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Abstract: Combining the advantages of multicontinuum and multifracture representations provides
an easy-to-use tool to adequately capture the characteristic of the multiscaled fracture system in
shale gas reservoir. A hybrid model is established on the basis of simplified conceptual productivity
assumption, where the matrix volume is divided into two sub-domains (triple-porosity model and
dual-depletion flowing model) and the fracture volume is represented by discrete finite conductivity
fracture. In addition, the mechanisms of instant desorption, viscous flow and dual-depletion in
matrix are taken into account. The rate transient responses are then obtained by use of semi-analytical
approach. Based on the model, type curves are plotted and verified by comparing with alternative
reliable methods. Different flow regimes in shale gas reservoirs can be identified and detected.
The Generalized Likelihood Uncertainty Estimation methodology, based on probabilistic aggregation
theory, is employed to integrating those two productivity models together such that the production
can be predicted more accurately. A field example is applied to validate the applicability of this new
model. Finally, it is concluded that the proposed model can predict the rate and cumulative rate more
easily and practically.

Keywords: shale gas; multi-stage fracturing horizontal well; dual-depletion; conceptual model;
productivity model; generalized likelihood uncertainty estimation

1. Introduction

Shale gas reservoir is typical unconventional reservoir due to its ultra-low permeability and
porosity. Generally speaking, there is no natural productive capacity for such reservoirs. Multi-stage
fracturing technology for horizontal wells can activate the pre-existing natural fractures and generate
a complex fracture network called stimulated reservoir volume (SRV), which has become the most
effective method to develop shale resources [1]. Generally, SRV is defined as the part of the drainage
area impacted by hydraulic fractures and concomitant reactive fractures, where the productivity of
shale gas well could be effectively improved [2–6].

To characterize the transient performance for shale gas reservoirs, many scholars have made
some efforts to simulate the fluids flow and transport behaviors in such complexly-structured
fracture network through analytical and semi-analytical solutions [7–10]. These solutions are mostly
proposed in the terms of multi-porosity model and multi-linear model. For the multi-porosity model,
Barenblatt [11] and Warren and Root [12] firstly proposed the dual-porosity model to simulate the fluid
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exchange between matrix and fractures, where the exchange is assumed in the pseudo steady state.
Then, alternative transient models were proposed for simulating the fluid transfer between matrix and
fractures [13–15], which relaxed the pseudo-steady assumption. In addition, various triple-porosity
models were subsequently established to overcome the drawback of the dual-porosity model in terms
of multi-scale porosity description, such as dual-fracture/triple-porosity models [16] and improved
triple-porosity/permeability model [17–19]. Next, for multi-linear model, numerous field practices
demonstrate that many fractured reservoirs exhibit linear flow, which could last for several years.
El-Banbi [20] proposed a linear dual-porosity model for linear fractured reservoirs without considering
the impact of desorption, diffusion. Hasan and Al-Ahmadi [21] proposed a triple-porosity linear flow
model with consideration of the impact of shale gas desorption and diffusion. Zhao et al [22] proposed
a triple-porosity spherical flow model for the fractured infinite shale gas reservoirs by considering the
impact of diffusion and desorption. Obinna and Hassan [23] proposed the quadrilinear flow mode to
simultaneously the depletion from the matrix into natural and hydraulic fractures.

