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Abstract: Common power system restoration planning strategy is based on a ‘build up’ approach,
where a blackout system is sectionalized among several islands for parallel restoration prior to
resynchronization. In order to speed up the resynchronization of the islands, each island must have
similar energizing times. However, there is a huge number of possible combinations of islands that
can be formed. Thus, this paper proposes a method to determine optimal islands that have similar
energizing times. The method involves identifying transmission lines that should not be connected
to form the islands. The proposed method is based on the combination of heuristic and discrete
optimization methods. The heuristic technique is proposed to find initial solution that is close to the
optimal solution. This solution will guide the optimization technique, which is the discrete Artificial
Bee Colony optimization method, to find the optimum solution. The proposed method also considers
restoration constraints including black start generator availability, load-generation balance, and the
maintenance of acceptable voltage magnitude within each island. The proposed method is validated
via simulation using IEEE 39, 118-bus and 89-bus European systems. The advantage of the proposed
method in terms of restoration time is demonstrated through a comparison with other literature.

Keywords: parallel power system restoration planning; system sectionalization; heuristic; discrete
artificial bee colony (DABC) optimization method

1. Introduction

Several blackouts have occurred recently, such as the major disturbance in Western Europe
in September 2003 [1], in northern India in July 2012 [2], in Pakistan in January 2015 [3], and the
widespread power blackout in March 2015 in Turkey [4]. Such blackouts caused economic losses due
to business disruptions, loss of production, as well as causing high safety risk to the public. In order to
minimize losses, the system needs to be restored as fast as possible. However, this requires careful
planning during the process of energizing individual power system components, such as generator
units, transmission lines, substation buses, loads, and other facilities, back to normal.

Two main restoration techniques to restore a blackout system are well explained in [5,6]. The first
technique is referred to as the ‘build-up’ technique, where the system is sectionalized into subsystems
or islands. The islands formed should fulfill the power generation-load balance and voltage limit
constraints. This can be done by ensuring that the total capacity of generators in the island is able
to fulfill the maximum load demand of the island. The availability of black start (BS) generators
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in each island must also be considered. The BS generator, which operates using auxiliary supply,
is required to initiate the reenergizing process. Parallel restoration of the islands is carried out before
resynchronizing the islands to a complete system. The main premise of this technique is to reduce the
total restoration time and avoid system blackout from reoccurring due to recurrent disturbances in the
affected island. In reenergizing power system units such as generators, buses, and loads in the islands,
two approaches are available. The first is to energize the islands’ backbone, which contains the main
units such as BS generator, non-black start generators (NBS), and critical loads (CLs) [7,8]. Once this
step has been carried out, the islands are resynchronized, and the rest of the units will continue to
be energized. The second approach is to energize all the power system units in the islands [9] before
the resynchronization process is carried out. The second technique is referred to as the ‘build-down’
technique, where the ‘bulk network’ is energized prior to resynchronizing loads and generators.
This process is carried out without sectionalizing the system into islands. Loads and generators will be
energized in parallel.

Since the main objective of the restoration process is to restore the system within a minimal
time, the ‘build up’ technique is commonly preferred. For example, this technique has been applied
to restore the power system network in the British network [10], Mexican network [11], and PJM
interconnections [12]. Many researchers have proposed power system restoration methods based
on this technique. The proposed strategy in [13] determines the cut set (line that should not be
connected) to sectionalize the system into islands using the graph theory method. Each island will
be restored independently before connecting all islands. In [9,14] graph theory and mathematical
techniques were combined and formed using spectral clustering based methodology to determine the
islands. In these works, the eigenvalues of Laplacian matrices are calculated to cluster the graph into
subgraphs, where the nodes in each subgraph are strongly connected based on the edge’s weight factor.
There are also attempts at using graph theory with Binary Decision Diagram (BDD) to sectionalize
the system [7,8]. In [7], BS availability, power balance and voltage stability constraints are considered
to determine the cut set. However, the energizing time is not a factor considered to determine the
created islands. The main consideration in this work is to maintain the stability margins of the islands.
The best energizing time is calculated once the islands have been formed. In [8], energizing time
is considered but the islands’ steady-state stability was not taken into account. The mathematical
approach is fast in terms of computation time. However, the combination of multiple linear and
nonlinear objectives, operation stages and constraints are complex and difficult to be incorporated in
determining the best possible islands with minimum restoration time. Due to this, researchers have
used heuristic techniques.

A heuristic technique for restoration strategy was proposed in [15,16]. This technique is based
on the search strategy such as breadth-first search or depth-first search, incorporated with specific
information to guide the search process. The method in [15] uses information such as local network
information for the target configuration and switching sequence. In addition, service restoration and
system reconfiguration are used to restore the system based on operator practices in [16]. However,
the published techniques are implemented for a small scale-network system (14 and 20 buses).
For large-scale and complex networks, heuristic technique may encounter difficulty in finding the
best solution. This technique might overlook the optimal solution due to single searching direction.
Furthermore, its accuracy depends on the specific rules which are based on the given information such
as level searching while fulfilling the restoration objective, operation stages and constraints. Due to
these problems, different optimization methods such as the Genetic Algorithm (GA), Firefly Algorithm
(FA) and Particle Swarm Optimization (PSO) algorithm have been applied to seek the global optima.

