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Abstract:



Economic load dispatch (ELD) is an important optimization problem for operating and controlling modern power systems, and if ELD is effectively executed, power systems work stably and economically. The main objective of this paper is to develop a novel method to solve the ELD with the purpose of minimizing the total fuel cost of all available generating units while requirements are to satisfy all constraints regarding thermal units, generators, and transmission power networks. The proposed high performance cuckoo search algorithm (HPCSA) is developed from the efficient technique for the second new solution generation of conventional cuckoo search algorithm (CCSA), called adaptive mutation technique. This proposed technique diversifies the local search ability based on a new comparison criterion. The HPCSA is verified on difference systems under special conditions, namely the 10-unit system with multi fuels, 15-unit system considering prohibited operating zones, and three IEEE systems with 30, 57, and 118 buses considering transmission power network constraints. The specific evaluation of the HPCSA is compared to that of Lagrange optimization-based methods (LMS), neural network-based methods (NNMS), CCSA, and other popular methods such as Particle swarm optimization (PSO) variants, Differential evolution (DE) variants, Genetic Algorithm (GA) variants, and state-of-the-art methods. In comparison with CCSA, the proposed method is always more effective and more robust since the proposed method can find most solutions with better quality and faster convergence speed. In comparison with LMS and NNMS, the proposed method can also find solutions with approximate or equal quality. In comparison with popular methods and state-of-the-art methods, the proposed method has more potential since it can reach faster convergence to valid solutions with approximate or better quality. Consequently, it can be concluded that the proposed HPCSA is an effective optimization tool for dealing with ELD problems.
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1. Introduction


Over the past decades, a high number of researchers have been devoted to solving optimization problems in engineering by applying conventional optimization algorithms or proposing improved algorithms. Even though there are some wider application areas where these works are applied, this study narrows down to the economic load dispatch (ELD) problem, which is to minimize the total electricity generation fuel cost of all thermal generating units and to satisfy all constraints of the units and other constraints related to transmission power networks [1,2]. For the considered problems, we consider five systems, in which the first system, namely the 10-unit system, considers multiple types of fuel; the second system, the 15-unit system, considers single fuel, prohibited zones, and spinning reserve for power systems; and the three remaining systems, IEEE 30, 57, and 118 buses, power networks and consider single fuel and all constraints.



So far, a large number of methods have been successfully applied for dealing with the five cases of the problem in which methods applied to the case of multi-fuel options are conventional Hopfield neural network (HNN) [3], hierarchical approach (HA) [4], adaptive Hopfield neural network (AHNN) [5], improved Lagrangian neural network (ILNN) [6], hybrid real-coded genetic algorithm (HRCGA) [7], differential evolution (DE) [8], modified evolutionary programming (MEP) [9], artificial immune system algorithm (AIS) [10] and hybrid differential evolution and dynamic programming (HDEDP) [11], and cuckoo search algorithm (CSA) [12]. Among these methods, ones based on neural network and numerical method have the same disadvantages, such as the hard task of tuning control parameters and stopping application for systems with non-differentiable functions. On the contrary, the remaining methods, DE, HRCGA, AISA, and CSA, can overcome such drawbacks, but they cope with other restrictions much depending on randomization and taking much time for tuning control parameters. Among methods belonging to neural networks, IALHN can be considered the most powerful method while CSA can be the most promising meta-heuristic method in the second group.



For the second system, with consideration of prohibited operating zones (POZ) constraints, several methods as CSA [12], the combination of decomposition method and Lagrange relaxation (DLR) [13], lambda iteration method (LIM) [14], particle swarm optimization (PSO) [15], improved quantum-inspired evolutionary algorithm (IQIEA) [16], and improved augmented Lagrange-Hopfield network (IALHN) [17] have been successfully applied with promising results, but most of these methods have not been evaluated in terms of convergence speed because iterations and execution time have not been reported. It is clear that the systems considering POZ constraints have attracted both conventional algorithms and recent meta-heuristic algorithms. Among the mentioned methods, DLR and LIM are the first two methods applied for handling such complicated constraints, and they have obtained optimal solutions with higher objective function than most other remaining methods excluding the comparison of LIM with PSO.



For IEEE 30, 57, and 118 buses power networks, complicated constraints of transmission power networks such as power and voltage limitations of generators, limitations of transformer tap, limitations of capacitor banks, capacity of transmission lines, and active and reactive power balance are taken into consideration. On the other hand, for the cases of considering the constraints associated with transmission power networks, the ELD problem can be also called optimal power flow (OPF) problem. For the complicated OPF problem, the three most popular IEEE systems with 30, 57 and 118 buses have been employed to test performance of optimization methods in terms of the ability to handle all constraints, quality of solutions, and processing speed. Most methods are the family of meta-heuristic algorithms in which conventional methods, modified methods, combination of two different methods, and hybrid methods have been developed widely. In fact, there have been a huge number of applied methods such as the integration of improved genetic algorithm and effective decoupled quadratic load flow (IGA-EDQLF) [18], hybrid IGA with incremental power flow model (HIGA) [19], HIGA with boundary method (HIGA-BM) [20], differential evolution [21,22], conventional PSO [23], Evolving ant direction particle swarm optimization (EADPSO) [24], PSO with Pseudo-Gradient and constriction factor (PG-CF-PSO) [25], Biogeography-based optimization algorithm (BBOAA) [26] and adaptive real-coded biogeography-based optimization algorithm (ARCBBOA) [27], teaching–learning-based optimization algorithm (TLBO) [28], improved TLBO (ITLBO) [29], gravitational search algorithm (GSA) [30], Artificial bee colony algorithm (ABCA) [31], Grey wolf optimizer (GWO) [32], modified electromagnetism-like mechanism algorithm (MELMA) [33], modified Colliding Bodies Optimization algorithm (MCBOA) [34], moth swarm algorithm (MSA) [35], improved imperialist competitive algorithm (IICA) [36], cuckoo optimization algorithm (COA) [37], Gaussian bare-bones imperialist competitive algorithm (GBBICA) [38], and mathematical programming algorithm (MPA) [39]. In [18,19,20], different variants of GA have been developed in which GA has been improved first and then combined with another method for handling constraints of OPF problem. In fact, Decoupled Quadratic Load Flow has been used in [18] for dealing with OPF problem while IGA has acted as an optimization tool for searching optimal solutions. Hybrid IGA has been applied in both [19,20] while incremental power flow model has been employed in [19], but boundary method has been used in [20]. Conventional PSO and two other improved versions have been suggested, respectively, for each OPF problem in [23,24,25]. In [19], five velocity-updating formulas have been proposed for EADPSO while ant colony search (ACS) has acted as operator for choosing the most appropriate model for each solution. Contrary, EADPSO and PG-CF-PSO have determined more effective direction for updating velocity by using pseudo-gradient theory and used constriction factor (CF) for focusing on potential search zone. The final comparison results have revealed that EADPSO has become more efficient than conventional PSO but less effective than PG-CF-PSO in terms of solution quality and solution searching speed. The authors in [27,29] have made a big effort in improving the performance of improved versions of BBOA and TLBO. However, the obtained results compared to BBOA and TLBO could not show any superiority of ARCBBOA and ITLBO over BBOA and TLBO. Among remaining methods, MSA is a new method applied to the problem and the comparison results show its strong search ability and stand out over other methods including most above-mentioned methods.