Nevertheless, it is very difficult to use these multi-porosity/linear models mentioned above
to investigate the actual performance for shale gas reservoirs. It is caused by the fact that the
characterization of diffusion and adsorption is not taken into account. Therefore, it is necessary
to comprehensively take the impact of various flowing mechanisms and multi-porosity characteristics
into account to obtain critical dynamic parameters for shale gas reservoirs. In this paper, for the
purpose of obtaining accurate results of performance analysis, the main work is twofold: proposing
two improved models to simulate production performance, and presenting a reliable probabilistic
algorithm to integrate these two models. It is noted that the fundamental model is established
on the basis of the work presented by Obinna and Hassan [23]. Some improvements are made:
(1) SRV zone is simulated as a triple-porosity cubic model by taking into account instant adsorption
and viscous flow; (2) two kinds of simplified conceptual models are generated to divide the matrix
volume into two sub-domains for the purpose of allowing simultaneous matrix-hydraulic fracture (HF)
and matrix-natural fracture (NF) depletion. Subsequently, the Generalized Likelihood Uncertainty
Estimation (GLUE) approach is built, based on probabilistic aggregation theory, in order to reduce the
uncertainty of performance analysis by integrating those two models. Finally, the numerical simulation
and field application are applied to validate this new simplified aggregation model. The improved
method in this paper could provide a robust methodology approach to quantify the uncertainty of
production prediction.

2. Productivity Model

A schematic for the improved model is presented in Figure 1. Figure 1a shows the model consists
of SRV region, unstimulated reservoir volume (USRV) region, and fracture region. Figure 1b shows
the simultaneous matrix-depletion into HF and NF. In addition, some assumptions are emphasized
as follows:

• SRV region is simplified as a cubic triple-porosity model, containing natural fractures, hydraulic
fractures and the matrix;

• Hydraulic fractures are perpendicular to the horizontal well and evenly distributed along the
wellbore, and the natural fractures are perpendicular to the hydraulic fracture. Horizontal
wellbore are equal to L, and the length of hydraulic fracture and the width of reservoir are equal
to ye;

• Hydraulic fracture is finite conductivity and assumed to be penetrated fully;
• Only the fluid flowing from hydraulic fractures to wellbore is considered;
• Simultaneous matrix-depletion into HF and NF is assumed pseudo-steady state, and the exchange

between HF and NF is assumed unsteady state;
• The effect of gravity and capillary pressure is not taken into account;
• Gas is slightly compressible and the compressibility coefficient is constant;
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• This paper considers the simultaneous depletion from the matrix into HF and NF. The matrix
in SRV region is artificially divided into two distinct segments which are denoted as sub-matrix
m1 and sub-matrix m2 respectively. The depletion process from the matrix to HF and NF in SRV
region (seen in Figure 1b);

• Sub-matrix m1 feeds the HF via inter-porosity exchange;
• Sub-matrix m2 feeds the NF via inter-porosity exchange.

Figure 1. (a) The illustration of multi-fractured horizontal well; (b) The two segments of matrix in
stimulated reservoir volume (SRV) zone.

The conceptual model can get some further detailed divisions based on different methods. Hence,
two different approaches would be developed to characterize dual-depletion in the following section.

2.1. Conceptual Model

2.1.1. Conceptual Model 1

The matrix is divided into two sections. Some further assumptions are made to derive the
following formulas:

1. Sub-matrix m1 and sub-matrix m2 mix up with each other evenly, which means that both of them
have the same width Lf, length LF and thickness H (see the Figure 2a);

2. Sub-matrix m1 and sub-matrix m2 have different porosities denoted as Φm1 and Φm2, and the
total porosity of the total matrix denoted as Φm is the sum, presented as:

Φm = Φm1 + Φm2 (1)

Figure 2. Two new conceptual models of matrix: (a) conceptual model 1; (b) conceptual model 2.
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Based on the assumptions mentioned above, the pore volume ratio χ is introduced to describe
this characterization [24], which satisfies:

χ =
Φm1

Φm1 + Φm2
(2)

2.1.2. Conceptual Model 2

The matrix is artificially divided into two sections. Some further assumptions are made to derive
the following formulas:

1. Sub-matrix m1 and sub-matrix m2 are strictly separated in the vertical direction, and the whole
matrix is divided into two layers.