In [17], GA is used to form the islands by determining the optimal load un-served. In [18],
FA is applied to search the optimal sequences of generator unit’s restoration path and optimal
load pickup sequences with and without the presence of renewable energy resources. A discrete
(PSO) algorithm is investigated in [19] to determine the optimal skeleton paths for energizing the
network. The optimization method has the capability to find an optimal solution since it searches all
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possible solutions in different directions. Furthermore, multi nonlinear objectives, multi restoration
stage operation and multi constraints can be considered. The limitation of this technique is its high
computation time due to the huge searching space of a possible set of lines that can create islands
for restoration.

Considering the strength of the optimization method in finding the optimal solution and its
flexibility incorporating multiple objectives and constraints, this paper proposes a combination of
heuristic and optimization methods assisted by graph theory technique. The proposed heuristic
technique is to find initial cut set solutions which separate the blackout system among islands that
have an almost identical restoration time. Subsequently, the solution is used in the optimization method
to find the optimal solution which reduces the total restoration time until complete interconnection.
Finding the initial solutions is important to reduce the search space and increase the possibility of
finding the optimal solution in the optimization stage.

The proposed method defines the energizing time and minimum lines in the cut set
as the objectives while simultaneously considering the restoration constraints, which are BS
generator availability, load-generation power balance and maintaining acceptable voltage magnitude.
The discrete Artificial Bee Colony (DABC) is chosen due to its discrete nature of system network
topology. In addition, the ABC algorithm has a triple search operator and greedy selection scheme that
will maximize the possibility of finding the optimal solution in a short time. The proposed method
is implemented for both re-energizing approaches, (1) re-energizing the islands’ backbone units and
(2) re-energizing all islands’ units. The method has been tested using a 39 and 118 IEEE bus test system
and has shown promising results compared to other methods in literature.

This paper is organized in the following order; Section 2 shows the power restoration formulation
used in the proposed planning followed by Section 3, which presents the proposed power system
restoration strategy based on the heuristic technique and the DABC method. In Section 4, the detail
of the energizing time calculation algorithm is presented. Section 5 presents the proposed strategy
and the results gathered from the IEEE 39 and 118-bus test system. Finally, Section 6 presents the
conclusion drawn from the proposed strategy.

2. Power System Restoration Formulation

2.1. Objective Function

In this work, a strategy is proposed to create islands with almost identical energizing time,
t as shown in Figure 1, where t1 ≈ t2 ≈ t3. It is imperative that a common energizing time is achieved
between all the islands to speed up the system resynchronization process. For three islands, if t1 = α,
t2 = β and t3 = γ, the system resynchronization time is max (α, β, γ).

Figure 1. Three island power system.

In order to create number of islands, ‘r’ with almost identical energizing time, which in turn
reduces total restoration time until complete interconnection, a fitness function ( fTR) is proposed as
shown in (1).
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min( f1 + f2)

f1 = max {t1,, t2, . . . tr,} − min {t1,, t2, . . . tr,}
f2 = z× ttl

(1)

where: f1 represents the restoration time gap between the ‘r’ islands. A smaller gap indicates that
the islands created have almost identical restoration time, f2 corresponds to the total time of the
interconnection process, z is the number of lines in the cut set and ttl is the time to interconnect the cut
set. Fewer lines identified will reduce the total interconnection time.

2.2. Constraints

The restoration planning strategy needs to fulfill the restoration constraints in the following manner:

1. BS unit availability at each island.

ni∂ ∈ B ⊂ N, i = 1, 2 . . . b, ∂ = 1, 2 . . . r (2)

where: ni∂ is a set of buses in each ‘r’ island created, b is the bus number and ∂ is the total number
of islands. A subset B ⊂ N is defined to represent generators which are BS units in set of total
buses in a system. Each island must have at least one BS generator.

2. Load-generation balance.

Pmax
G∂ > Pmax

L∂ , ∂ = 1, 2 . . . r (3)

where: In each ‘r’ island, the total maximum active power generation Pmax
G∂ must be higher than

the total load Pmax
L∂ in order to avoid frequency drop and subsequent system collapse. In this

paper, reactive power balance is not considered. However, the balance of reactive power is
indirectly taken into account thorough the voltage profile constraint as per Equation (4). This is
due to the strong dependence of voltage magnitude on reactive power.

3. To maintain an acceptable steady state voltage profile.

0.9 p. u. ≤ Ui∂ p.u. ≤ 1.1 p.u., i = 1, 2 . . . b, ∂ = 1, 2 . . . r (4)

where: Each bus voltage in each ‘r’ island Ui∂ is within the acceptable voltage range in ±5–10% of
the rated voltage. Violating the boundaries of the nominal voltage will cause voltage instability,
which might affect the system.

