Vi are the reactive power output and working voltage of generator ith, respectively.

Prohibited Operating Zone constraints: Prohibited operating zones (POZ) exist in the input–
output curve of each generator due to the steam valve operation or vibration in its shaft bearing.
Therefore, the operating region of a generating unit with POZ will be broken into several isolated
feasible sub-regions. The mathematical model of POZ is given in the following formula:

Pi ∈


Pi,min ≤ Pi ≤ Plower

i1

Pupper
ik ≤ Pi ≤ Plower

ik+1 ; k = 1, . . . , NPOZi

Pupper
iNPOZi

≤ Pi ≤ Pi,max

(9)
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where NPOZi is the number of prohibited zones of unit i; and Pupper
ik and Plower

ik are upper and lower
bounds for prohibited zone kth of unit ith, respectively; and kth is the POZ number of thermal unit ith.

Spinning reserve constraint: To enhance the stabilization operation of power systems, active
power spinning reserve is required and expressed as follows:

N

∑
i=1

SRPi ≥ SRP (10)

where SRP is the total active power that the power systems require for spinning reserve; SRPi is the
active power spinning reserve of thermal generating unit ith and calculated as follows:

SRPi = min{Pi,max − Pi, SRPi,max}; i = 1, . . . , N (11)

where SRPi,max is the maximum active power that thermal generating unit ith can contribute to
spinning reserve of the power system.

Real power balance constraints: The total real power output of generating units satisfies total load
demand plus system power losses

N

∑
i=1

Pi = PD + PL (12)

and the total power loss is calculated using Kron’s formula as follows:

PL =
N

∑
i=1

N

∑
j=1

PiBijPj +
N

∑
i=1

B0iPi + B00 (13)

In addition, the active power balance constraints can be expressed with respect to terms in
transmission lines as follows

PGi − Pdi = Vi

Nb

∑
j=1

Vj
[
Gij cos(δi − δj) + Bij sin(δi − δj)

]
; i = 1, . . . , Nb (14)

where Gij and Bij are the conductance and the susceptance of transmission line ijth connecting bus ith
and bus jth.

Reactive power balance constraints: Similar to the constraint model in Equation (14), reactive
power balance can be expressed as follows:

QGi + Qci −Qdi = Vi

Nb

∑
j=1

Vj
[
Gij sin(δi − δj)− Bij cos(δi − δj)

]
; i = 1, . . . , Nb (15)

in which, the presence of capacitor banks is a result of improving voltage and reduction of power
losses; Qdi is reactive power requirement of load at bus ith; and Qci is the reactive power generation of
capacitor banks installed at bus ith and is constrained by the following inequality:

Qci,min ≤ Qci ≤ Qci,max; i = 1, . . . , Nc (16)

where Qci,min and Qci,max are the minimum and maximum reactive power generation of capacitor
banks at bus i, respectively, and Nc is the number of buses where capacitors are installed.

Transformer tap constraints: The secondary voltage of a transformer corresponds to transformer
tap location. Thus, the tap of the transformer should be set to the predetermined range shown in
Equation (17):

Ti,min ≤ Ti ≤ Ti,max; i = 1, . . . , Nt (17)

where Ti,min and Ti,max are the minimum and maximum transformer tap locations at bus ith
respectively; Ti is the current tap location at bus ith; and Nt is the total number of buses where
transformers are located.
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Load bus voltage constraints: The voltage is one of the most important power quality criteria.
Consequently, a stability voltage within the following range must supply the load as follows:

Vloadi,min ≤ Vloadi ≤ Vloadi,max; i = 1, . . . , Nload (18)

where Vloadi,min and Vloadi,max are the minimum and maximum voltages at bus ith that loads at this bus
can work, respectively.

Conductor capacity constraints: The capacity of conductor with respect to the maximum current
is also represented as the maximum apparent in power system. The capacity must always satisfy the
following rule.

Scondi ≤ Scondi,max; i = 1, . . . , Ncond (19)

where Ncond represents the total number of conductors (transmission lines); Scondi,max is the capacity of
conductor ith; and Scondi is the apparent power flow in conductor ith calculated by:

Scondi = max{|Snm|, |Smn|} (20)

where Snm and Smn are the apparent power flow from buses nth to mth and from buses mth back to nth,
respectively.

3. Approaches

3.1. Classical Cuckoo Search Algorithm

Classical cuckoo search algorithm (CCSA) is composed of two generations for producing new
solutions and two times for selection of promising solutions [40]. The first generation is carried
out by using Lévy Flights stage and the second generation is done by using mutation operation
called discarding identified eggs. The whole search process of CCSA is summarized in the four
following steps:

Step 1: Lévy Flights for the first generation is calculated by the following inequality

Scondi ≤ Scondi,max; i = 1, . . . , Ncond (21)

where α > 0 is the step size ranging from 0 to 1; Lévy (β) is calculated as in Ref. [40]; Xs is solution s
that is stored from initialization or from the end of the loop procedure and s = 1, . . . , Nnest (where Nnest

is the number of nests or the number of solutions in the population).
Step 2: Selection for keeping promising solutions: There are two solutions Xs and Ys at each nest s.

Thus, only one solution is kept and another must be discarded by using the formula below.

Zs =

{
Ys i f FF(Ys) < FF(Xs)

Xs else
(22)

Step 3: Mutation operation for the second generation: The second generation of new solutions is
carried out here for improving the solution quality.

Us =

{
Zs + rand(Zr1 − Zr2) i f randUs < PP
Zs otherwise

(23)

where Zr1 and Zr2 are two randomly picked solutions from the current population, randUs is randomly
produced within the range from 0 to 1 for solution Us, and PP is a predetermined probability for
producing new solutions.
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Step 4: Selection for keeping promising solutions: At the end of each iteration, selection operation
is repeated for retaining promising solutions.

Xs =

{
Us i f FF(Us) < FF(Zs)

Zs else
(24)

The best solution among the solution set X = [X1, . . . , Xs, . . . , XNnest] is determined by choosing
the solution with the lowest fitness function.

3.2. The Proposed Approach

In this section, the proposed HPCSA is developed by pointing out disadvantages of CCSA, and
then solutions for overcoming the disadvantage are proposed. In the mutation technique shown
in Equation (23), CCSA updates new solutions for current solution Us by using a jumping step,
which is the difference between two randomly selected solutions Zr1 and Zr2. Clearly, the use of
the three considered solutions can lead to several limitations such as low performance of local
search and easily trapping into local optimum. Besides, the mutation of CCSA is always carried
out by using the difference of only two random solutions over the search process with Imax iterations.
Consequently, the mutation with Equation (23) reduces the diversity of the local search and global
search of CCSA. To overcome the drawback, we suggest using the three following mutation modes for
the current population.

rand/1 : Us = Zs + rand(Zr1 − Zr2) (25)

rand/2 : Us = Zs + rand(Zr1 − Zr2 + Zr3 − Zr4) (26)

rand/3 : Us = Zs + rand(Zbest − Zs + Zr1 − Zr2) (27)

Among such mutation modes, rand/1 can narrow the search space while rand/2 and rand/3 can
reach to larger search zone. The three modes can diversify the search strategy; however, the target
is only reached as use of them is appropriate for considered solutions. Here, we classify the three
different equations into two groups, small zone search group with rand/1 and large zone search group
with rand/2 and rand/3. The condition of using either rand/1 or rand/2 and rand/3 is dependent on
the comparison of ∆s and ∆mean, which are shown in Equations (28) and (29).