2. Both of them have the same width Lf, length LF and porosity (see Figure 2b), which is given as:

Φm = Φm1 = Φm2 (3)

3. Sub-matrix m1 and sub-matrix m2 have different thicknesses denoted as H1 and H2, and the total
thickness of the matrix is denoted as H, which is the sum of those two parts:

H = H1 + H2 (4)

Based on the assumptions, the thickness ratio γ is introduced to describe this character, and the
definition of this parameter is derived as:

γ =
H1

H1 + H2
(5)

2.2. Mathematical Model

Based on the mass balance principle, the governing equations considering the adsorption,
desorption and viscous flowing can be established respectively (see Appendix A).To simplify these
equations, dimensionless variables are introduced (see in Table 1), and then the final dimensionless
governing equations are derived.

Table 1. Definition of dimensionless variables.

Dimensionless Variables Definitions

Dimensionless pseudo pressure ψD =
ψi − ψj

ψi − ψw f
, where j = F, f1, f2, m1, m2

Dimensionless time tD =
3.6kFit

µΛ1 Acw
, Λ1 = (φct)F+ f1+m1+m2 +

ZPscTVLPL

TscP(PL + P)2

Dimensionless space yD =
y

Acw
, Acw = 2xeh, xD =

x
LF/2

Dimensionless inter-porosity index λF− f =
12
L2

F

k f

kF
Acw, λ f−m1 =

12
L2

F

km1
kF

Acw, λ f−m2 =
12
L2

F

km2
kF

Acw

Dimensionless storability ratio ωj =
(φct)j

Λ1
, where j = F, f1, f2, m1, m2

Dimensionless conductivity ratio η =
kFi/Acw

k f 1/(LF/2)2

Dimensionless production data qD =
8.589× 10−6qscT

(ψi − ψw f )kFi
√

Acw

Dimensionless permeability ratio τ = kFi/k f 2
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2.2.1. Conceptual Model 1

For Model 1, the corresponding equation governing fluid flowing is presented as follows:

1. The pressure equation governing fluid flow in hydraulic fracture is given as:

∂2ψDF

∂y2
D
−

λF− f

3

(
∂ψD f

∂xD

)∣∣∣∣
xD=1

− λF−m1

3

(
∂ψD f

∂x∗D

)∣∣∣∣
x∗D=1

= ωF
∂ψDF
∂tD

(6)

2. The pressure equation governing fluid flow in natural fracture is given as:

∂2ψD f

∂y2
D
− λF−m2

λF− f

(
∂ψDm2

∂y∗D

)∣∣∣∣
y∗D=1

=
3ωF
λF− f

∂ψD f

∂tD
(7)

3. The pressure equation governing fluid flow in matrix 1 is given as:

∂2ψDm1

∂x∗D
2 =

3
λF−m

χ(ωm + ωd)
∂ψDm2

∂tD
(8)

4. The pressure equation governing fluid flow in matrix 2 is given as:

∂2ψDm2

∂y∗D
2 =

3
λ f−m2

[(1− χ)ωm + ωd]
∂ψDm2

∂tD
(9)

2.2.2. Conceptual Model 2

In the upper layer unit, the mathematical model is described by the following
differential equations.

1. The pressure equation governing fluid flow in hydraulic fracture is given as:

∂2ψDF2

∂y2
D
−

λF− f

3

(
∂ψD f

∂xD

)∣∣∣∣
xD=1

= ωF
∂ψDF2

∂tD
(10)

2. The pressure equation governing fluid flow in natural fracture is given as:

∂2ψD f 2

∂x2
D
− λF−m2

λF− f

(
∂ψDm2

∂y∗D

)∣∣∣∣
y∗D=1

=
3ωF
λF− f

∂ψD f 2

∂tD
(11)

3. The pressure equation governing fluid flow in matrix 2 is given as:

∂2ψDm2

∂y∗D
2 =

3
λ f−m2

(ωm + ωd)
∂ψDm2

∂tD
(12)

In the lower layer unit, the mathematical model is described by the following
differential equations.