3. Power System Restoration Planning

The proposed power system restoration planning is divided into three procedures. The first is
network modelling via graph theory, the second is the implementation of the heuristic technique to
identify the initial solutions, and the last procedure is to employ the DABC to determine the optimal
cut set. The procedures are explained as follows.

3.1. Network Modelling via Graph Theory

Power system properties can be described as an undirected graph, G = (V, E, W), consisting of
a set of nodes, V connected by a set of edges, E with weight factor, W [7]. V and E represent the system
buses and the transmission lines that connect the buses, respectively. The weight factor, W represents
the internal connectivity status of the edges. The connectivity status of the edge or line is 1 if it is
connected, and 0 if it is not connected. An example is a network model with b buses and l edges.
The elements are V = {v1, v2 . . . vi}, i = b, E = {e1, e2 . . . ei}, I = l and W = {w1, w2 . . . wi}, i = l. Subset
VG ⊂ V is defined as generator buses and VL ⊂ V as load buses. Other subsets in the system are
VBS ⊂ VG BS generator bus and VCL ⊂ VL critical load buses.
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Determination of the Shortest Energizing Path

The energizing path is determined between major equipment in the blackout system using the
k-shortest path method based on Dijkstra’s algorithm [20]. The algorithm is applied in the graph
theory model. The shortest energizing path is required to reduce the total restoration time. The path is
determined based on the total weight, Wk-path along the energizing path, k-path from node i to node
j. The weight is calculated using Equation (5). k represents the number of paths identified between
two nodes.

Wk−path = ∑ wa, a = {1, 2 . . . l} (5)

where: a represents the edges of connected sequence nodes {v1, v2 . . . vi}, i = b in each k path. l is the
total number of edges.

The shortest energizing path is identified between the k paths that have the lowest number of
connectivity. However if there is more than one path with a similar number of connections, the electrical
distance of the total edges along the paths will be calculated. The path with the lowest value of the
electrical distance along the path is selected as the shortest path.

Electrical distance in this paper is referred to the total line impedance between node i to node j
across the selected energizing path. The impedance in transmission line is defined as the line reactance
xij, excluding the line resistance, rij, because the value of the resistance is usually small, rendering
it negligible.

Sectionalizing the system into islands can be achieved by determining the edges to be removed
to create subgraphs. This is important in order to create optimum islands that have the lowest
energizing time.

3.2. Heuristic Technique

An initial cut set is required to guide the DABC optimization method to seek the optimum
solution. Without an initial solution, it will be time consuming and will be a daunting task for DABC
to determine the optimum solution. This is due to the nature of the power system configuration,
which consists of massive and non-continuous combinatorial search space. The proposed heuristic
technique is shown in Figure 2.

Figure 2. Heuristic technique.
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The technique is divided into two main steps. The first is to identify the generator skeleton units
available in each group island. This information is required to obtain a good starting point to create
islands with balanced size. Island size is described by the total restoration time taken by individual
generators, loads, and lines in each island. The second step is to expand the generator skeleton group
based on adjacent nodes to obtain the initial cut set.

The two main steps taken to determine the initial islanding solutions are described as follows.

3.2.1. Step 1: Identification of the Generator’s Skeleton Groups

Generator units for each island are identified by grouping them according to the shortest path.
This can be done by searching the entire possible generator skeleton group according to the number of
desired islands. The generator skeleton is the node point that connects the generators based on the
nearest edge paths using the k-shortest path method. The generator’s skeleton group is determined
and ranked according to the total power generation balance and skeleton’s size between the generator
groups. The procedure to identify generator’s skeleton groups is explained as follows:

1. The k-shortest path method is used to list all possible sets of generator’s groups,
grpσ = {g1, g2 . . . gσ}, where ‘σ’ represents the possible set number of different generator groups,
while ‘r’ represents the number of generator groups for each set by referring to the number of BS
generators. Each set needs to fulfill the following requirements (i) the skeletons of each group do
not overlap with each other, and (ii) each group must have at least one BS generator unit.

2. In each set of the generator groups, the total power generation and their skeleton size
are determined. The total power generation for ‘r’ generator group = {PG1, PG2 . . . PGr},
while the skeleton size is the number of edges covering the path between generator units in
a group, s = {s1, s2 . . . sr}. The total power generation balance (∆PG) and the gap of the skeleton
size (∆s) are calculated using Equations (6) and (7), respectively.

Total power generation balance between the islands,

∆PG = max {PG1, PG2 . . . PGr} −min {PG1, PG2 . . . PGr} (6)

Gap of the generator group’s skeleton size,

∆s = max {s1, s2 . . . sr} −min {s1, s2 . . . sr} (7)

3. Rank the sets according to the lowest active power generation balance between the groups and
the smallest gap size of the skeletons. This criterion is chosen to obtain a good initial starting
point to create islands with similar energizing time. In this work, five possible sets of generator
groups are selected as initial solutions.