∆Z s =

∣∣∣∣ FF(Zs)

FF(Zbest)
− 1
∣∣∣∣ (28)

∆mean =

∣∣∣∣∣∣∣∣∣
Nnest
∑

s=1
FF(Zs)

Nnest × FF(Zbest)
− 1

∣∣∣∣∣∣∣∣∣ (29)

where Zbest is the best solution among the solution set Z, in which Z = [Z1, Z2, . . . , ZNnest); FF(Zbest)
is the fitness function value of the so-far best solution Zbest. ∆Zs is the fitness index of solution Zs

compared to the so-far best solution Zbest; ∆mean is the average fitness index of all solutions compared
to the best solution.

For the case of ∆Zs > ∆mean, it means that solution Zs is still far away the current so-far best
solution, thus it needs to be search around the current solution Zs with a small zone nearby such
solution Zs. On the contrary, for the case that ∆Zs is equal or less than ∆mean, larger jumping step will
be applied because current solution is too close to the current best solution. For the latter case, rand/2
or rand/3 is used depending on a random condition of comparing between random number and 0.5.
The adaptive mutation is described in detail in Algorithm 1.
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Algorithm 1: The proposed mutation technique

If ∆Zs > ∆mean % using rand/1
Us = Zs + rand(Zr1 − Zr2) % rand/1

else
if rands > 0.5 % the second condition

Us = Zs + rand(Zr1 − Zr2 + Zr3 − Zr4) % rand/2
else

Us = Zs + rand(Zbest − Zs + Zr1 − Zr2) % rand/3
end

end

4. Implementation

The proposed HPCSA method is implemented for solving ELD problem as follows.

4.1. Selection of Control Variables for Each Solution

As mentioned in Section 3.1, solution Xs is the initial solution produced at the beginning of
the implementation of the proposed HPCSA method. Consequently, control variables should be
determined and added in each solution Xs while solution Ys, Zs, and Us have the same control variables
as Xs. In the paper, the ELD problem is constructed by using two different sets of constraints of which
the first set of constraints neglecting all transmission power networks is comprised, and the second set
of constraints that consider the transmission power network. The first set of constraints is composed
of Equations (6) and (12), while the second set of constraints consists of all constraints. For the case
considering the first constraint set, the control variables are all active power output of (N − 1) thermal
generating units while the control variables are Pi (where i = 2, . . . ., N), Vi (where i = 1, . . . ., N),
Ti (where i = 1, . . . ., Nt), Qci (where i = 1, . . . ., Nc).

4.2. Processing of Constraints

The equality constraints: For the ELD problem neglecting all constraints in transmission lines, the
equality constraint in Equation (6) is exactly met by using the following equation

P1 = PD + PL −
N

∑
i=2

Pi (30)

where PL is calculated by using Equation (7) and the violation of P1 is penalized in fitness function.
The detail of calculating P1 can be referred in Ref. [12]. For the case of considering all constraints in
transmission lines, all control variables are added in the OPF program, Mathpower for running. Then,
all dependent variables, such as P1 (active power output of generator at slack bus), Qi (where i = 1, . . . ,
N), Vloadi (where i = 1, . . . , Nload), and Sbranchi (where i = 1, . . . , Nbranch) are obtained. Such obtained
dependent variables are verified and penalized in fitness function in the case that they are violated.

The inequality constraints: All control variables are checked and repaired. If Xs is higher than
the maximum values of control variables, Xs will be assigned to maximum values, Xmax and on the
contrary, Xs will be set to Xmin if it is lower than the minimum values. For the two cases of considering
constraints, Xmin and Xmax are defined as follows

Xmin =
{

P2,min, . . . , PN,min, V1,min, . . . , VN,min, T1,min, . . . , TNt ,min, Qc1,min, . . . , QcNc ,min
}

(31)

Xmax =
{

P2,max, . . . , PN,max, V1,max, . . . , VN,max, T1,max, . . . , TNt ,max, Qc1,max, . . . , QcNc ,max
}

(32)

Xmin =
{

P2,min, . . . , PN,min
}

(33)
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Xmax =
{

P2,max, . . . , PN,max
}

(34)

4.3. Construction of Fitness Function

The Fitness function can reflect the objective function quality and the violation level of dependent
variables. For the cases of neglecting and considering transmission line constraints, the fitness function
is as follows

FFs =
N

∑
i=1

Fi(Pi,s) + KPF ×
(

P1,s − Plim
1,s

)2
+ KPF ×max

(
0, SRP−

N

∑
i=1

SRPi

)2

(35)

FFs =


N
∑

i=1
Fi(Pi,s) + KPF

N
∑

i=1

(
P1,s − Plim

1,s

)2
+ KPF

N
∑

i=1

(
Qi,s −Qlim

i,s

)2
+ KPF

Nload
∑

i=1

(
Vloadi,s −Vlim

loadi,s

)2

+KPF

Ncond
∑

i=1

(
Scondi,s − Slim

condi,s

)2
+ KPF ×max

(
0, SRP−

N
∑

i=1
SRPi,s

)2

 (36)

where KPF is the penalty factor, and the limits related to dependent variables are determined by:

Plim
1,s =


P1,max i f P1,s > P1,max

P1,min i f P1,s < P1,min

P1,s else
(37)

Qlim
i,s =


Qi,max i f Qi,s > Qi,max
Qi,min i f Qi,s < Qi,min
Qi,s else

(38)

Vlim
loadi,s =


Vloadi,max i f Vloadi,s > Vloadi,max
Vloadi,min i f Vloadi,s < Vloadi,min
Vloadi,s else

(39)

Slim
condi,s =

{
Scondi,max i f Scondi,s > Scondi,max
Scondi,s otherwise

(40)

4.4. The Proposed Algorithm

The completely iterative algorithm for implementation of the HPCSA for solving the ELD problem
is described in detail below.

Step 1: Select parameters for the HPCSA including three CCSA parameters such as number of nests
Nnest, probability of a host bird to discover an alien egg in its nest PP, and maximum number
of iterations Imax.

Step 2: Select control variables for each solution by using Section 4.1.

Produce an initial population randomly so that Xmin ≤ Xs ≤ Xmax is always satisfied.

Step 3: Handle equality constraints by using Section “The equality constraints”.

Calculate fitness function by using either Equation (35) or (36).
Choose the best solution with the lowest fitness function value.
Set current iteration to 1, Icur = 1.

Step 4: Produce the first new solution by using Equation (21).