4. The pressure equation governing fluid flow in hydraulic fracture is given as:

∂2ψDF1

∂y2
D
−

λF− f

3

(
∂ψD f 1

∂x∗D

)∣∣∣∣
x∗D=1

− λF−m1

3

(
∂ψDm1

∂x∗D

)∣∣∣∣
x∗D=1

= ωF
∂ψDF1

∂tD
(13)
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5. The pressure equation governing fluid flow in natural fracture is given as:

∂2ψD f 1

∂x2
D

=
3ω f

λF− f

∂ψD f 1

∂tD
(14)

6. The pressure equation governing fluid flow in matrix 1 is given as:

∂2ψDm1

∂x∗D
2 =

3
λ f−m1

(ωm + ωd)
∂ψDm1

∂tD
(15)

In addition, the corresponding conditions are list in Table 2.

Table 2. Qualitative description of initial and boundary conditions.

Condition Model 1 Model 2

Initial

ψDF(yD, 0) = ψDF1(yD, 0) = ψDF2(yD, 0) = 0

ψD f (xD, 0) = ψD f 1(xD, 0) = ψD f 2(xD, 0) = 0

ψDm1(x∗D, 0) = ψDm2(y∗D, 0) = 0

Inner boundary

HF
∂ψDF
∂yD

∣∣∣∣
yD=0

= −2π

∂ψDF1
∂yD

∣∣∣∣
yD=0

= −2π
γ

∂ψDF2
∂yD

∣∣∣∣
yD=0

= − 2π
1− γ

NF

∂ψD f

∂xD

∣∣∣∣
xD=0

= 0,

ψD f

∣∣∣
xD=1

= ψDF

∂ψD f 1

∂xD

∣∣∣∣
xD=0

= 0,

ψD f 1

∣∣∣
xD=1

= ψDF1

∂ψD f 2

∂xD

∣∣∣∣
xD=0

= 0,

ψD f 2

∣∣∣
xD=1

= ψDF1

Matrix

∂ψDm1
∂x∗D

∣∣∣∣
x∗D=0

= 0,

ψDm1|x∗D=1 = ψDF

∂ψDm2
∂y∗D

∣∣∣∣
y∗D=0

= 0,

ψDm2|y∗D=1 = ψD f

∂ψDm1
∂x∗D

∣∣∣∣
x∗D=0

= 0,

ψDm1|x∗D=1 = ψDF1

∂ψDm2
∂y∗D

∣∣∣∣
y∗D=0

= 0,

ψDm2|y∗D=1 = ψD f 2

Outer boundary

∂ψDF
∂yD

∣∣∣∣
yD=ye/

√
Acw

= 0,
∂ψDF1
∂yD

∣∣∣∣
yD=ye/

√
Acw

= 0,

∂ψDF2
∂yD

∣∣∣∣
yD=ye/

√
Acw

= 0

2.3. Model Solution

The Laplace transformation is used to solve Equations (6)–(15), the details of derivation are
presented in Appendix B. As shown from Equations (A37) and (A41), the final solutions of these
equations in Laplace space are derived as:

For Model 1, the dimensionless production rate is given as

q̃Dsc =

√
fF(s)

2πs

1− exp
(
−2
√

fF(s)yDe

)
1 + exp

(
−2
√

fF(s)yDe

)
 (16)
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For Model 2, the dimensionless production rate is given as

q̃Dsc =
γ
√

fF(s)
2πs

1− exp
(
−2
√

fF1(s)yDe

)
1 + exp

(
−2
√

fF1(s)yDe

) +
(1− γ)

√
fF2(s)

2πs

1− exp
(
−2
√

fF2(s)yDe

)
1 + exp

(
−2
√

fF2(s)yDe

)
 (17)

However, to analyze the impact of relative parameters and identify flow regimes, the rate
transient responses must be inverted into real time space by using the Stehfest numerical inversion
algorithm [25].

3. Results and Discussion

In this model, some characterized parameters includes: ωF, ωf, ωm, χ, γ.