4. Each set of generator group’s initial skeleton point is determined by connecting the generator
groups, g1, g2 . . . gr nodes using the k-shortest path algorithm. Assign the initial skeleton point
as {A1, A2 . . . Ar}.

3.2.2. Step 2: Searching for the Initial Cut Set

After identifying and ranking the group sets for the initial generator skeleton points, the first
five groups will undergo a search process to find the initial cut set. The steps required are explained
as follows:

1. Expanding the island step from the initial skeleton point is done by considering the restorative
time of generators, loads, buses and lines. The time taken to re-energize major power system
units is as follows: (1) Restart BS unit, 15 min; (2) Energise a bus from BS unit, 5 min; (3) Connect
tie line, 25 min; (4) Crank power to a NBS unit from a bus, 15 min; (5) Synchronized subsystems,



Energies 2018, 11, 1316 7 of 17

25 min; (6) Pick up load, 20 min [9,21]. The group with the lowest restoration times is chosen and
assigned as Ans.

2. Adjacent node with a degree of 1 from Ars nodes is determined. The nodes are connected one by
one to the skeleton group while checking their load-generation balance shown in Equation (8).
The connection process is continued until the total load is greater than the maximum active
power generation.

Pmax
Grs > Pmax

Lrs (8)

rs = island with lowest energizing time.

3. The steps in 1 & 2 are repeated until all nodes in the system are connected to r islands.
4. The lines that connect the nodes at different islands will be selected as the cut set.

3.3. Discrete ABC Method

Various researchers have implemented the ABC optimization technique in their studies [22,23].
Generally, the method comprises of 3 bee stages; employed, onlooker, and scout bee, all of which look
for the optimum solution. The conventional ABC optimization method is unsuitable for this work
due to the nature of power system configuration with the physical connection which acts as a discrete
behaviour without a linear relationship while the positions of transmission lines are represented as
integer numbers. The conventional method is based on a continuous approach that uses the floating
numbers. Thus, the modified discrete mutation process of the ABC method is proposed. The modified
mutation process for each stage of DABC method is implemented, as shown in Table 1.

The initial solution z1, z2 and z3 represents the cut set, which is determined from the heuristic
technique. The fitness function in Equation (1) will be calculated for each new cut set mutated using
the DABC method. The cut set with the lowest fitness function will be selected as the final solution.

Table 1. Discrete ABC mutation stages.

Initial Solution z1 z2 z3

Stage 1: Employed Bee Stage Mutation
First edge is randomly replaced x z2 z3

Second edge is randomly replaced z1 x z3
Third edge is randomly replaced z1 z2 x

One edge is randomly added z1 z2 z3 A
First edge is randomly replaced x z2 z3 A

Second edge is randomly replaced z1 x z3 A
Third edge is randomly replaced z1 z2 x A

Two edge is randomly added z1 z2 z3 B C
First edge is randomly replaced x z2 z3 B C

Second edge is randomly replaced z1 x z3 B C
Third edge is randomly replaced z1 z2 x B C

Stage 2: Onlooker Bee Stage Mutation 1

First edge of initial solution is removed z2 z3
Second edge is randomly replaced x z3
Third edge is randomly replaced z2 x

One edge is randomly added z2 z3 A
Second edge is randomly replaced x z3 A
Third edge is randomly replaced z2 x A

Two edge is randomly added z2 z3 B C
Second edge is randomly replaced x z3 B C
Third edge is randomly replaced z2 x B C

Stage 3: Scout Bee Stage Mutation
First & second edge is randomly replaced x x z3
Second & third edge is randomly replaced z1 x x

First & third edge is randomly replaced x z2 x
One edge is randomly added z1 z2 z3 A

First & second edge is randomly replaced x x z3 A
Second & third edge is randomly replaced z1 x x A

First & third edge is randomly replaced x z2 x A
Two edge is randomly added z1 z2 z3 B C

First & second edge is randomly replaced x x z3 B C
Second & third edge is randomly replaced z1 x x B C

First & third edge is randomly replaced x z2 x B C

Edges which have been replaced or added randomly (x, A, B) are highlighted in grey box. 1 Stage 2 will be repeated
by removing the second and third edges of the initial solution before proceeding to Stage 3.



Energies 2018, 11, 1316 8 of 17

4. Power Energizing Time Calculation

In this study, the energizing time is calculated once the cut set is determined and the islands
are created. The energizing time reflects the time taken for the major power system units in the
island to be energized. The calculation is based on the following order; BS generator starts up using
auxiliary supply, transmission line re-energizing to provide power to other generating units, and
load reconnection. Priority is given to reconnect the CLs followed by other loads in the system.
The k-shortest path is used to determine the shortest path to restore the major units in the island
based on the unit’s priority. There are two reenergizing approaches that can be used to restore the
power system. The first approach is to reenergize the backbone of the islands (BS, NBS and CLs
units), including the edges that reconnect the units. The second approach is to reenergize all units in
each island. The energizing time calculation is carried out in parallel for each island. Details of the
calculation process are explained as follows:

1. Graph theory is used to model the power system using the bus and line data. Both data are
required to assign the nodes, edges, and weights in the graph. The cut set is determined using
the proposed restoration strategy to create the desired number of islands. Each island calculates
the energizing time in parallel.