Dealing with inequality constraints by using Section “The inequality constraints”.
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Step 5: Calculate fitness function by using either Equation (35) or (36).

Perform section operation by using Equation (22).

Step 6: Produce the second new solutions by using proposed Algorithm 1.

Dealing with inequality constraints by using Section “The inequality constraints”.

Step 7: Calculate fitness function by using either Equation (35) or (36).

Perform section operation by using Equation (24).

Step 8: Determine the best solution with the lowest fitness function value.
Step 9: Determine the condition to stop the search process: If Icur < Imax, Icur = Icur + 1 and back to Step 4.

Otherwise, stop the search process and accept an optimal solution.

5. Case Study and Discussion of the Results

In order to verify the effectiveness, robustness, and convergence speed of the impact of the
proposed method, five main power systems, the 10-unit power system, 15-unit power system, IEEE-30
bus power system, IEEE-57 bus power system and IEEE-118 bus power system, are employed.
The detail of the five main systems in addition to the selections of population Nnest and the maximum
number of iterations Imax are summarized in Table 1. The proposed algorithm is to run 50 independent
trials for case 1 and case 2, 100 independent trials for case 3 and case 4, and 200 independent trials for
case 5 on a 2.4 GHz PC with 4 GB of RAM.

In addition to the two control parameters, PP is also tuned from 0.1 to 1 with a change of 0.1
for determining the best optimal solution. In order to demonstrate the effectiveness and robustness
of the proposed adaptive mutation technique, we also run CCSA for all considered study cases
above. For implementation of CCSA, control parameter setting is also carried out similarly as the
proposed method.

Table 1. Description of five main employed power systems and the selections of control parameters.

Name Description Fuel Cost Function Constraints Selection of Selection of

Eq. Eqs. Nnest Imax

Case 1 10-unit power system (4) (6), (12) 10 100
Case 2 15-unit power system (2) (6), (9) ÷ (12) 10 120
Case 3 The IEEE-30 bus power system - - - -

Sub-case 3.1 Single fuel with quadratic function (2) (6) ÷ (8), (14) ÷ (20) 10 100
Sub-case 3.2 Single fuel with VPLE and POZ constraints (4) (6) ÷ (8), (14) ÷ (20) 10 100
Sub-case 3.3 Multi fuels without VPLE (3) (6) ÷ (9), (14) ÷ (20) 10 100

Case 4 The IEEE-57 bus power system (2) (6) ÷ (8), (14) ÷ (20) 15 200
Case 5 The IEEE-57 bus power system (2) (6) ÷ (8), (14) ÷ (20) 20 250

5.1. Case 1: The 10-Unit System with Multi Fuels and Four Load Cases

In this section, we investigate the performance of the proposed method on a system with 10 units
using multi fuel options for four sub-cases in which sub-case 1.1 considers load of 2400 MW, sub-case
1.2 considers load of 2500 MW, sub-case 1.3 considers load of 2600 MW, and sub-case 1.4 considers
load of 2700 MW. The data of the system is taken from Ref. [3].

In addition to the implementation of CCSA, we also implement other popular methods such as
Particle swarm optimization (PSO), Firefly algorithm (FA), and Flower pollination algorithm (FPA)
for solving four subcases of case 1 for comparison. For running the additional methods, we set the
population of all methods to 10 whilst the maximum number of iterations is set to 200. The setting
aims to balance the number of new solution evaluations between CCSA, the proposed HPCSA, and
other methods. Besides, other control parameters of these methods are also set to different values in
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determined ranges. For instance, two acceleration factors c1 and c2 of PSO are set to different values
within 0 and 2.05 with a step size of 0.2, and the probability of FPA has been set to ten values from 0.1
to 1 with a step size of 0.1, while updated step size factor α of FA has been set to 4 values consisting of
0.25, 0.5, 0.75 and 1. The results obtained by these methods and the proposed method are reported
in Table 2. In comparison with CCSA, FA, PSO and FPA, it can be seen that the proposed method
obtains the lowest minimum cost, and it also obtains the lowest average cost, the lowest highest cost,
and the lowest standard deviation, excluding comparison with FPA for subcase 1.3. The indications
can confirm the superiority of the proposed method over other ones in terms of the global optimal
solution search ability, the stable search ability, and fast convergence to the global solutions.

For more evidence to demonstrate the fast convergence to global optimum of the proposed
method over CCSA, one of the best convergence characteristics of CCSA and the proposed method
are depicted in Figure 3 for sub-case 1.1 and Figure 4 for sub-case 1.2. The observations from the
curves show that the proposed method is always faster than CCSA once the drop of fitness function
from the proposed method is significant at the first iterations, and the drop is nearly not clear at the
last iterations while CCSA gets not much improvement at the first iterations, and the improvement
is still seen at the last iteration. On the other hand, the best fitness function of each run among 50
runs for sub-cases 1.1 and 1.2 are also taken into account in Figures 5 and 6. The figures indicate
that most optimal solutions found by the proposed method have approximately equal quality, and
the deviation between the worst solution and the best solution is very small, while the fluctuation
of CCSA’s solutions is very high. Clearly, the stabilization of optimal solution search ability of the
proposed method is superior to that of CCSA. Here, we can see three advantages of the proposed
method over CCSA, such as better quality solutions, faster convergence, and more stable search ability.
Consequently, it obviously results in a conclusion that the proposed method is much better than CCSA
for the system with thermal units using multi-fuel options.
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Table 2. The results obtained by Firefly algorithm (FA), particle swarm optimization (PSO), flower
pollination algorithm (FPA), CCSA and the proposed high performance cuckoo search algorithm
(HPCSA) for subcases of case 1.

Subcase Method Best Cost ($/h) Mean Cost ($/h) Worst Cost ($/h) Std. Dev. ($/h) NFES

1.1

FA 508.742 546.0893 618.8079 198.76584 2000
PSO 481.7629 487.8131 502.9694 74.71908 2000
FPA 481.7253 483.9445 490.5896 2.5693 2000

CCSA 481.727 481.8197 482.136 0.0784 2000
HPCSA 481.7227 481.734 481.779 0.0148 2000

1.2

FA 536.7378 580.7542 632.082 172.4974 2000
PSO 526.2895 531.8344 556.5096 33.95347 2000
FPA 526.2414 526.2926 526.4906 0.0512 2000

CCSA 526.2522 526.4374 529.0576 0.595 2000
HPCSA 526.2392 526.2471 526.2843 0.0093 2000

1.3

FA 583.4841 625.3787 659.5854 169.96985 2000
PSO 574.5034 581.1681 609.9326 49.3633 2000
FPA 574.3898 574.516 574.9305 0.158 2000

CCSA 574.41 574.5077 575.8832 0.2109 2000
HPCSA 574.3813 574.6089 575.4695 0.1862 2000

1.4

FA 639.1301 672.879 726.1476 7.72754 2000
PSO 623.8252 630.7629 668.3191 43.03717 2000
FPA 623.812 624.2896 626.5917 0.8572 2000