In order to solve the above-mentioned complicated problem, this paper proposes a method to modify the conventional cuckoo search algorithm, namely, the high-performance cuckoo search algorithm (HPCSA). In this paper, the proposed HPCSA is first developed by carrying an adaptive mutation technique with two modifications of the original mutation of conventional cuckoo search algorithm (CCSA) [40]. The first proposes two more equations for updating new solutions, adding to the original mutation model. However, only one out of the three equations needs to be determined for using the adaptive mutation technique for each considered solution depending on the solution’s fitness function value. Thus, the second is proposed to establish a decision of using the most appropriate equation for each solution by comparing the fitness function index of each solution compared to the fitness of the best solution and the average fitness index of all solutions compared to the best solution. The second modification is used for the purpose of supporting the first one effectively in its function, so that it can produce high quality solutions. Through the adaptive mutation technique, the proposed method can diversify its search due to exploiting local search and global search in between small and large zones.



The proposed method and CCSA are implemented based on the numerical results through the tests on other systems with different types of objective functions and adifferent set of constraints to demonstrate the effectiveness and robustness of the proposed technique. In addition, the proposed method is also compared to other existing methods, and then, its efficiency is analyzed and concluded. The main contributions to power system optimization field are as follows:

	(i)

	
Point out drawbacks of conventional Cuckoo search algorithm clearly and propose improvements on conventional Cuckoo search algorithm effectively




	(ii)

	
Present a clear description for handling constraints, namely selection of decision variables and calculation of dependent variables.




	(iii)

	
Investigate performance of the proposed method by testing on different systems with different constraints ranging from small-scale systems to large-scale systems, from simple constraint set to complicated constraint set related to thermal generating units and transmission power networks.









This paper is organized as follows: The introduction is presented in Section 1. Section 2 analyzes the economic load dispatch problem formulation. The classical cuckoo search algorithm is recalled, and the proposed method is developed in Section 3. The implementation of proposed method for solving load dispatch problems is introduced in Section 4. The study cases and discussion of the results are given in Section 5 and Appendix A. Finally, the conclusions are stated in Section 6.




2. Analysis for Economic Load Dispatch


2.1. Objective Function


Minimizing the total cost of electricity generation, the objective function of the ELD problem is considered as follows.
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(1)




where Fi(Pi) the ith fuel cost function, and can be represented in quadratic form as follows [2]:
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Considering the valve-point loading effects of the generating units, this fuel cost function has non-convex form, as shown in Equation (3). For better comparison of the complex between the quadratic form without valve point loading effects and the non-convex form with the valve effects, Figure 1 is constructed. As seen from the figure, non-convex form is a challenge for optimization tools.
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(3)






Figure 1. Fuel cost function for the case of single fuel option.
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The fuel cost function for the generating units, which are supplied with multiple fuel options, is mathematically formulated described as follows [21]:
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(4)







The fuel cost function can combine multiple fuel (MF) options and valve point effects (VPF), as depicted in Figure 2 and expressed by [15]:
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(5)




where eij and fij are fuel cost coefficients for fuel type jth of unit ith reflecting valve-point effects and mi is the number of fuel types of the thermal unit ith.


Figure 2. Fuel cost function for the case of multi-fuel options.
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2.2. Constraints


Thermal Generating Unit


Operating Generator constraints: Active and reactive power and working voltage of each generator must satisfy the following inequalities.
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[image: ]



(7)
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where Qi,min and Qi,max are the lower and upper reactive power output of generator ith, respectively; Vi,min and Vi,max are the allowed minimum and maximum voltage of generator ith, respectively; Qi and Vi are the reactive power output and working voltage of generator ith, respectively.



Prohibited Operating Zone constraints: Prohibited operating zones (POZ) exist in the input–output curve of each generator due to the steam valve operation or vibration in its shaft bearing. Therefore, the operating region of a generating unit with POZ will be broken into several isolated feasible sub-regions. The mathematical model of POZ is given in the following formula:
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(9)




where NPOZi is the number of prohibited zones of unit i; and [image: ] and [image: ] are upper and lower bounds for prohibited zone kth of unit ith, respectively; and kth is the POZ number of thermal unit ith.



Spinning reserve constraint: To enhance the stabilization operation of power systems, active power spinning reserve is required and expressed as follows:
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where SRP is the total active power that the power systems require for spinning reserve; SRPi is the active power spinning reserve of thermal generating unit ith and calculated as follows:
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where SRPi,max is the maximum active power that thermal generating unit ith can contribute to spinning reserve of the power system.



Real power balance constraints: The total real power output of generating units satisfies total load demand plus system power losses
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and the total power loss is calculated using Kron’s formula as follows:
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In addition, the active power balance constraints can be expressed with respect to terms in transmission lines as follows
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(14)




where Gij and Bij are the conductance and the susceptance of transmission line ijth connecting bus ith and bus jth.



Reactive power balance constraints: Similar to the constraint model in Equation (14), reactive power balance can be expressed as follows:
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in which, the presence of capacitor banks is a result of improving voltage and reduction of power losses; Qdi is reactive power requirement of load at bus ith; and Qci is the reactive power generation of capacitor banks installed at bus ith and is constrained by the following inequality:
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where Qci,min and Qci,max are the minimum and maximum reactive power generation of capacitor banks at bus i, respectively, and Nc is the number of buses where capacitors are installed.



Transformer tap constraints: The secondary voltage of a transformer corresponds to transformer tap location. Thus, the tap of the transformer should be set to the predetermined range shown in Equation (17):
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(17)




where Ti,min and Ti,max are the minimum and maximum transformer tap locations at bus ith respectively; Ti is the current tap location at bus ith; and Nt is the total number of buses where transformers are located.



Load bus voltage constraints: The voltage is one of the most important power quality criteria. Consequently, a stability voltage within the following range must supply the load as follows:
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where Vloadi,min and Vloadi,max are the minimum and maximum voltages at bus ith that loads at this bus can work, respectively.



Conductor capacity constraints: The capacity of conductor with respect to the maximum current is also represented as the maximum apparent in power system. The capacity must always satisfy the following rule.
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where Ncond represents the total number of conductors (transmission lines); Scondi,max is the capacity of conductor ith; and Scondi is the apparent power flow in conductor ith calculated by:
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where Snm and Smn are the apparent power flow from buses nth to mth and from buses mth back to nth, respectively.






3. Approaches


3.1. Classical Cuckoo Search Algorithm


Classical cuckoo search algorithm (CCSA) is composed of two generations for producing new solutions and two times for selection of promising solutions [40]. The first generation is carried out by using Lévy Flights stage and the second generation is done by using mutation operation called discarding identified eggs. The whole search process of CCSA is summarized in the four following steps:



Step 1: Lévy Flights for the first generation is calculated by the following inequality
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(21)




where α > 0 is the step size ranging from 0 to 1; Lévy (β) is calculated as in Ref. [40]; Xs is solution s that is stored from initialization or from the end of the loop procedure and s = 1, …, Nnest (where Nnest is the number of nests or the number of solutions in the population).



Step 2: Selection for keeping promising solutions: There are two solutions Xs and Ys at each nest s. Thus, only one solution is kept and another must be discarded by using the formula below.


[image: ]



(22)







Step 3: Mutation operation for the second generation: The second generation of new solutions is carried out here for improving the solution quality.
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where Zr1 and Zr2 are two randomly picked solutions from the current population, randUs is randomly produced within the range from 0 to 1 for solution Us, and PP is a predetermined probability for producing new solutions.



Step 4: Selection for keeping promising solutions: At the end of each iteration, selection operation is repeated for retaining promising solutions.
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The best solution among the solution set X = [X1, …, Xs, …, XNnest] is determined by choosing the solution with the lowest fitness function.