2. The energizing time algorithm uses the k-shortest method assisted by graph theory to search the
shortest path to reenergize the backbone, starting with the BS unit. The time taken to energize the
searched units is calculated. The first reenergizing approach will stop at this step.

3. The second approach continues to search and calculate the energizing time for the rest of the
major power system units. This step is repeated until all units in the island are restored.

5. Simulation Results

The proposed strategy is tested and validated using the IEEE 39 and IEEE 118-bus test systems.
In each test system, heuristic technique and DABC optimization method were used to determine the
optimal cut set. In this work, two reenergizing approaches cases are studied and analysed for each test
system. The cases are (1) re-energization of the island’s backbone network which energizes the BS unit,
NBS units, and CLs, and (2) re-energization of all power system units. Both approaches are calculated
for each created islands.

5.1. IEEE 39-Bus Test System

Figure 3 shows the test system of the IEEE 39 bus network. This test system consists of 10 generator
units, 21 load buses, and 46 transmission lines. Three BS units are located at buses 32, 33, and 37 [9].
Based on the BS unit, 3 islands can be created. The CLs are located at bus 7, 18, 21, 23 and 26. The rest of
the generator units and loads are considered as NBS and non-critical loads, respectively. Transformer
feeder is excluded from the possible cut set solution. All feeders except the transformer feeder are
assumed to have synchro check relay.

The test case is initially constructed as an undirected graph. The heuristic technique is applied to
create sets of generator’s groups based on the total power generation balance and gap of the skeleton
size using the k-shortest path method. Initially, the k-shortest path method is used to search for the
three shortest paths between the generator units in the test system. The weight of the edges’ connection
number and electrical distance are listed to rank the suitable answers. All generator unit buses with
shortest connections are shown in Table 2.
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Figure 3. Restoration strategy for IEEE 39-bus.

Table 2. Three shortest paths from one generator unit to others.

Generator Bus Shortest Path w, Edges No. (pu) z, Edges Electrical Distance (pu)

30
(30, 2, 25, 37) 3 0.0499
(30, 2, 1, 39) 3 0.0842

(30, 2, 25, 26, 29, 38) 5 0.1371

37
(37, 25, 2, 1, 39) 4 0.0979

(37, 25, 26, 29, 38) 4 0.1336
(37, 25, 2, 3, 4, 5, 6, 31) 7 0.1086

39
(39, 9, 8, 7, 6, 31) 5 0.1001

(39, 1, 2, 25, 26, 29, 38) 6 0.1851
(39, 9, 8, 7, 6, 11, 10, 32) 7 0.1076

31
(31, 6, 11, 10, 32) 4 0.0575

(31, 6, 5, 4, 14, 15, 16, 19, 33) 8 0.1181
(31, 6, 5, 4, 14, 15, 16, 19, 20, 34) 9 0.1357

32
(32, 10, 13, 14, 15, 16, 19, 33) 7 0.0992

(32, 10, 13, 14, 15, 16, 19, 20, 34) 8 0.1168
(32, 10, 13, 14, 15, 16, 21, 22, 35) 8 0.1268

33
(33, 19, 20, 34) 3 0.046

(33, 19, 16, 21, 22, 35) 5 0.0755
(33, 19, 16, 24, 23, 36) 5 0.1018

34
(34, 20, 19, 16, 21, 22, 35) 6 0.0931
(34, 20, 19, 16, 24, 23, 36) 6 0.1194

(34, 20, 19, 16, 17, 27, 26, 29, 38) 8 0.1703

35
(35, 22, 23, 36) 3 0.0511

(35, 22, 21, 16, 17, 27, 26, 29, 38) 8 0.1608

36 (36, 23, 24, 16, 17, 27, 26, 29, 38) 8 0.1871

The heuristic technique is applied to the graph model of the test case to obtain the generator
grouping. By referring to Table 2, the generator unit located at bus 30 will search the first three
nearest generator units. They are found at buses 37, 39, and 38. The shortest path connecting to these
three generators are through buses (30, 2, 25, 37), (30, 2, 1, 39), and (30, 2, 25, 26, 29, 38), respectively.
Generators at buses 37 and 39 are nearest to bus 30, with three edges connecting them. However, as the
electrical distance from (30→ 37) is smaller compared to (30→ 39), the selected sequence is from bus
30 to bus 37. The same step will continue with bus 37, and subsequently, until all generator units are
sequentially arranged. Finally, the generators are arranged according to the following sequence of
buses as 30, 37, 39, 31, 32, 33, 34, 35, 36, and 38. This arrangement gives a rough idea of how to arrange
the generators to form islands with approximately similar sizes.