CCSA 623.8343 624.3534 635.1689 1.5145 2000
HPCSA 623.8096 624.1516 626.1913 0.3987 2000

For further investigation of the effectiveness of the proposed method, comparisons with other
methods are tabulated in Table 3. In addition to the best costs, the number of fitness evaluations
(NFES), which is equal to (Nnest × Imax) for one generation-based methods and (2 × Nnest × Imax) for two
generations-based methods, is also reported in the table. As known, the high population size and/or
the high number of iterations can lead to a significant improvement of results. Consequently, a method
with lower cost and lower NFES or the same NFES is a more effective method than other compared ones.
Based on the comparison criterion, the performance of the proposed method is evaluated for the test
case. As observed from the cost for sub-cases, the best cost from the proposed method is less than or
approximately equal to that from other ones excluding the cost from AHNN [5] for sub-cases 1.1 and 1.2.
Note that power generated by the method [5] is slightly less than the load demand. For comparison,
the proposed method has used smaller NFES than all methods whose NFES have been reported. The
proposed method has used NFES of 2000 while other methods have used from 3000 to 12,000 in which
AISA [10] with 3000, HDEDP [11] with 4000, RCGA [7] and HRCGA [7] with 8000, and DE [8] with
12,000. Clearly, the convergence speed to global optimum of the proposed method is much faster than
other ones. There is no evaluation executed on the comparison of the proposed method with others
such as HNN [3], HA [4], AHNN [5], ILNN [6], and MEP [9] because HNN [3], HA [4], AHNN [5] and
ILNN [6] are not the family of meta-heuristic algorithms, and no information was reported for MEP
in [9]. The analysis of the results indicates that the proposed method can yield approximate or better
solutions than others while NFES of the proposed method is much lower than that from others. As a
result, it can be concluded that the proposed method is more effective than other methods for the system.

Table 3. The result comparison about cost ($/h) between methods in case 1.

Method Sub-Case 1.1 Sub-Case 1.2 Sub-Case 1.3 Sub-Case 1.4 NFES

HNN [3] 487.780 526.130 574.260 626.120 -
HRCGA [7] 481.7226 526.2388 574.3808 623.8092 8000
RCGA [7] 481.7233 526.2393 574.3966 623.8094 8000

DE [8] 481.723 526.239 574.381 623.809 12,000
HA [4] 488.500 526.700 574.030 625.180 -

AHNN [5] 481.72 526.230 574.370 626.240 -
ILNN [6] 481.740 526.270 574.410 623.880 -
MEP [9] 481.779 526.304 574.473 623.851 -

AISA [10] 481.723 526.24 574.381 623.809 3000
HDEDP [11] 481.723 526.239 574.381 623.809 4000

Proposed method 481.7227 526.239 574.3812 623.8096 2000
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5.2. Case 2: The 15-Unit System Considering Prohibited Operating Zones Constraint

The test system consists of 15 units with four ones such as units 2, 5, 6 and 12 constrained by
POZ condition. The system load demand is 2650 MW and the spinning reserve of the system is
200 MW. The data of the system is from [9]. The obtained results by CCSA and proposed methods are
summarized in Table 4 while the best fitness convergence and the 50 runs are depicted in Figures 7
and 8. The numerical table can evaluate the best optimal solutions exactly while the figures can support
the exact evaluation of the stabilization of the 50 runs. The best cost from the proposed method is
$32,544.9704, but the cost from CCSA is $32,544.9834. The average cost from the proposed method is
also less than that from CCSA. Figure 7 confirms the faster search of the proposed method compared
to CCSA while Figure 8 shows a high fluctuation of CCSA, and most runs of CCSA show much higher
cost than those from the proposed method. Thus, the proposed method is more effective than CCSA
for the system with POZ constraints.

In Table 5, the best cost, average cost, maximum cost and NFES from the proposed method
are compared to those from other methods such as DM [13], LIM [14], QIEA [16], IQIEA [16] and
IALHN [17]. The comparisons of best cost show that the proposed method can converge to a more
effective optimal solution with less best cost than DM [13] and LIM [14] while the proposed method
also provides less mean cost and less maximum cost than QIEA and IQIEA. Moreover, the value of
NFES from the proposed method, 2000, is also smaller than from QIEA and IQIEA, which is 5000.
There was no NFES reported for other ones.

Table 4. The obtained results for the CCSA and proposed method in case 2.

Method CCSA Proposed Method

Best cost ($/h) 32,544.9834 32,544.9704
Mean cost ($/h) 32,548.1099 32,547.3881
Worst cost ($/h) 32,559.0233 32,563.9819
Std. dev. ($/h) 2.9503 3.5606
CPU time (s) 0.1513 0.1678
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Table 5. The result comparison about cost ($/h) between methods in case 1.

Method Total Cost ($/h) Mean Cost ($) Maximum Cost ($) NFES

DM [13] 32,549.80 - - -
LIM [14] 32,544.99 - - -

QIEA [16] 32,548.48 32,806.89 32,679.54 5000
IQIEA [16] 32,544.97 32,699.56 32,575.35 5000

IALHN [17] 32,544.97 - - -
Proposed method 32,544.9704 32,547.3881 32,563.9819 2400

5.3. Case 3: IEEE-30 Bus Power System

The test system is composed of 30 buses consisting of generation 6 buses and 24 load buses,
41 branches, 4 transformers and 9 switchable capacitor banks. The control variables for the system are
Pi (i = 1, . . . , 5), Vi (i = 1, . . . , 6), Qci (i = 1, . . . , 9) and Ti (i = 1, . . . , 4). For the system, there are three
sub-cases with three types of fuel cost function where sub-case 3.1 considers single fuel with quadratic
form, sub-case 3.2 considers single fuel with nonconvex form and POZ constraints, and sub-case 3.3
considers multi-fuels with piecewise form. The data of the fuel cost functions for these sub-cases are
taken from [20,22,41], respectively. The main data belonging to transmission lines of the systems is
taken from [25,42].

Figure 9 illustrates the fitness function values of 100 successful runs obtained by CCSA and the
proposed method for sub-case 3.1. As seen from the figure, most fitness function values of the proposed
method are lower than those of CCSA, and the fluctuation of CCSA is high while the deviation zone
of the proposed method is much narrower. In addition, the best costs, mean cost, standard deviation
and NFES from CCSA, and the proposed method for the three sub-cases are also given in Table 6
for subcase 3.1, in Table 7 for subcase 3.2 and in Table 8 for subcase 3.3 for comparisons with those
from other methods. Observations from such sub-cases show that the proposed method yields better
minimum cost than CCSA and most methods excluding MCBOA [34] for sub-cases 3.1, 3.2, and 3.3,
HIGA-BM [20], and EADPSO [24] for sub-case 3.3; however, MCBOA has used much high value NFES
with 25,000 (for sub-cases 3.1 and 3.2) and 45,000 (for sub-case 3.3) while that of HIGA-BM [20] and
EADPSO [24] are 12,000 and 12,500, respectively, but the value from the proposed method is only
2000. Besides, as we check the optimal solution reported in [24], the solution is valid but the exact
cost is $956.2325, which is much higher than the reported number of $629.4692. For sub-case 3.2, there
is an important note that HIGA-BM [20] has only reported active power of generators for optimal
solution, leading to a restriction for checking validation, and the effectiveness of the proposed method
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cannot be evaluated. The comparison of NFES to the proposed method and other methods indicates
that the proposed method is much faster than them because the proposed method used only NFES of
2000 while others have used from NFES of 4560 (HIGA [19]) to 45,000 (MCBOA [34]). For comparisons
of mean cost and standard deviation, the three subcases have the same result that those values of
other methods are better than those of the proposed method, but the deviation is not insignificant.
The results are because of the use of a much higher number of fitness evaluations of other methods.