3.2. The Proposed Approach


In this section, the proposed HPCSA is developed by pointing out disadvantages of CCSA, and then solutions for overcoming the disadvantage are proposed. In the mutation technique shown in Equation (23), CCSA updates new solutions for current solution Us by using a jumping step, which is the difference between two randomly selected solutions Zr1 and Zr2. Clearly, the use of the three considered solutions can lead to several limitations such as low performance of local search and easily trapping into local optimum. Besides, the mutation of CCSA is always carried out by using the difference of only two random solutions over the search process with Imax iterations. Consequently, the mutation with Equation (23) reduces the diversity of the local search and global search of CCSA. To overcome the drawback, we suggest using the three following mutation modes for the current population.
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Among such mutation modes, rand/1 can narrow the search space while rand/2 and rand/3 can reach to larger search zone. The three modes can diversify the search strategy; however, the target is only reached as use of them is appropriate for considered solutions. Here, we classify the three different equations into two groups, small zone search group with rand/1 and large zone search group with rand/2 and rand/3. The condition of using either rand/1 or rand/2 and rand/3 is dependent on the comparison of ∆s and ∆mean, which are shown in Equations (28) and (29).
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where Zbest is the best solution among the solution set Z, in which Z = [Z1, Z2, …, ZNnest); FF(Zbest) is the fitness function value of the so-far best solution Zbest. ∆Zs is the fitness index of solution Zs compared to the so-far best solution Zbest; ∆mean is the average fitness index of all solutions compared to the best solution.



For the case of ∆Zs > ∆mean, it means that solution Zs is still far away the current so-far best solution, thus it needs to be search around the current solution Zs with a small zone nearby such solution Zs. On the contrary, for the case that ∆Zs is equal or less than ∆mean, larger jumping step will be applied because current solution is too close to the current best solution. For the latter case, rand/2 or rand/3 is used depending on a random condition of comparing between random number and 0.5. The adaptive mutation is described in detail in Algorithm 1.





	Algorithm 1: The proposed mutation technique



	              If              ∆Zs > ∆mean % using rand/1

                                   [image: ] % rand/1

                 else

                               if  rands > 0.5 % the second condition

                                   [image: ] % rand/2

                                else



                              [image: ] % rand/3

                              end

              end








4. Implementation


The proposed HPCSA method is implemented for solving ELD problem as follows.



4.1. Selection of Control Variables for Each Solution


As mentioned in Section 3.1, solution Xs is the initial solution produced at the beginning of the implementation of the proposed HPCSA method. Consequently, control variables should be determined and added in each solution Xs while solution Ys, Zs, and Us have the same control variables as Xs. In the paper, the ELD problem is constructed by using two different sets of constraints of which the first set of constraints neglecting all transmission power networks is comprised, and the second set of constraints that consider the transmission power network. The first set of constraints is composed of Equations (6) and (12), while the second set of constraints consists of all constraints. For the case considering the first constraint set, the control variables are all active power output of (N − 1) thermal generating units while the control variables are Pi (where i = 2, …., N), Vi (where i = 1, …., N), Ti (where i = 1, …., Nt), Qci (where i = 1, …., Nc).




4.2. Processing of Constraints


The equality constraints: For the ELD problem neglecting all constraints in transmission lines, the equality constraint in Equation (6) is exactly met by using the following equation
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(30)




where PL is calculated by using Equation (7) and the violation of P1 is penalized in fitness function. The detail of calculating P1 can be referred in Ref. [12]. For the case of considering all constraints in transmission lines, all control variables are added in the OPF program, Mathpower for running. Then, all dependent variables, such as P1 (active power output of generator at slack bus), Qi (where i = 1, …, N), Vloadi (where i = 1, …, Nload), and Sbranchi (where i = 1, …, Nbranch) are obtained. Such obtained dependent variables are verified and penalized in fitness function in the case that they are violated.



The inequality constraints: All control variables are checked and repaired. If Xs is higher than the maximum values of control variables, Xs will be assigned to maximum values, [image: ] and on the contrary, Xs will be set to [image: ] if it is lower than the minimum values. For the two cases of considering constraints, [image: ] and [image: ] are defined as follows
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4.3. Construction of Fitness Function


The Fitness function can reflect the objective function quality and the violation level of dependent variables. For the cases of neglecting and considering transmission line constraints, the fitness function is as follows
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where KPF is the penalty factor, and the limits related to dependent variables are determined by:
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4.4. The Proposed Algorithm


The completely iterative algorithm for implementation of the HPCSA for solving the ELD problem is described in detail below.

	Step 1:

	
Select parameters for the HPCSA including three CCSA parameters such as number of nests Nnest, probability of a host bird to discover an alien egg in its nest PP, and maximum number of iterations Imax.




	Step 2:

	
Select control variables for each solution by using Section 4.1.

	
Produce an initial population randomly so that [image: ] is always satisfied.









	Step 3:

	
Handle equality constraints by using Section “The equality constraints”.

	
Calculate fitness function by using either Equation (35) or (36).



	
Choose the best solution with the lowest fitness function value.



	
Set current iteration to 1, Icur = 1.









	Step 4:

	
Produce the first new solution by using Equation (21).

	
Dealing with inequality constraints by using Section “The inequality constraints”.









	Step 5:

	
Calculate fitness function by using either Equation (35) or (36).

	
Perform section operation by using Equation (22).









	Step 6:

	
Produce the second new solutions by using proposed Algorithm 1.

	
Dealing with inequality constraints by using Section “The inequality constraints”.









	Step 7:

	
Calculate fitness function by using either Equation (35) or (36).

	
Perform section operation by using Equation (24).









	Step 8:

	
Determine the best solution with the lowest fitness function value.




	Step 9:

	
Determine the condition to stop the search process: If Icur < Imax, Icur = Icur + 1 and back to Step 4. Otherwise, stop the search process and accept an optimal solution.











5. Case Study and Discussion of the Results


In order to verify the effectiveness, robustness, and convergence speed of the impact of the proposed method, five main power systems, the 10-unit power system, 15-unit power system, IEEE-30 bus power system, IEEE-57 bus power system and IEEE-118 bus power system, are employed. The detail of the five main systems in addition to the selections of population Nnest and the maximum number of iterations Imax are summarized in Table 1. The proposed algorithm is to run 50 independent trials for case 1 and case 2, 100 independent trials for case 3 and case 4, and 200 independent trials for case 5 on a 2.4 GHz PC with 4 GB of RAM.



In addition to the two control parameters, PP is also tuned from 0.1 to 1 with a change of 0.1 for determining the best optimal solution. In order to demonstrate the effectiveness and robustness of the proposed adaptive mutation technique, we also run CCSA for all considered study cases above. For implementation of CCSA, control parameter setting is also carried out similarly as the proposed method.



5.1. Case 1: The 10-Unit System with Multi Fuels and Four Load Cases


In this section, we investigate the performance of the proposed method on a system with 10 units using multi fuel options for four sub-cases in which sub-case 1.1 considers load of 2400 MW, sub-case 1.2 considers load of 2500 MW, sub-case 1.3 considers load of 2600 MW, and sub-case 1.4 considers load of 2700 MW. The data of the system is taken from Ref. [3].