Based on the generator grouping sequence, all the possible groups of generators are searched.
The groups are then ranked according to two criteria:

(a) Maximum active power generation balance
(b) Gap of the skeleton size.
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The generator grouping is ranked based on criterion (a) and if the values are identical, criterion
(b) will be considered. The best five group sets for this test system are presented in Table 3. Group set 1
is ranked first, since it has the lowest maximum power balance, which is 44 MW.

Table 3. Heuristic technique for IEEE 39 test system.

Group Set Group Island Generator Bus Power Gen. Balance, ∆P (MW) Skeleton Size Gap, ∆s Initial Cut Set

1
A1 30 37 38

44 26 1–39, 3–4, 14–15, 17–18, 17–27A2 31 32 39
A3 33 34 35 36

2
A1 33 34 35 36 38

1688 28
1–39, 5–6, 5–8, 10–13, 11–12,

14–15, 17–18, 25–26
A2 30 37
A3 31 32 39

3
A1 33 34 35 36 38

1921 26 3–4, 5–8, 7–8, 15–16, 17–18,
25–26

A2 30 37 39
A3 31 32

4
A1 30 37 38 39

2198 24 3–4, 3–18, 9–39, 14–15, 17–27A2 33 34 35 36
A3 31 32

5
A1 30 35 36 37 38 39

3676 26 3–4, 9–39, 14–15, 16–19A2 31 32
A3 33 34

The searching process to obtain the initial cut set for Group Set 1, as shown in Table 3, is as follows:

1. Figure 4 shows the generator skeleton for group A1, A2, and A3 groups. The buses that connect
the generator units are set in the same skeleton group. The load-generation power balance and
restorative time of individual power units for each skeleton group are determined. The group that
has the lowest restorative time is selected to expand the search for adjacent buses. Comparing
the 3 groups, A1 has the lowest energizing time, which is 125 min, while A2 and A3 are 155 min
and 165 min, respectively. Thus, A1 is selected first.

2. The search step is carried out by determining the buses that are adjacent to buses in group A1
with one degree of connection. Nodes 1, 3, and 27 are selected and connected to A1, as shown in
Figure 5. The energizing time for A1 becomes 170 min.

3. The process is iterated until all buses are selected and included in their respective groups. The final
result of group set 1 and the resultant initial cut set is shown in Figure 6.

Figure 4. Initial skeleton bus points for group A1, A2 and A3.
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Figure 5. Bus points for group A1, A2 and A3 after first searching step.

Figure 6. Initial solution for A1, A2 and A3 islands with 5 cutting edges.

The initial cut sets obtained from heuristic technique in Table 3 are used to guide the DABC
optimization method to search for the optimum solution. The DABC optimization method for both
reenergizing approaches, backbone, and total island network is conducted. For the purpose of
comparison with published work, only the result of the second reenergizing approach as shown in
Table 4 is discussed in detail.

From Table 4, it is shown that the cut sets 1–39, 3–4, 14–15, and 16–17 (as shown in Figure 3) are
the optimum results that have a fitness function of 115. The maximum energizing among the islands
is 195 min. The result shows that this is the fastest time in which the islands can be resynchronized.
A comparison of the optimal result with the initial cut set for group set 1 in Table 3 (1–39, 3–4, 14–15,
17–18, 17–27) indicates that three edges of the optimal cut sets (1–39, 3–4, 14–15) are similar while
one of the edges (16–17) are located at one degree adjacent different from 17–18, 17–27. Thus, it can
be concluded that the proposed heuristic technique helps narrow the search space to obtain the final
solution. Table 4 also compares the obtained results with [9,24,25]. The results show that the proposed
method is able to find similar cut sets with [9,24] and a better cut set 70 min faster compared to [25].
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Table 4. Methods for the ‘total island’ network reenergizing approach.

Method Group Island Generator Bus tGP (min) Final Cut Set Obj. Func., ∆T

Proposed method
1 31 32 39 195

1–39, 3–4, 14–15, 16–17 1152 30 37 38 195

3 33 34 35 36 180

Ref [9]
1 31 32 39 195

1–39, 3–4, 14–15, 16–17 1152 30 37 38 195

3 33 34 35 36 180

Ref [24]
1 31 32 39 195

1–39, 3–4, 14–15, 16–17 1152 30 37 38 195

3 33 34 35 36 180

Ref [25]
1 31 32 165

9–39, 8–9, 3–4, 26–27,
18–19, 15–16 1852 33 34 35 36 185

3 30 37 38 39 200

Power flow is conducted on the optimum solution to ensure that the voltage profile of the islanded
areas is in the acceptable range of ±5–10% of the rated voltage. The generator bus with the highest
generation capacity in each island is selected as the slack bus. The results are presented in Figure 7.
The results show that the voltage at each bus in the optimal islands falls within 0.9 p.u. to 1.1 p.u.

Figure 7. IEEE 39-bus voltage profile for the optimal three islands.

5.2. IEEE 118-Bus Test System

The proposed strategy is applied to the IEEE 118 bus system. The system has 19 generator units,
99 load buses, and 186 transmission lines as shown in Figure 8. Two BS units’ availability is assumed as
in [7] at buses 25 & 69. Other generators are defined as NBS units. The critical loads (CLs) are located
at buses 15, 18, 23, 27, 49, 54, 59, 80, 90, & 92, as in [7].
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Figure 8. Restoration strategy for IEEE 118 bus.