As a result, it can be concluded that the proposed method is very efficient for solving the system
with different cases of fuel cost function. The key variables corresponding to the best fitness function
yielded by the proposed method for case 3 are given in Appendix A.
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Table 6. The result comparison for subcase 3.1.

Method Min. Cost ($/h) Mean Cost ($/h) Std. Dev. ($/h) NFES

IGA-EDQLF [18] 799.56 - - 6000
HIGA [19] 799.56 799.6497 0.0406 4560

HIGA-BM [20] 800.0435 800.122 0.0385 12,000
DE [21] 801.23 801.282 0.0663 -
DE [22] 799.2891 - - 25,000

PSO [23] 800.41 - - -
EADPSO [24] 800.2276 800.2625 0.0303 12,500

BBOA [26] 799.1116 799.1985 - 10,000 (15,000)
ARCBBOA [27] 800.5159 800.6412 - 10,000

TLBO [28] 800.7257 - - 25,000
ABCA [31] 800.6600 800.8715 - -
GWO [32] 799.5585 - - -

MELMA [33] 799.1821 - - -
MCBOA [34] 799.0353 - - 25,000 (45,000)

MSA [35] 800.5099 - - -
CCSA 799.2487 803.0061 2.2011 2000

Proposed method 799.0751 801.1872 1.2327 2000

Table 7. The result comparison for subcase 3.2.

Method Min. Cost ($/h) Mean Cost ($/h) Std. Dev. ($/h) NFES

HIGA-BM [20] 826.6962 - - 12,000
MCBOA [34] 830.4531 - - 25,000 (45,000)

CCSA 831.2097 839.179 7.33 2000
Proposed method 830.7992 835.620 5.95 2000
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Table 8. The result comparison for subcase 3.3.

Method Min. Cost ($/h) Mean Cost ($/h) Std. Dev. ($/h) NFES

DE [22] 650.8224 - - 25,000
PSO [23] 647.69 647.73 - -

EADPSO [24] 629.4692 629.6470 0.1159 12,500
BBOA [26] 647.7437 647.7645 - 10,000 (15,000)
ABCA [31] 649.0855 654.0784 - -

MELMA [33] 649.6309 - - -
MCBOA [34] 645.1668 - - 25,000 (45,000)

MSA [35] 646.8364 646.8603 - -
CCSA 646.4081 651.882 4.52 2000

Proposed method 646.0569 648.493 1.76 2000

5.4. Case 4: IEEE-57 Bus Power System

In this section, IEEE 57-bus system is employed as a test study to verify the effectiveness and
robustness of the proposed method. The system has 80 branches, 57 buses with 7 generator buses and
50 load buses, 15 transformers, and 3 switchable capacitor banks. The main data of the systems is
taken from [25,42]. For solving such system, the control variables for the system are Pi (i = 2, . . . , 7),
Vi (i = 1, . . . , 7), Qci (i = 1, 3), and Ti (i = 1, . . . , 15). Similar to other reported tables, the best cost,
mean cost, and standard deviation together with the value of NFES from the proposed method, CCSA,
and other compared methods are summarized in Table 9 for evaluation. In the table, the best costs
yielded by the proposed method and CCSA are $41,669.8269 and $41,694.5162, respectively, and the
comparison between the two numbers indicates that the optimal solution from the proposed method
can provide a lesser cost of $24.69. Again, the fitness function of 100 independent runs obtained by
CCSA and the proposed method depicted in Figure 10 illustrates the search ability superiority of
the proposed method over CCSA for 100 considered runs. It is clear that the proposed method can
find a higher number of good optimal solutions and a fewer number of bad optimal solutions than
CCSA because the number of blue points of the proposed method, which is below the number of black
points of CCSA, are higher while the number of black points of CCSA, which is more than the blue
points, are higher. Thus, the proposed method is more powerful and stronger than CCSA for searching
optimal solutions.
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Table 9. The result comparison for case 4.

Method Min. Cost ($/h) Mean Cost ($/h) Std. Dev. ($/h) NFES

EADPSO [24] 41,697.54 41,707.69 3.9157 7500
ARCBBOA [27] 41,686 41,718 - 50,000

GSA [30] 41,695.8717 - - -
ABCA [31] 41,693.9589 - - 14,000
PSO [25] 42,109.7231 44,688.4203 1786.3245 5000

PG-CF-PSO [25] 41,688.5004 42,032.7064 551.9334 5000
ITLBO [29] 41,638.3822 - - -
IICA [36] 41,738.4352 - - 110,000
COA [37] 41,901.9977 42,176.3511 610.17 -

GBBICA [38] 41,715.7101 - - 110,000
CCSA 41,694.5162 42,079.3565 106.18 6000

Proposed method 41,669.8269 41,887.5785 76.19 6000

For comparisons with other methods, there is a standout lower cost from ITLBO [29] of
$41,638.3822. However, the validation of the reported solution of ITLBO cannot be carried out
because ITLBO has reported only active power outputs of generators for decision variables while other
remaining decision variables such as capacitor banks’ reactive power output, transformers’ tap setting
and generators’ voltage have been omitted. For other comparisons with the second best method,
ARCBBOA [27] and the worst method, PSO [25], the optimal solution yielded by the proposed method
can provide a cost decreased by $16.17 and $439.89, respectively. Moreover, the comparison of NFES can
reflect fast search ability of the proposed method compared to most methods excluding methods in [25]
since the proposed method has used NFES of 6000 while that used by other methods is from 14,000
to 110,000. These methods have used 8000 to 105,000 fitness evaluations higher than the proposed
method, but the proposed method has used only 1000 fitness evaluations higher than methods in [25].
Most methods have tended to use high value of NFES for improving their performance. For instance,
ARCBBOA could provide the second lowest cost, but it has employed a very high NFES of 50,000, and
ABCA [31] has owned the four best costs, but its NFES is still high, up to 14,000. For comparison with
mean cost and standard deviation, the proposed method reaches smaller values than most methods,
excluding EADPSO [24] and ARCBBOA [27]. However, the two methods have used a higher number
of fitness evaluations, namely 7500 for EADPSO [24] and 50,000 for ARCBBOA [27] while that of the
proposed method is only 6000. Overall, it can lead to a conclusion that the proposed method is efficient
for the system. The key variables corresponding to the best fitness function yielded by the proposed
method for case 4 are given in Appendix A.