In addition to the implementation of CCSA, we also implement other popular methods such as Particle swarm optimization (PSO), Firefly algorithm (FA), and Flower pollination algorithm (FPA) for solving four subcases of case 1 for comparison. For running the additional methods, we set the population of all methods to 10 whilst the maximum number of iterations is set to 200. The setting aims to balance the number of new solution evaluations between CCSA, the proposed HPCSA, and other methods. Besides, other control parameters of these methods are also set to different values in determined ranges. For instance, two acceleration factors c1 and c2 of PSO are set to different values within 0 and 2.05 with a step size of 0.2, and the probability of FPA has been set to ten values from 0.1 to 1 with a step size of 0.1, while updated step size factor α of FA has been set to 4 values consisting of 0.25, 0.5, 0.75 and 1. The results obtained by these methods and the proposed method are reported in Table 2. In comparison with CCSA, FA, PSO and FPA, it can be seen that the proposed method obtains the lowest minimum cost, and it also obtains the lowest average cost, the lowest highest cost, and the lowest standard deviation, excluding comparison with FPA for subcase 1.3. The indications can confirm the superiority of the proposed method over other ones in terms of the global optimal solution search ability, the stable search ability, and fast convergence to the global solutions.


Table 2. The results obtained by Firefly algorithm (FA), particle swarm optimization (PSO), flower pollination algorithm (FPA), CCSA and the proposed high performance cuckoo search algorithm (HPCSA) for subcases of case 1.





	
Subcase

	
Method

	
Best Cost ($/h)

	
Mean Cost ($/h)

	
Worst Cost ($/h)

	
Std. Dev. ($/h)

	
NFES






	
1.1

	
FA

	
508.742

	
546.0893

	
618.8079

	
198.76584

	
2000




	
PSO

	
481.7629

	
487.8131

	
502.9694

	
74.71908

	
2000




	
FPA

	
481.7253

	
483.9445

	
490.5896

	
2.5693

	
2000




	
CCSA

	
481.727

	
481.8197

	
482.136

	
0.0784

	
2000




	
HPCSA

	
481.7227

	
481.734

	
481.779

	
0.0148

	
2000




	
1.2

	
FA

	
536.7378

	
580.7542

	
632.082

	
172.4974

	
2000




	
PSO

	
526.2895

	
531.8344

	
556.5096

	
33.95347

	
2000




	
FPA

	
526.2414

	
526.2926

	
526.4906

	
0.0512

	
2000




	
CCSA

	
526.2522

	
526.4374

	
529.0576

	
0.595

	
2000




	
HPCSA

	
526.2392

	
526.2471

	
526.2843

	
0.0093

	
2000




	
1.3

	
FA

	
583.4841

	
625.3787

	
659.5854

	
169.96985

	
2000




	
PSO

	
574.5034

	
581.1681

	
609.9326

	
49.3633

	
2000




	
FPA

	
574.3898

	
574.516

	
574.9305

	
0.158

	
2000




	
CCSA

	
574.41

	
574.5077

	
575.8832

	
0.2109

	
2000




	
HPCSA

	
574.3813

	
574.6089

	
575.4695

	
0.1862

	
2000




	
1.4

	
FA

	
639.1301

	
672.879

	
726.1476

	
7.72754

	
2000




	
PSO

	
623.8252

	
630.7629

	
668.3191

	
43.03717

	
2000




	
FPA

	
623.812

	
624.2896

	
626.5917

	
0.8572

	
2000




	
CCSA

	
623.8343

	
624.3534

	
635.1689

	
1.5145

	
2000




	
HPCSA

	
623.8096

	
624.1516

	
626.1913

	
0.3987

	
2000










For more evidence to demonstrate the fast convergence to global optimum of the proposed method over CCSA, one of the best convergence characteristics of CCSA and the proposed method are depicted in Figure 3 for sub-case 1.1 and Figure 4 for sub-case 1.2. The observations from the curves show that the proposed method is always faster than CCSA once the drop of fitness function from the proposed method is significant at the first iterations, and the drop is nearly not clear at the last iterations while CCSA gets not much improvement at the first iterations, and the improvement is still seen at the last iteration. On the other hand, the best fitness function of each run among 50 runs for sub-cases 1.1 and 1.2 are also taken into account in Figure 5 and Figure 6. The figures indicate that most optimal solutions found by the proposed method have approximately equal quality, and the deviation between the worst solution and the best solution is very small, while the fluctuation of CCSA’s solutions is very high. Clearly, the stabilization of optimal solution search ability of the proposed method is superior to that of CCSA. Here, we can see three advantages of the proposed method over CCSA, such as better quality solutions, faster convergence, and more stable search ability. Consequently, it obviously results in a conclusion that the proposed method is much better than CCSA for the system with thermal units using multi-fuel options.


Figure 3. Fitness function curves iteration obtained by the CCSA and proposed method for sub-case 1.1.
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Figure 4. Fitness function curves iteration obtained by the conventional cuckoo search algorithm (CCSA) and proposed method for sub-case 1.2.
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Figure 5. Fitness function of 50 runs obtained by the CCSA and proposed method in case 1.1.
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Figure 6. Fitness function of 50 runs obtained by the CCSA and proposed method in case 1.2.
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For further investigation of the effectiveness of the proposed method, comparisons with other methods are tabulated in Table 3. In addition to the best costs, the number of fitness evaluations (NFES), which is equal to (Nnest × Imax) for one generation-based methods and (2 × Nnest × Imax) for two generations-based methods, is also reported in the table. As known, the high population size and/or the high number of iterations can lead to a significant improvement of results. Consequently, a method with lower cost and lower NFES or the same NFES is a more effective method than other compared ones. Based on the comparison criterion, the performance of the proposed method is evaluated for the test case. As observed from the cost for sub-cases, the best cost from the proposed method is less than or approximately equal to that from other ones excluding the cost from AHNN [5] for sub-cases 1.1 and 1.2. Note that power generated by the method [5] is slightly less than the load demand. For comparison, the proposed method has used smaller NFES than all methods whose NFES have been reported. The proposed method has used NFES of 2000 while other methods have used from 3000 to 12,000 in which AISA [10] with 3000, HDEDP [11] with 4000, RCGA [7] and HRCGA [7] with 8000, and DE [8] with 12,000. Clearly, the convergence speed to global optimum of the proposed method is much faster than other ones. There is no evaluation executed on the comparison of the proposed method with others such as HNN [3], HA [4], AHNN [5], ILNN [6], and MEP [9] because HNN [3], HA [4], AHNN [5] and ILNN [6] are not the family of meta-heuristic algorithms, and no information was reported for MEP in [9]. The analysis of the results indicates that the proposed method can yield approximate or better solutions than others while NFES of the proposed method is much lower than that from others. As a result, it can be concluded that the proposed method is more effective than other methods for the system.


Table 3. The result comparison about cost ($/h) between methods in case 1.





	Method
	Sub-Case 1.1
	Sub-Case 1.2
	Sub-Case 1.3
	Sub-Case 1.4
	NFES





	HNN [3]
	487.780
	526.130
	574.260
	626.120
	-



	HRCGA [7]
	481.7226
	526.2388
	574.3808
	623.8092
	8000



	RCGA [7]
	481.7233
	526.2393
	574.3966
	623.8094
	8000



	DE [8]
	481.723
	526.239
	574.381
	623.809
	12,000



	HA [4]
	488.500
	526.700
	574.030
	625.180
	-



	AHNN [5]
	481.72
	526.230
	574.370
	626.240
	-



	ILNN [6]
	481.740
	526.270
	574.410
	623.880
	-



	MEP [9]
	481.779
	526.304
	574.473
	623.851
	-



	AISA [10]
	481.723
	526.24
	574.381
	623.809
	3000



	HDEDP [11]
	481.723
	526.239
	574.381
	623.809
	4000



	Proposed method
	481.7227
	526.239
	574.3812
	623.8096
	2000










5.2. Case 2: The 15-Unit System Considering Prohibited Operating Zones Constraint


The test system consists of 15 units with four ones such as units 2, 5, 6 and 12 constrained by POZ condition. The system load demand is 2650 MW and the spinning reserve of the system is 200 MW. The data of the system is from [9]. The obtained results by CCSA and proposed methods are summarized in Table 4 while the best fitness convergence and the 50 runs are depicted in Figure 7 and Figure 8. The numerical table can evaluate the best optimal solutions exactly while the figures can support the exact evaluation of the stabilization of the 50 runs. The best cost from the proposed method is $32,544.9704, but the cost from CCSA is $32,544.9834. The average cost from the proposed method is also less than that from CCSA. Figure 7 confirms the faster search of the proposed method compared to CCSA while Figure 8 shows a high fluctuation of CCSA, and most runs of CCSA show much higher cost than those from the proposed method. Thus, the proposed method is more effective than CCSA for the system with POZ constraints.