For comparison with published work in [7,14,26], similar conditions were applied, where only
the time of the backbone (first reenergizing approach) energizing was considered. The results of the
proposed methods are shown in Tables 5 and 6. Referring to Table 6, the cut sets using DABC are
19–20, 23–25, 23–32, 47–69, 49–69, and 65–68 with a fitness function of 265. The two islands are shown
in Figure 8. Similar to the 39 bus case, the optimal edges are compared with the initial cut set of the
first group set from heuristic result in Table 5 (22–23, 23–25, 23–32, 44–45, 47–49, 45–49, 48–49, 65–68,
49–69). The optimal edges contain four of the initial edges (23–25, 23–32, 49–69 65–68), with two of
the edges located at one and three degree adjacent different buses (47–69) and (19–20), respectively.
The optimum solution is found with three fewer edges compared to the initial solution.

Table 5. Heuristic technique for IEEE 118 test system.

Group Set Generator Bus
Group 1 Island

Generator Bus
Group 2 Island ∆P (MW) ∆s Initial Cut set

1 46 69 80 87 89 100 103
111 10 12 25 26 31 49 54 59 61 65 66 474.6 2

22–23, 23–25, 23–32, 44–45,
47–49, 45–49, 48–49, 65–68,

49–69

2 46 49 54 59 61 69 80
87 89 100 103 111 10 12 25 26 31 65 66 659.4 6

40–42, 41–42, 43–44, 59–60,
60–61, 61–62, 63–59, 64–61,
49–66, 68–69, 69–70, 70–74,

70–75, 81–80

3 10 12 25 26 31 65 46 49 54 59 61 66 69 80 87 89
100 103 111 1443.4 8

40–42, 41–42, 34–43, 63–64,
61–64, 65–66, 68–69, 24–70,

70–71, 68–81

4 10 12 25 26 31 46 49 54 59 61 65 66 69 80 87 89
100 103 111 2225.4 11 23–24, 19–34, 33–37, 30–38

5 46 49 54 59 61 69 10 12 25 26 31 65 66 80 87 89
100 103 111 2172.6 19

40–42, 41–42, 34–43, 60–62,
61–62, 64–65, 49–66, 68–69,

69–70, 69–75, 69–77

The energizing time for the backbone network of each island is compared with published results
from previous studies [7,14,26], as shown in Table 6. The final cut set from other studies is taken, and
the energizing time algorithm is calculated and compared. Even though the answer shows that the
proposed method contains more edges (6) in the cut set compared to other studies [7,14] and is similar
to [26], which contains 5, 5 and 6 edges in the cut set, the system resynchronization time of the proposed
method is the lowest. The time for the biggest island determines the system resynchronization start
time, and in this case, the proposed study reported an energizing time (360 min) that is 15 min lower
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compared to literatures (375 min) in [7,14,26]. The proposed method has the advantage of flexibility to
search for the best islands in a larger system.

Table 6. Methods for island’s backbone energizing approach.

Method Group Island Generator Bus tGP (min) Final Cut set Obj. Func., ∆T

Proposed method 1 69 80 87 89 100 103 111 245 19–20, 23–25, 23–32, 47–69,
49–69, 65–68 265

2 10 12 25 26 31 46 49 54 59 61 65 66 360

Ref [7]
1 46 49 54 59 61 65 66 69 80 87 89 100 103 111 375 15–33, 19–34, 24–70,24–72,

30–38
315

2 10 12 25 26 31 185

Ref [14]
1 46 49 54 59 61 65 66 69 80 87 89 100 103 111 375 33–37, 19–34, 30–38, 24–72,

24–70
315

2 10 12 25 26 31 185

Ref [26]
1 46 49 54 59 61 65 66 69 80 87 89 100 103 111 375 15–33, 19–34, 30–38,69–70,

70–75, 70–74 340
2 10 12 25 26 31 185

5.3. 89 Bus European Transmission System

To further validate the flexibility of the proposed method, a practical power system network
from part of the European high voltage transmission network is used. The network contains 89 buses,
12 generators, and 210 branches and it operates at 380, 220, and 150 kV [27]. This network is more
complex in terms of the number of interconnection lines as compared to IEEE 118. It has a high
number of line interconnection between buses. For example, for bus 659 it has 9 branches connected to
other buses.

For the test, the network is sectionalized into two islands via two re-energizing approaches;
(1) re-energizing the islands’ backbone units, (2) re-energizing all islands’ units. It is assumed that the
BS unit is at bus 913 & bus 6233 respectively. Meanwhile, the critical loads (CLs) are located at buses
1317, 2154, 3097, 4665, 6069, 7829 & 9192.