5.5. Case 5: IEEE-118 Bus Power System

In this section, the proposed method is run on the IEEE-118 bus power system with 54 generator
buses, 64 load buses, 186 branches, 9 transformers, and 14 capacitor banks. For the largest system,
the number of control variables is also the largest with respect to 130 variables such as active power
output of 53 generator excluding generator at slack bus 69, voltage of 54 generators, tap value of
9 transformers, and reactive generation of 14 capacitor banks. The whole data of the system is taken
from [25,42].

The best cost, mean cost, standard deviation and the value of NFES from the proposed method,
CCSA, and other existing methods are tabulated in Table 10 while the fitness function of 200 runs
achieved by CCSA and the proposed method are plotted in Figure 11. Comparison with CCSA
indicates that the proposed method can provide an optimal solution with less cost than that of CCSA
by $254.10, which is equivalent to a reduction of 0.2%. Figure 11 sees that both CCSA and the proposed
method have a high fluctuation among the runs; however, the fluctuation level of CCSA is much higher.
Besides, the number of blue points below black points is high but the number of blue points above black
points is small while most higher points belong to black points of CCSA. Clearly, the proposed method
is more powerful than CCSA in searching for an optimal solution for the system. For comparison with
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other methods, the proposed method still shows its potential search ability, as its optimal solution
leads to less cost than most methods excluding MPA [39]; however, there was no optimal solution
reported for the result, leading to a failure of verifying the validation. For cost improvement, the
proposed method can improve 3.63%, 10.51%, 6.72%, 2.17%, and 0.195% compared to MCBOA [33],
PSO [25], PG-CF-PSO [25], COA [37], and CCSA, respectively. Furthermore, mean cost and standard
deviation of the proposed method are also less than those from all methods. Comparison of NFES
indicates that the proposed method has used the same fitness evaluations of 10,000 as most methods
except MCBOA [33] use 22,500 fitness evaluations. In summary, the proposed method can obtain the
best optimal solution and the best stabilization of search ability among all compared methods while its
fitness evaluations are equal to or less than that of other ones. Consequently, it can be concluded that
the proposed method is the most effective method for case 5. The key variables corresponding to the
best fitness function yielded by the proposed method for case 5 are given in Appendix A.
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Table 10. The result comparison for case 5.

Method Min. Cost ($/h) Mean Cost ($/h) Std. Dev. NFES

MCBOA [34] 135,121.570 - - 22,500
PSO [25] 145,520.0109 158,596.1725 9454.4231 10,000

PG-CF-PSO [25] 139,604.1326 152,204.2608 6344.7031 10,000
COA [37] 133,110.4316 138,260.4028 4580.9556 -
MPA [39] 130,114.429 - - -

CCSA 130,477.3573 132,396.6865 938.431 10,000
Proposed method 130,223.2910 131,873.220 844.366 10,000

5.6. Discussion of Results

In this paper, we propose a high performance cuckoo search algorithm to take advantage of
conventional cuckoo search algorithms such as small number of control parameters and easily tuning
such control parameters and high possibility of convergence to global optimal solutions. Besides,
HPCSA also overcomes disadvantages that CCSA has been facing such as high number of fitness
evaluations, low stabilization of searching global optimal solutions, and high standard deviation.
In each iteration, CCSA consists of two new solution generations via global search and via local search.
The proposed method aims at local search and improves the quality of new solutions obtained by such
local search. Thus, the implementation process of such local search of the proposed method is more
complicated than that of CCSA, but there is no more additional control parameter needing adjustment.
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In comparison with other methods consisting of CCSA and other popular methods,
the performance of the proposed HPCSA method has been reflected via the main comparison of
the best cost and the number of fitness evaluations. Besides, mean cost and standard deviation have
also been added for some cases. On the other hand, t-test reflected by p-value can give evidence
of the improvement level of the proposed method over other ones. However, p values of Welch’s
t-test for comparison between the proposed and another are obtained only when enough information
consisting of mean cost, standard deviation cost, and the number of runs are reported. Furthermore,
the p-values can reflect the accurate improvement level of the proposed method over another if the
number of runs and the fitness evaluations of the proposed method and compared methods are the
same. The mean values and the standard deviation of two methods cannot be compared unless the
number of runs of the two methods is equal and the number of fitness evaluations of the two methods
is the same. A high number of runs can lead to a more accurate value of mean cost while a high
number of fitness evaluations can result in better minimum cost, better mean cost, and better standard
deviation cost [43]. In the paper, we have compared the results of the proposed method with more
than twenty methods while the number of runs and the fitness evaluation of these compared methods
are completely different. Thus, we could not run the proposed method with the same information
as each compared method. As a result, we calculate p-values for cases with sufficient conditions.
For other cases, we focus on the best cost and the number of fitness evaluations as priority comparison
criterion and then mean cost and standard deviation are compared for more accurate evaluation.
In Table 11, p-values of Welch’s t-test for comparison of the proposed method and other methods for
four subcases of case 1 are given. For evaluation of the p-values, significance level tα = 0.05 is considered,
and calculated p-values can be either less than 0.05 or higher than 0.05. If the p-value of compared
method is much smaller than 0.05, the improvement of the proposed method is highly significant.
On the contrary, if p-values are much higher than 0.05, the improvement of the proposed method over
a compared method is insignificant. As seen from p-values in the table, it can be pointed out that most
numbers are smaller than 0.05 excluding the p-value of FPA for subcase 1.3, which is approximately
0.3. The p-value means that there is insignificant improvement here for the proposed method over FPA.
In order to explain the p-value, mean cost and standard deviation of FPA are compared to those of the
proposed method. These values of FPA are 574.516 and 0.158, respectively, while those of the proposed
method are 574.6089 and 0.1862. Clearly, FPA reaches better mean cost and standard deviation cost
than the proposed method. However, the best cost of the proposed method is still better than that
of FPA, namely 574.3898 of FPA and 574.3813 of the proposed method. For another p-value such as
<0.0001 of FA for subcase 1.1, it shows that the mean and standard deviation of FA are much higher
than those of the proposed method. Namely, those of FA are 546.0893 and 198.7658, respectively, and
those of the proposed method are 481.734 and 0.0148, respectively. Clearly, if the proposed method
reaches much better mean and standard deviation than another method, the p-value is much lower
than 0.05. On the contrary, if the p-value is much higher than 0.05, the proposed method reaches
higher mean and standard deviation cost. As a result, it can lead to a conclusion that the best cost
and the number of fitness evaluations are the priority comparison criteria for giving the performance
conclusion of compared methods while mean cost and standard deviation cost or p-values are the
secondary comparison criteria for giving the improvement level of compared methods.

Table 11. p values of Welch’s t-test for comparison of the proposed method and others for case 1.