Figure 7. Fitness function curves iteration obtained by the CCSA and proposed method for case 2.
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Figure 8. Fitness function of 50 runs obtained by the CCSA and proposed method in case 2.
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Table 4. The obtained results for the CCSA and proposed method in case 2.





	Method
	CCSA
	Proposed Method





	Best cost ($/h)
	32,544.9834
	32,544.9704



	Mean cost ($/h)
	32,548.1099
	32,547.3881



	Worst cost ($/h)
	32,559.0233
	32,563.9819



	Std. dev. ($/h)
	2.9503
	3.5606



	CPU time (s)
	0.1513
	0.1678









In Table 5, the best cost, average cost, maximum cost and NFES from the proposed method are compared to those from other methods such as DM [13], LIM [14], QIEA [16], IQIEA [16] and IALHN [17]. The comparisons of best cost show that the proposed method can converge to a more effective optimal solution with less best cost than DM [13] and LIM [14] while the proposed method also provides less mean cost and less maximum cost than QIEA and IQIEA. Moreover, the value of NFES from the proposed method, 2000, is also smaller than from QIEA and IQIEA, which is 5000. There was no NFES reported for other ones.


Table 5. The result comparison about cost ($/h) between methods in case 1.





	Method
	Total Cost ($/h)
	Mean Cost ($)
	Maximum Cost ($)
	NFES





	DM [13]
	32,549.80
	-
	-
	-



	LIM [14]
	32,544.99
	-
	-
	-



	QIEA [16]
	32,548.48
	32,806.89
	32,679.54
	5000



	IQIEA [16]
	32,544.97
	32,699.56
	32,575.35
	5000



	IALHN [17]
	32,544.97
	-
	-
	-



	Proposed method
	32,544.9704
	32,547.3881
	32,563.9819
	2400










5.3. Case 3: IEEE-30 Bus Power System


The test system is composed of 30 buses consisting of generation 6 buses and 24 load buses, 41 branches, 4 transformers and 9 switchable capacitor banks. The control variables for the system are Pi (i = 1, …, 5), Vi (i = 1, …, 6), Qci (i = 1, …, 9) and Ti (i = 1, …, 4). For the system, there are three sub-cases with three types of fuel cost function where sub-case 3.1 considers single fuel with quadratic form, sub-case 3.2 considers single fuel with nonconvex form and POZ constraints, and sub-case 3.3 considers multi-fuels with piecewise form. The data of the fuel cost functions for these sub-cases are taken from [20,22,41], respectively. The main data belonging to transmission lines of the systems is taken from [25,42].



Figure 9 illustrates the fitness function values of 100 successful runs obtained by CCSA and the proposed method for sub-case 3.1. As seen from the figure, most fitness function values of the proposed method are lower than those of CCSA, and the fluctuation of CCSA is high while the deviation zone of the proposed method is much narrower. In addition, the best costs, mean cost, standard deviation and NFES from CCSA, and the proposed method for the three sub-cases are also given in Table 6 for subcase 3.1, in Table 7 for subcase 3.2 and in Table 8 for subcase 3.3 for comparisons with those from other methods. Observations from such sub-cases show that the proposed method yields better minimum cost than CCSA and most methods excluding MCBOA [34] for sub-cases 3.1, 3.2, and 3.3, HIGA-BM [20], and EADPSO [24] for sub-case 3.3; however, MCBOA has used much high value NFES with 25,000 (for sub-cases 3.1 and 3.2) and 45,000 (for sub-case 3.3) while that of HIGA-BM [20] and EADPSO [24] are 12,000 and 12,500, respectively, but the value from the proposed method is only 2000. Besides, as we check the optimal solution reported in [24], the solution is valid but the exact cost is $956.2325, which is much higher than the reported number of $629.4692. For sub-case 3.2, there is an important note that HIGA-BM [20] has only reported active power of generators for optimal solution, leading to a restriction for checking validation, and the effectiveness of the proposed method cannot be evaluated. The comparison of NFES to the proposed method and other methods indicates that the proposed method is much faster than them because the proposed method used only NFES of 2000 while others have used from NFES of 4560 (HIGA [19]) to 45,000 (MCBOA [34]). For comparisons of mean cost and standard deviation, the three subcases have the same result that those values of other methods are better than those of the proposed method, but the deviation is not insignificant. The results are because of the use of a much higher number of fitness evaluations of other methods.


Figure 9. Fitness function of 100 runs obtained by the CCSA and proposed method in sub-case 3.1.
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Table 6. The result comparison for subcase 3.1.





	Method
	Min. Cost ($/h)
	Mean Cost ($/h)
	Std. Dev. ($/h)
	NFES





	IGA-EDQLF [18]
	799.56
	-
	-
	6000



	HIGA [19]
	799.56
	799.6497
	0.0406
	4560



	HIGA-BM [20]
	800.0435
	800.122
	0.0385
	12,000



	DE [21]
	801.23
	801.282
	0.0663
	-



	DE [22]
	799.2891
	-
	-
	25,000



	PSO [23]
	800.41
	-
	-
	-



	EADPSO [24]
	800.2276
	800.2625
	0.0303
	12,500



	BBOA [26]
	799.1116
	799.1985
	-
	10,000 (15,000)



	ARCBBOA [27]
	800.5159
	800.6412
	-
	10,000



	TLBO [28]
	800.7257
	-
	-
	25,000



	ABCA [31]
	800.6600
	800.8715
	-
	-



	GWO [32]
	799.5585
	-
	-
	-



	MELMA [33]
	799.1821
	-
	-
	-



	MCBOA [34]
	799.0353
	-
	-
	25,000 (45,000)



	MSA [35]
	800.5099
	-
	-
	-



	CCSA
	799.2487
	803.0061
	2.2011
	2000



	Proposed method
	799.0751
	801.1872
	1.2327
	2000








Table 7. The result comparison for subcase 3.2.





	Method
	Min. Cost ($/h)
	Mean Cost ($/h)
	Std. Dev. ($/h)
	NFES





	HIGA-BM [20]
	826.6962
	-
	-
	12,000



	MCBOA [34]
	830.4531
	-
	-
	25,000 (45,000)



	CCSA
	831.2097
	839.179
	7.33
	2000



	Proposed method
	830.7992
	835.620
	5.95
	2000








Table 8. The result comparison for subcase 3.3.