The results are presented in Table 7. It can be observed that the final cut set is high, up to 22 lines
to separate the system to assign number of island. This occurs since the test system consists of
a high number of interconnected lines. Based on the results, the heuristic and DABC method found
an identical cut-set with maximum island restoration time of 260 min for the first approach. However,
for the second approach, the DABC method managed to find a better cut-set compared to the heuristic
solution with 40 min difference, i.e., 840 min and 880 min respectively, with similar number of edges
in the cut-set. Figure 9 shows the 89 bus system separated into two islands for the second approach.
The DABC method managed to find different sets of generator groups with faster restoration times.

Table 7. 89 bus European test system results.

Re-Energizing
Approach Method Group Island Generator Bus tGP (min) Final Cut set

The islands’
backbone units

Heuristic
1 913 2107 2267

3659 5097 7279 255 2268–6069, 6069–6293, 1616–8574, 2299–3493, 2299–4423, 2299–6826,
3493–7563, 3493–4427, 3493–8335, 3493–5155, 271–3493, 2449–3506,

3493–4665, 3493–4495, 659–4929, 7762–9064, 955–3506,
659–8329, 792–3279, 2267–5416, 2299–8574, 317–24492 4586 6233 6798

7960 8605 9239 260

DABC
1 913 2107 2267

3659 5097 7279 255 2268–6069, 6069–6293, 1616–8574, 2299–3493, 2299–4423, 2299–6826,
3493–7563, 3493–4427, 3493–8335, 3493–5155, 271–3493, 2449–3506,

3493–4665, 3493–4495, 659–4929, 7762–9064, 955–3506,
659–8329, 792–3279, 2267–5416, 2299–8574, 317–24492 4586 6233 6798

7960 8605 9239 260

All islands’ units

Heuristic
1 913 2107 2267

3659 5097 7279 880 2268–6069, 6069–6293, 1616–8574, 2299–3493, 2299–4423, 2299–6826,
3493–7563, 3493–4427, 3493–8335, 3493–5155, 271–3493, 2449–3506,

3493–4665, 3493–4495, 659–4929, 7762–9064, 955–3506,
659–8329, 792–3279, 2267–5416, 2299–8574, 317–24492 4586 6233 6798

7960 8605 9239 560

DABC

1 913 2107 3659
5097 7279 840 2268–6069, 1616–8574, 2299–3493, 2299–4423, 2299–6826, 3493–7563,

3493–4427, 3493–8335, 3493–5155, 271–3493, 2449–3506, 3493–4665,
3493–4495, 659–4929, 7762–9064, 2268–6293, 2908–3506,

659–8329, 792–3279, 2299–8574, 2267–5210, 317–24492
2267 4586 6233
6798 7960 8605

9239
600

BS bus in each generator group is highlighted in bold.
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Figure 9. All islands’ unit restoration for the 89 bus European system, (a) Heuristic result
(b) DABC result.

6. Discussion and Future Work

In the proposed method, generators based on renewable energy such as solar photovoltaic,
PV and wind were not considered in the process of determining islands for restoration. These types of
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generators will be connected to the power system network only when the restoration is completed and
the system is stable. The reason is because these generators are intermittent in nature since they depend
highly on the availability of solar and wind energy. Their unstable power supply will pose a high risk
for the instability of the system during the restoration process. Furthermore, the low inertia in this
type of power generation will also affect the stability of the overall system, mainly in the frequency in
the case disturbance occurs during the restoration process.

The proposed method also can be used as the basis for future work in the area of dynamic analysis.
The restoration steps in each island could be analyzed to observe the best energizing steps (lines and
loads). From the analysis, a method to determine the best sequence of energizing considering the
stability frequency of the system could be proposed. This future method is important since large
frequency deviations in the build-up of an island may provoke the collapse of the islanded part of the
grid. Various control and protection strategies could be also proposed to cater for frequency deviations
during restoration sequences.

7. Conclusions

In this paper, a power system restoration planning strategy based on the combination of heuristic
and discrete optimization methods is proposed. A cut set (lines that should not be connected) to
sectionalize the system to islands during a total blackout was determined. Islands with almost
identical energizing time are searched to speed up the resynchronization time. The heuristic technique
scours the search space and provides the initial cut set based on lowest power active generation
balance and smallest gap of the generator skeleton size. The DABC optimization method further
uses this information to find the optimal cut set solution while fulfilling the restoration constraints.
Two different re-energizing approaches are carried out, (1) re-energizing the islands’ backbone units,
and (2) re-energizing all islands’ unit. The proposed strategy is tested using IEEE 39, IEEE 118 bus and
89 bus European systems. Based on the results, it can be seen that for the 39 bus system, the proposed
strategy is able to obtain the same results as published by other researchers. The robustness of the
proposed strategy is highlighted in the 118 bus system when the strategy is able to find optimal cut
set with lowest energizing time. The proposed technique is able to find a solution with 15-min faster
energizing time compared to published results. The proposed method’s robustness is further proven
in the test of 89 bus European system that has a high number of interconnection lines. In summary,
the proposed strategy managed to achieve the optimal solution for large and complex systems.
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