Subcase Method No. Runs Mean Cost ($/h) Std. Dev. ($/h) t df p-Value

1.1

HPCSA 50 481.734 0.0148
FA 50 546.0893 198.7658 2.289432 0.062013 <0.0001

PSO 50 487.8131 74.71908 0.57515 0.439068 ~0.02
FPA 50 483.9445 2.5693 5.630264 433.3116 ~0.0001

CCSA 50 481.8197 0.0784 2.88331 2,860,880 ~0.0001

1.2

HPCSA 50 526.2471 0.0093
FA 50 580.7542 172.4974 2.234373 0.823381 ~0.001

PSO 50 531.8344 33.95347 3.163606 15.12519 ~0.01
FPA 50 526.2926 0.0512 6.182693 964,386.6 <0.02

CCSA 50 526.4374 0.595 2.261277 6922.106 <0.02
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Table 11. Cont.

Subcase Method No. Runs Mean Cost ($/h) Std. Dev. ($/h) t df p-Value

1.3

HPCSA 50 574.6089 0.1862
FA 50 625.3787 169.9699 2.721194 0.848053 <0.05

PSO 50 581.1681 49.3633 4.939567 10.05458 <0.001
FPA 50 574.516 0.158 1.689999 80,046.64 ~0.3

CCSA 50 574.5077 0.2109 2.543561 60,972.02 ~0.01

1.4

HPCSA 50 624.1516 0.3987
FA 50 672.879 7.72754 44.52862 41.13723 <0.001

PSO 50 630.7629 43.03717 1.086198 1.322866 <0.001
FPA 50 624.2896 0.8572 1.032179 3874.28 <0.01

CCSA 50 624.3534 1.5145 0.911143 1136.704 <0.001

For further investigation of the performance of the proposed method, we continued to increase
the number of iterations for CCSA when applied to four subcases of case 1. Table 12 reports the
result of CCSA when setting Imax to 100, 120 and 140 while the result of the proposed method is
obtained by accepting Imax = 100. Subcase 1.1 indicates that the best cost, mean cost, and standard
deviation of CCSA can be improved when Imax is increased. Namely, the best costs are 481.727, 481.7235,
and 481.7229 while mean cost and standard deviation are 481.8197 and 0.0784, 481.7473 and 0.0237,
and 481.7283 and 0.0047, respectively, corresponding to Imax = 100, 120 and 140. In comparison with
the best cost of the proposed method, the best cost of CCSA at Imax = 140 is still slightly higher but in
comparison with mean cost and standard deviation of the proposed method, those of CCSA at Imax = 140
are lower. However, mean cost and standard deviation of CCSA at Imax = 120 are still higher than those
of the proposed method at Imax = 100. The analysis of obtained results for subcases 1.2, 1.3 and 1.4 are
also nearly similar to subcase 1.1.

In summary, it can be concluded that the proposed method can converge to the better optimal
solutions, own a more stable search ability, and reach faster convergence with smaller number of
fitness evaluations than CCSA.

Table 12. Result comparisons between CCSA and HPCSA for case 1 with different Imax of CCSA.

Sub-Case Method Imax Best Cost ($/h) Mean Cost ($/h) Worst Cost ($/h) Std. Dev. ($/h)

1.1
CCSA

100 481.727 481.8197 482.136 0.0784
120 481.7235 481.7473 481.8741 0.0237
140 481.7229 481.7283 481.7459 0.0047

HPCSA 100 481.7227 481.734 481.779 0.0148

1.2
CCSA

100 526.2522 526.4374 529.0576 0.595
120 526.241 526.2611 526.3261 0.0195
140 526.2395 526.2445 526.2723 0.0053

HPCSA 100 526.2392 526.2471 526.2843 0.0093

1.3 CCSA
100 574.41 574.5077 575.8832 0.2109
120 574.384 574.4682 574.7961 0.1054
140 574.3822 574.4407 574.752 0.0987

HPCSA 100 574.3813 574.6089 575.4695 0.1862

1.4
CCSA

100 623.8343 624.3534 635.1689 1.5145
120 623.8185 623.9837 626.1494 0.3997
140 623.8105 623.9264 626.2978 0.4359

HPCSA 100 623.8096 624.1516 626.1913 0.3987

6. Conclusions

In this paper, high quality optimization solutions of the considered ELD problem have been found
by implementing a high performance cuckoo search algorithm, which was an improved version of
the conventional cuckoo search algorithm. The proposed method has applied a new technique for
newly updating solutions and obtained much better results than those of CCSA method. The main
advantages of the proposed method over CCSA method can be summarized as follows:
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(i) Find better optimal solutions with lower number of iterations.
(ii) Own more stable search ability. Most solutions found by the proposed method over a number of

runs are approximate and close to the best solutions.

However, when employing the proposed method for dealing with all study cases of the considered
ELD problem, several difficulties have not been avoided, such as

(i) Optimal values of predetermined probability have to be tuned within the range from 0 to 1 with
a step of 0.1 while the number of nests and the number of iterations are selected by experiment.
For small scale systems and simple constraints like case 1 and case 2, optimal solutions are found
easily and successfully, but for large scale systems and complicated constraints like cases 3, 4 and
5, finding out optimal solutions is not an easy task.

(ii) For different systems with different constraints, the selection of control variables and the method
of calculating all remaining dependent variables as well as the construction of fitness function are
very difficult. Appropriate selections can result in high success rate, valid solutions, and high
quality solutions, but wrong selections can lead to opposite results.

On the other hand, the performance of the proposed method has been also investigated via
comparing with other existing methods of five study cases with different objective function forms
and different constraints, especially all constraints of transmission power networks. The result
comparisons have indicated that the proposed method has been superior to conventional methods,
popular meta-heuristic methods such as PSO, GA, DE, GA and other state-of-the-art methods.
As a result, it can lead to a conclusion that the proposed method is an effective optimization tool for
searching solutions of the ELD problem with complicated constraints regarding thermal units and
transmission power networks.

In the paper, we have applied CCSA and the proposed HPCSA for minimizing electricity
generation fuel cost of a set of available thermal generating units for the case of neglecting and
considering all constraints of a real power system with the presence of all electricity components.
However, the considered ELD problem will become more practical and more valuable if renewable
energies such as wind power plants and solar power plants are regarded as main electricity sources
together with the thermal units. Currently, the capacity of wind power plants and solar power plants
can be up to thousands of megawatts. Besides, solar energy is also stored for use at night, and wind
speed is also predicted relatively accuratelyy. Thus, exact mathematical formulation for wind power
plants and solar power plants and the implementation of the proposed method for the solutions of the
new ELD problem are our future work.
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Nomenclature

ai, bi, ci, ei, fi Coefficients of cost function for thermal unit i

aij, bij, cij, eij, fij
Coefficients of cost function for unit i corresponding to fuel type j fuel cost coefficients for
fuel type j of unit i reflecting valve-point effects

Bij, B0i, B00 Coefficients of power loss matrix
N Number of available thermal units
Pi Active power generation of thermal unit i
Pi,max Maximum active power generation of unit i
Pi,min Minimum active power generation of unit i
Pij,min Minimum active power generation for unit i corresponding to fuel type j
PD Active power requirement of all loads
PL Total active power losses in all transmission lines
Zbest The so-far best solution among all Z considered solutions
FF(Xs), F(Ys) Fitness function value of solution Xs, Ys

FF(Us), F(Zs) Fitness function value of solution Us, Zs
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Appendix

Table A1. Optimal solutions obtained by the proposed method for case 3.