	Method
	Min. Cost ($/h)
	Mean Cost ($/h)
	Std. Dev. ($/h)
	NFES





	DE [22]
	650.8224
	-
	-
	25,000



	PSO [23]
	647.69
	647.73
	-
	-



	EADPSO [24]
	629.4692
	629.6470
	0.1159
	12,500



	BBOA [26]
	647.7437
	647.7645
	-
	10,000 (15,000)



	ABCA [31]
	649.0855
	654.0784
	-
	-



	MELMA [33]
	649.6309
	-
	-
	-



	MCBOA [34]
	645.1668
	-
	-
	25,000 (45,000)



	MSA [35]
	646.8364
	646.8603
	-
	-



	CCSA
	646.4081
	651.882
	4.52
	2000



	Proposed method
	646.0569
	648.493
	1.76
	2000









As a result, it can be concluded that the proposed method is very efficient for solving the system with different cases of fuel cost function. The key variables corresponding to the best fitness function yielded by the proposed method for case 3 are given in Appendix A.




5.4. Case 4: IEEE-57 Bus Power System


In this section, IEEE 57-bus system is employed as a test study to verify the effectiveness and robustness of the proposed method. The system has 80 branches, 57 buses with 7 generator buses and 50 load buses, 15 transformers, and 3 switchable capacitor banks. The main data of the systems is taken from [25,42]. For solving such system, the control variables for the system are Pi (i = 2, …, 7), Vi (i = 1, …, 7), Qci (i = 1, 3), and Ti (i = 1, …, 15). Similar to other reported tables, the best cost, mean cost, and standard deviation together with the value of NFES from the proposed method, CCSA, and other compared methods are summarized in Table 9 for evaluation. In the table, the best costs yielded by the proposed method and CCSA are $41,669.8269 and $41,694.5162, respectively, and the comparison between the two numbers indicates that the optimal solution from the proposed method can provide a lesser cost of $24.69. Again, the fitness function of 100 independent runs obtained by CCSA and the proposed method depicted in Figure 10 illustrates the search ability superiority of the proposed method over CCSA for 100 considered runs. It is clear that the proposed method can find a higher number of good optimal solutions and a fewer number of bad optimal solutions than CCSA because the number of blue points of the proposed method, which is below the number of black points of CCSA, are higher while the number of black points of CCSA, which is more than the blue points, are higher. Thus, the proposed method is more powerful and stronger than CCSA for searching optimal solutions.


Figure 10. Fitness function of 100 runs obtained by the CCSA and proposed method in case 4.
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Table 9. The result comparison for case 4.





	Method
	Min. Cost ($/h)
	Mean Cost ($/h)
	Std. Dev. ($/h)
	NFES





	EADPSO [24]
	41,697.54
	41,707.69
	3.9157
	7500



	ARCBBOA [27]
	41,686
	41,718
	-
	50,000



	GSA [30]
	41,695.8717
	-
	-
	-



	ABCA [31]
	41,693.9589
	-
	-
	14,000



	PSO [25]
	42,109.7231
	44,688.4203
	1786.3245
	5000



	PG-CF-PSO [25]
	41,688.5004
	42,032.7064
	551.9334
	5000



	ITLBO [29]
	41,638.3822
	-
	-
	-



	IICA [36]
	41,738.4352
	-
	-
	110,000



	COA [37]
	41,901.9977
	42,176.3511
	610.17
	-



	GBBICA [38]
	41,715.7101
	-
	-
	110,000



	CCSA
	41,694.5162
	42,079.3565
	106.18
	6000



	Proposed method
	41,669.8269
	41,887.5785
	76.19
	6000









For comparisons with other methods, there is a standout lower cost from ITLBO [29] of $41,638.3822. However, the validation of the reported solution of ITLBO cannot be carried out because ITLBO has reported only active power outputs of generators for decision variables while other remaining decision variables such as capacitor banks’ reactive power output, transformers’ tap setting and generators’ voltage have been omitted. For other comparisons with the second best method, ARCBBOA [27] and the worst method, PSO [25], the optimal solution yielded by the proposed method can provide a cost decreased by $16.17 and $439.89, respectively. Moreover, the comparison of NFES can reflect fast search ability of the proposed method compared to most methods excluding methods in [25] since the proposed method has used NFES of 6000 while that used by other methods is from 14,000 to 110,000. These methods have used 8000 to 105,000 fitness evaluations higher than the proposed method, but the proposed method has used only 1000 fitness evaluations higher than methods in [25]. Most methods have tended to use high value of NFES for improving their performance. For instance, ARCBBOA could provide the second lowest cost, but it has employed a very high NFES of 50,000, and ABCA [31] has owned the four best costs, but its NFES is still high, up to 14,000. For comparison with mean cost and standard deviation, the proposed method reaches smaller values than most methods, excluding EADPSO [24] and ARCBBOA [27]. However, the two methods have used a higher number of fitness evaluations, namely 7500 for EADPSO [24] and 50,000 for ARCBBOA [27] while that of the proposed method is only 6000. Overall, it can lead to a conclusion that the proposed method is efficient for the system. The key variables corresponding to the best fitness function yielded by the proposed method for case 4 are given in Appendix A.




5.5. Case 5: IEEE-118 Bus Power System


In this section, the proposed method is run on the IEEE-118 bus power system with 54 generator buses, 64 load buses, 186 branches, 9 transformers, and 14 capacitor banks. For the largest system, the number of control variables is also the largest with respect to 130 variables such as active power output of 53 generator excluding generator at slack bus 69, voltage of 54 generators, tap value of 9 transformers, and reactive generation of 14 capacitor banks. The whole data of the system is taken from [25,42].



The best cost, mean cost, standard deviation and the value of NFES from the proposed method, CCSA, and other existing methods are tabulated in Table 10 while the fitness function of 200 runs achieved by CCSA and the proposed method are plotted in Figure 11. Comparison with CCSA indicates that the proposed method can provide an optimal solution with less cost than that of CCSA by $254.10, which is equivalent to a reduction of 0.2%. Figure 11 sees that both CCSA and the proposed method have a high fluctuation among the runs; however, the fluctuation level of CCSA is much higher. Besides, the number of blue points below black points is high but the number of blue points above black points is small while most higher points belong to black points of CCSA. Clearly, the proposed method is more powerful than CCSA in searching for an optimal solution for the system. For comparison with other methods, the proposed method still shows its potential search ability, as its optimal solution leads to less cost than most methods excluding MPA [39]; however, there was no optimal solution reported for the result, leading to a failure of verifying the validation. For cost improvement, the proposed method can improve 3.63%, 10.51%, 6.72%, 2.17%, and 0.195% compared to MCBOA [33], PSO [25], PG-CF-PSO [25], COA [37], and CCSA, respectively. Furthermore, mean cost and standard deviation of the proposed method are also less than those from all methods. Comparison of NFES indicates that the proposed method has used the same fitness evaluations of 10,000 as most methods except MCBOA [33] use 22,500 fitness evaluations. In summary, the proposed method can obtain the best optimal solution and the best stabilization of search ability among all compared methods while its fitness evaluations are equal to or less than that of other ones. Consequently, it can be concluded that the proposed method is the most effective method for case 5. The key variables corresponding to the best fitness function yielded by the proposed method for case 5 are given in Appendix A.


Figure 11. Fitness function of 100 runs obtained by the CCSA and proposed method in case 5.



[image: Energies 11 01328 g011]





Table 10. The result comparison for case 5.





	Method
	Min. Cost ($/h)
	Mean Cost ($/h)
	Std. Dev.
	NFES





	MCBOA [34]
	135,121.570
	-
	-
	22,500



	PSO [25]
	145,520.0109
	158,596.1725
	9454.4231
	10,000



	PG-CF-PSO [25]
	139,604.1326
	152,204.2608
	6344.7031
	10,000



	COA [37]
	133,110.4316
	138,260.4028
	4580.9556
	-



	MPA [39]
	130,114.429
	-
	-
	-



	CCSA
	130,477.3573
	132,396.6865
	938.431
	10,000



	Proposed method
	130,223.2910
	131,873.220
	844.366
	10,000










5.6. Discussion of Results


In this paper, we propose a high performance cuckoo search algorithm to take advantage of conventional cuckoo search algorithms such as small number of control parameters and easily tuning such control parameters and high possibility of convergence to global optimal solutions. Besides, HPCSA also overcomes disadvantages that CCSA has been facing such as high number of fitness evaluations, low stabilization of searching global optimal solutions, and high standard deviation. In each iteration, CCSA consists of two new solution generations via global search and via local search. The proposed method aims at local search and improves the quality of new solutions obtained by such local search. Thus, the implementation process of such local search of the proposed method is more complicated than that of CCSA, but there is no more additional control parameter needing adjustment.



In comparison with other methods consisting of CCSA and other popular methods, the performance of the proposed HPCSA method has been reflected via the main comparison of the best cost and the number of fitness evaluations. Besides, mean cost and standard deviation have also been added for some cases. On the other hand, t-test reflected by p-value can give evidence of the improvement level of the proposed method over other ones. However, p values of Welch’s t-test for comparison between the proposed and another are obtained only when enough information consisting of mean cost, standard deviation cost, and the number of runs are reported. Furthermore, the p-values can reflect the accurate improvement level of the proposed method over another if the number of runs and the fitness evaluations of the proposed method and compared methods are the same. The mean values and the standard deviation of two methods cannot be compared unless the number of runs of the two methods is equal and the number of fitness evaluations of the two methods is the same. A high number of runs can lead to a more accurate value of mean cost while a high number of fitness evaluations can result in better minimum cost, better mean cost, and better standard deviation cost [43]. In the paper, we have compared the results of the proposed method with more than twenty methods while the number of runs and the fitness evaluation of these compared methods are completely different. Thus, we could not run the proposed method with the same information as each compared method. As a result, we calculate p-values for cases with sufficient conditions. For other cases, we focus on the best cost and the number of fitness evaluations as priority comparison criterion and then mean cost and standard deviation are compared for more accurate evaluation. In Table 11, p-values of Welch’s t-test for comparison of the proposed method and other methods for four subcases of case 1 are given. For evaluation of the p-values, significance level tα = 0.05 is considered, and calculated p-values can be either less than 0.05 or higher than 0.05. If the p-value of compared method is much smaller than 0.05, the improvement of the proposed method is highly significant. On the contrary, if p-values are much higher than 0.05, the improvement of the proposed method over a compared method is insignificant. As seen from p-values in the table, it can be pointed out that most numbers are smaller than 0.05 excluding the p-value of FPA for subcase 1.3, which is approximately 0.3. The p-value means that there is insignificant improvement here for the proposed method over FPA. In order to explain the p-value, mean cost and standard deviation of FPA are compared to those of the proposed method. These values of FPA are 574.516 and 0.158, respectively, while those of the proposed method are 574.6089 and 0.1862. Clearly, FPA reaches better mean cost and standard deviation cost than the proposed method. However, the best cost of the proposed method is still better than that of FPA, namely 574.3898 of FPA and 574.3813 of the proposed method. For another p-value such as <0.0001 of FA for subcase 1.1, it shows that the mean and standard deviation of FA are much higher than those of the proposed method. Namely, those of FA are 546.0893 and 198.7658, respectively, and those of the proposed method are 481.734 and 0.0148, respectively. Clearly, if the proposed method reaches much better mean and standard deviation than another method, the p-value is much lower than 0.05. On the contrary, if the p-value is much higher than 0.05, the proposed method reaches higher mean and standard deviation cost. As a result, it can lead to a conclusion that the best cost and the number of fitness evaluations are the priority comparison criteria for giving the performance conclusion of compared methods while mean cost and standard deviation cost or p-values are the secondary comparison criteria for giving the improvement level of compared methods.


Table 11. p values of Welch’s t-test for comparison of the proposed method and others for case 1.





	
Subcase

	
Method

	
No. Runs

	
Mean Cost ($/h)

	
Std. Dev. ($/h)

	
t

	
df

	
p-Value






	
1.1

	
HPCSA

	
50

	
481.734

	
0.0148

	

	

	




	
FA

	
50

	
546.0893

	
198.7658

	
2.289432

	
0.062013

	
<0.0001




	
PSO

	
50

	
487.8131

	
74.71908

	
0.57515

	
0.439068

	
~0.02




	
FPA

	
50

	
483.9445

	
2.5693

	
5.630264

	
433.3116

	
~0.0001




	
CCSA

	
50

	
481.8197

	
0.0784

	
2.88331

	
2,860,880

	
~0.0001




	
1.2

	
HPCSA

	
50

	
526.2471

	
0.0093

	

	

	




	
FA

	
50

	
580.7542

	
172.4974

	
2.234373

	
0.823381

	
~0.001




	
PSO

	
50

	
531.8344

	
33.95347

	
3.163606

	
15.12519

	
~0.01




	
FPA

	
50

	
526.2926

	
0.0512

	
6.182693

	
964,386.6

	
<0.02




	
CCSA

	
50

	
526.4374

	
0.595

	
2.261277

	
6922.106

	
<0.02




	
1.3

	
HPCSA

	
50

	
574.6089

	
0.1862

	

	

	




	
FA

	
50

	
625.3787

	
169.9699

	
2.721194

	
0.848053

	
<0.05




	
PSO

	
50

	
581.1681

	
49.3633

	
4.939567

	
10.05458

	
<0.001




	
FPA

	
50

	
574.516

	
0.158

	
1.689999

	
80,046.64

	
~0.3




	
CCSA

	
50

	
574.5077

	
0.2109

	
2.543561

	
60,972.02

	
~0.01




	
1.4

	
HPCSA

	
50

	
624.1516

	
0.3987

	

	

	




	
FA

	
50

	
672.879

	
7.72754

	
44.52862

	
41.13723

	
<0.001




	
PSO

	
50

	
630.7629

	
43.03717

	
1.086198

	
1.322866

	
<0.001




	
FPA

	
50

	
624.2896

	
0.8572

	
1.032179

	
3874.28

	
<0.01




	
CCSA

	
50

	
624.3534

	
1.5145

	
0.911143

	
1136.704

	
<0.001










For further investigation of the performance of the proposed method, we continued to increase the number of iterations for CCSA when applied to four subcases of case 1. Table 12 reports the result of CCSA when setting Imax to 100, 120 and 140 while the result of the proposed method is obtained by accepting Imax = 100. Subcase 1.1 indicates that the best cost, mean cost, and standard deviation of CCSA can be improved when Imax is increased. Namely, the best costs are 481.727, 481.7235, and 481.7229 while mean cost and standard deviation are 481.8197 and 0.0784, 481.7473 and 0.0237, and 481.7283 and 0.0047, respectively, corresponding to Imax = 100, 120 and 140. In comparison with the best cost of the proposed method, the best cost of CCSA at Imax = 140 is still slightly higher but in comparison with mean cost and standard deviation of the proposed method, those of CCSA at Imax = 140 are lower. However, mean cost and standard deviation of CCSA at Imax = 120 are still higher than those of the proposed method at Imax = 100. The analysis of obtained results for subcases 1.2, 1.3 and 1.4 are also nearly similar to subcase 1.1.