Variable Subcase 3.1 Subcase 3.2 Subcase 3.3

P1 176.6652 139.9700 198.8593
P2 48.5631 54.9999 44.4769
P5 21.8754 24.3305 18.3710
P8 20.7430 34.9832 10.0051
P11 11.9756 20.8761 10.0194
P13 12.1570 14.7303 12.0073
V1 1.1000 1.0907 1.1000
V2 1.0875 1.0776 1.0790
V5 1.0634 1.0490 1.0500
V8 1.0704 1.0574 1.0628
V11 1.1000 1.1000 1.0990
V13 1.0993 1.0833 1.1000
Qc1 0.000 4.8000 4.7000
Qc2 1.7000 0.0000 5.0000
Qc3 5.0000 3.9000 4.1000
Qc4 3.8000 3.9000 0.1000
Qc5 2.6000 5.0000 4.0000
Qc6 5.0000 5.0000 1.7000
Qc7 3.6000 3.7000 3.4000
Qc8 5.0000 5.0000 5.0000
Qc9 2.1000 0.4000 5.0000
T11 1.0500 0.9700 1.0200
T12 0.9400 1.1000 0.9100
T15 1.0000 1.0200 0.9800
T36 0.9800 0.9800 1.0100

Table A2. Optimal solutions obtained by the proposed method for the IEEE-57 bus power system.

Variable Value Variable Value

P1 141.0787 T1 0.9000
P2 100.0000 T2 1.0600
P3 44.9664 T3 1.0000
P6 63.1274 T4 0.9600
P8 460.9205 T5 0.9900
P9 99.0144 T6 1.0100
P12 356.6532 T7 0.9800
V1 1.0870 T8 0.9600
V2 1.0848 T9 0.9000
V3 1.0760 T10 0.9700
V6 1.0886 T11 1.0300
V8 1.0973 T12 1.0000
V9 1.0710 T13 0.9500
V12 1.0709 T14 0.9900
Qc1 10.0000 T15 0.9400
Qc2 5.9000 T16 0.9100
Qc3 6.3000 T17 0.9800
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Table A3. Optimal solution obtained by NISSO for the IEEE-118 bus power system.

Variable Value Variable Value Variable Value

P1 (MW) 60.7336 P103 (MW) 2.7807 V76 (pu) 1.0253
P4 (MW) 1.0572 P104 (MW) 0.519 V77 (pu) 1.0293
P6 (MW) 15.1078 P105 (MW) 28.7272 V80 (pu) 1.0408
P8 (MW) 5.8423 P107 (MW) 18.9129 V85 (pu) 1.0278
P10 (MW) 384.509 P110 (MW) 35.9693 V87 (pu) 0.9903
P12 (MW) 72.4772 P111 (MW) 31.0835 V89 (pu) 1.044
P15 (MW) 0.9952 P112 (MW) 2.0914 V90 (pu) 1.0186
P18 (MW) 18.7331 P113 (MW) 0 V91 (pu) 1.037
P19 (MW) 17.5849 P116 (MW) 1.0049 V92 (pu) 1.0323
P24 (MW) 0.0291 V1 (pu) 1.0218 V99 (pu) 1.0374
P25 (MW) 193.2565 V4 (pu) 1.0252 V100 (pu) 1.0344
P26 (MW) 262.5185 V6 (pu) 1.0574 V103 (pu) 1.031
P27 (MW) 40.796 V8 (pu) 1.0781 V104 (pu) 1.003
P31 (MW) 7.8957 V10 (pu) 1.011 V105 (pu) 0.9992
P32 (MW) 17.9297 V12 (pu) 1.0178 V107 (pu) 1.0116
P34 (MW) 2.6833 V15 (pu) 1.0245 V110 (pu) 1.0301
P36 (MW) 4.5349 V18 (pu) 1.0145 V111 (pu) 1.0383
P40 (MW) 26.7448 V19 (pu) 1.0421 V112 (pu) 1.028
P42 (MW) 66.5657 V24 (pu) 1.1 V113 (pu) 1.0262
P46 (MW) 20.7819 V25 (pu) 1.0706 V116 (pu) 1.0422
P49 (MW) 185.6132 V26 (pu) 1.0288 Qc5 (MVAr) −39.5
P54 (MW) 46.0838 V27 (pu) 0.9869 Qc34 (MVAr) 1.5
P55 (MW) 46.1449 V31 (pu) 1.0142 Qc37 (MVAr) −2.3
P56 (MW) 21.4044 V32 (pu) 1.0233 Qc44 (MVAr) 8
P59 (MW) 138.1946 V34 (pu) 1.0164 Qc45 (MVAr) 1.5
P61 (MW) 152.5369 V36 (pu) 1.0343 Qc46 (MVAr) 0.1
P62 (MW) 8.2426 V40 (pu) 1.0564 Qc48 (MVAr) 0
P65 (MW) 355.0914 V42 (pu) 1.0213 Qc74 (MVAr) 7.9
P66 (MW) 273.8651 V46 (pu) 1.0283 Qc79 (MVAr) 6.9
P70 (MW) 10.1045 V49 (pu) 1.0371 Qc82 (MVAr) 20
P72 (MW) 0.9537 V54 (pu) 1.0359 Qc83 (MVAr) 3.4
P73 (MW) 25.3063 V55 (pu) 1.0345 Qc105 (MVAr) 15.1
P74 (MW) 3.6106 V56 (pu) 1.0625 Qc107 (MVAr) 5.2
P76 (MW) 36.7909 V59 (pu) 1.0696 Qc110 (MVAr) 3.3
P77 (MW) 5.674 V61 (pu) 1.0464 T8 (pu) 1.03
P80 (MW) 429.3572 V62 (pu) 1.0683 T32 (pu) 1.09
P85 (MW) 0.6222 V65 (pu) 1.0519 T36 (pu) 0.99
P87 (MW) 2.016 V66 (pu) 1.047 T51 (pu) 1.09
P89 (MW) 487.0964 V69 (pu) 1.0338 T93 (pu) 0.98
P90 (MW) 0.3816 V70 (pu) 1.0387 T95 (pu) 1.01
P91 (MW) 4.2073 V72 (pu) 1.0467 T102 (pu) 1.03
P92 (MW) 0.9548 V73 (pu) 1.0263 T107 (pu) 0.9
P99 (MW) 7.1701 V74 (pu) 2.7807 T127 (pu) 0.97
P100 (MW) 231.1577
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