Table 12. Result comparisons between CCSA and HPCSA for case 1 with different Imax of CCSA.





	
Sub-Case

	
Method

	
Imax

	
Best Cost ($/h)

	
Mean Cost ($/h)

	
Worst Cost ($/h)

	
Std. Dev. ($/h)






	
1.1

	
CCSA

	
100

	
481.727

	
481.8197

	
482.136

	
0.0784




	
120

	
481.7235

	
481.7473

	
481.8741

	
0.0237




	
140

	
481.7229

	
481.7283

	
481.7459

	
0.0047




	
HPCSA

	
100

	
481.7227

	
481.734

	
481.779

	
0.0148




	
1.2

	
CCSA

	
100

	
526.2522

	
526.4374

	
529.0576

	
0.595




	
120

	
526.241

	
526.2611

	
526.3261

	
0.0195




	
140

	
526.2395

	
526.2445

	
526.2723

	
0.0053




	
HPCSA

	
100

	
526.2392

	
526.2471

	
526.2843

	
0.0093




	
1.3

	
CCSA

	
100

	
574.41

	
574.5077

	
575.8832

	
0.2109




	
120

	
574.384

	
574.4682

	
574.7961

	
0.1054




	
140

	
574.3822

	
574.4407

	
574.752

	
0.0987




	
HPCSA

	
100

	
574.3813

	
574.6089

	
575.4695

	
0.1862




	
1.4

	
CCSA

	
100

	
623.8343

	
624.3534

	
635.1689

	
1.5145




	
120

	
623.8185

	
623.9837

	
626.1494

	
0.3997




	
140

	
623.8105

	
623.9264

	
626.2978

	
0.4359




	
HPCSA

	
100

	
623.8096

	
624.1516

	
626.1913

	
0.3987










In summary, it can be concluded that the proposed method can converge to the better optimal solutions, own a more stable search ability, and reach faster convergence with smaller number of fitness evaluations than CCSA.





6. Conclusions


In this paper, high quality optimization solutions of the considered ELD problem have been found by implementing a high performance cuckoo search algorithm, which was an improved version of the conventional cuckoo search algorithm. The proposed method has applied a new technique for newly updating solutions and obtained much better results than those of CCSA method. The main advantages of the proposed method over CCSA method can be summarized as follows:

	(i)

	
Find better optimal solutions with lower number of iterations.




	(ii)

	
Own more stable search ability. Most solutions found by the proposed method over a number of runs are approximate and close to the best solutions.









However, when employing the proposed method for dealing with all study cases of the considered ELD problem, several difficulties have not been avoided, such as

	(i)

	
Optimal values of predetermined probability have to be tuned within the range from 0 to 1 with a step of 0.1 while the number of nests and the number of iterations are selected by experiment. For small scale systems and simple constraints like case 1 and case 2, optimal solutions are found easily and successfully, but for large scale systems and complicated constraints like cases 3, 4 and 5, finding out optimal solutions is not an easy task.




	(ii)

	
For different systems with different constraints, the selection of control variables and the method of calculating all remaining dependent variables as well as the construction of fitness function are very difficult. Appropriate selections can result in high success rate, valid solutions, and high quality solutions, but wrong selections can lead to opposite results.









On the other hand, the performance of the proposed method has been also investigated via comparing with other existing methods of five study cases with different objective function forms and different constraints, especially all constraints of transmission power networks. The result comparisons have indicated that the proposed method has been superior to conventional methods, popular meta-heuristic methods such as PSO, GA, DE, GA and other state-of-the-art methods. As a result, it can lead to a conclusion that the proposed method is an effective optimization tool for searching solutions of the ELD problem with complicated constraints regarding thermal units and transmission power networks.



In the paper, we have applied CCSA and the proposed HPCSA for minimizing electricity generation fuel cost of a set of available thermal generating units for the case of neglecting and considering all constraints of a real power system with the presence of all electricity components. However, the considered ELD problem will become more practical and more valuable if renewable energies such as wind power plants and solar power plants are regarded as main electricity sources together with the thermal units. Currently, the capacity of wind power plants and solar power plants can be up to thousands of megawatts. Besides, solar energy is also stored for use at night, and wind speed is also predicted relatively accuratelyy. Thus, exact mathematical formulation for wind power plants and solar power plants and the implementation of the proposed method for the solutions of the new ELD problem are our future work.
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Nomenclature




	ai, bi, ci, ei, fi
	Coefficients of cost function for thermal unit i



	aij, bij, cij, eij, fij
	Coefficients of cost function for unit i corresponding to fuel type j fuel cost coefficients for fuel type j of unit i reflecting valve-point effects



	Bij, B0i, B00
	Coefficients of power loss matrix



	N
	Number of available thermal units



	Pi
	Active power generation of thermal unit i



	Pi,max
	Maximum active power generation of unit i



	Pi,min
	Minimum active power generation of unit i



	Pij,min
	Minimum active power generation for unit i corresponding to fuel type j



	PD
	Active power requirement of all loads



	PL
	Total active power losses in all transmission lines



	Zbest
	The so-far best solution among all Z considered solutions



	FF(Xs), F(Ys)
	Fitness function value of solution Xs, Ys



	FF(Us), F(Zs)
	Fitness function value of solution Us, Zs








Appendix A






Table A2. Optimal solutions obtained by the proposed method for the IEEE-57 bus power system.





	Variable
	Value
	Variable
	Value





	P1
	141.0787
	T1
	0.9000



	P2
	100.0000
	T2
	1.0600



	P3
	44.9664
	T3
	1.0000



	P6
	63.1274
	T4
	0.9600



	P8
	460.9205
	T5
	0.9900



	P9
	99.0144
	T6
	1.0100



	P12
	356.6532
	T7
	0.9800



	V1
	1.0870
	T8
	0.9600



	V2
	1.0848
	T9
	0.9000



	V3
	1.0760
	T10
	0.9700



	V6
	1.0886
	T11
	1.0300



	V8
	1.0973
	T12
	1.0000



	V9
	1.0710
	T13
	0.9500



	V12
	1.0709
	T14
	0.9900



	Qc1
	10.0000
	T15
	0.9400



	Qc2
	5.9000
	T16
	0.9100



	Qc3
	6.3000
	T17
	0.9800
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Table 1. Description of five main employed power systems and the selections of control parameters.





	
Name

	
Description

	
Fuel Cost Function

	
Constraints

	
Selection of

	
Selection of




	
Eq.

	
Eqs.

	
Nnest

	
Imax






	
Case 1

	
10-unit power system

	
(4)

	
(6), (12)

	
10

	
100




	
Case 2

	
15-unit power system

	
(2)

	
(6), (9) ÷ (12)

	
10

	
120




	
Case 3

	
The IEEE-30 bus power system

	
-

	
-

	
-

	
-




	
Sub-case 3.1

	
Single fuel with quadratic function

	
(2)

	
(6) ÷ (8), (14) ÷ (20)

	
10

	
100




	
Sub-case 3.2

	
Single fuel with VPLE and POZ constraints

	
(4)

	
(6) ÷ (8), (14) ÷ (20)

	
10

	
100




	
Sub-case 3.3

	
Multi fuels without VPLE

	
(3)

	
(6) ÷ (9), (14) ÷ (20)

	
10

	
100




	
Case 4

	
The IEEE-57 bus power system

	
(2)

	
(6) ÷ (8), (14) ÷ (20)

	
15

	
200




	
Case 5

	
The IEEE-57 bus power system

	
(2)

	
(6) ÷ (8), (14) ÷ (20)

	
20

	
250
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