3.1. Model Validation

3.1.1. Validation with Analytical Approach

When these parameters are equal to a special value, the new model proposed in this paper can be
varied to alternative models which have been verified reasonable. For example, when ωf is equates
to 0, the model can be simplified as dual porosity slab model [26]; when χ = 0 or γ = 0, it indicates
that the gas only depletes from matrix to NF [21]. Put another way, the new model can be equivalent
to the traditional triple-linear model [20]. In summary, this new model can be universally applied
to different formations only if some characterized parameters are equal to the corresponding values.
Figure 3 displays the comparison of our model with alternative approach in the case of linear flow.
Our model has a significant agreement with El-Banbi model [20] during the whole production cycle.

Figure 3. Comparison of our model with alternative analytical approach in the
dimensionless coordinate.

3.1.2. Validation with Numerical Approach

Furthermore, a numerical simulation is conducted to compare with the models (the input data are
listed in Table 3). The commercial software Eclipse 2010 (Eclipse Foundation, Ottawa, ON, Canada) is
selected to simulate the behavior of triple-porosity reservoirs and verify the semi-analytical solutions
in this paper.
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Table 3. Input parameters used in the case of constant flowing pressure.

Parameters Symbol Unit Value

Initial pressure Pi MPa 20
Downhole pressure Pwf MPa 15

Formation temperature T K 333
Horizontal length L m 1200

Formation thickness H m 100
Macro-fracture length yf m 200

Total compressibility of HF CtF MPa−1 5 × 10−4

Total compressibility of NF CtF MPa−1 5 × 10−4

Total compressibility of Matrix CtF MPa−1 5 × 10−4

Porosity of HF ΦF Dimensionless 0.0005
Porosity of NF Φf Dimensionless 0.005

Total porosity of matrix Φm Dimensionless 0.08
Permeability of HF kF D 2

Permeability of natural fracture kf D 10−6

Permeability of sub-matrix m1 km1 D 10−8

Permeability of sub-matrix m2 km2 D 10−8

Langmuir pressure PL MPa 5
Langmuir volume VL sm3/m3 5

Figure 4. (a) Depleted shale gas reservoir model established using Eclipse 2010; (b) Comparison
between numerical model and those two new models proposed in this paper.
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The numerical model considers the flow influx towards the horizontal wellbore. Considering the
symmetrical structure of the multi-fractured horizontal well, one representative segment is selected to
represent one quadrant of the reservoir volume around a hydraulic fracture. This segment contains
twenty micro fractures orthogonal to the hydraulic fractures at 10 m fracture spacing. As shown in
Figure 4a, the model is built to be a two dimension model with 100 grid cells in the x-direction, 100 grid
cells in y-direction and only one grid cell in the z-direction. The multi-porosity method is applied
to further divide the matrix, thus the transient flow in the matrix can be simulated. Additionally,
the desorption model is instant. The local grid refinement (LGR) method is employed to create the
hydraulic fractures. Only then is the multi-stage hydraulic fracturing simulated. From the comparison
results of transient rate in Figure 4b, the semi-analytical results in this paper are consistent with the
results from numerical model.

Based on the model verification, it is proved that our model is accurate and can be further used to
calculate more complex case.

3.2. Sensitivity Analysis

In this subsection, the parameters used are put into Table 3. The transient rate behavior is achieved
by using Stehfest algorithm [25]. Figure 5 demonstrates the type curves of transient rate behavior for
new model, where these curves are respectively shown in log-log and regular plots.

Figure 5. Type curve of flow regime: (a) Cartesian plot for model 1; (b) log-log plot for model 1;
(c) Cartesian plot for model 2; (d) log-log plot for model 2.

Seen from the type curve in Figure 5b,d, some well-known flowing regimes can be identified,
such as the bilinear flow (the slope of curve is identify by −0.25), the linear flow (the slope of curve is
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identified by −0.5) and the boundary dominated flow (the slope of curve is approximately identified
by −0.25).

Due to the limitation of χ and γ, it is possible that some flow regimes could not be identified.
Under the assumption that (1) χ = 0 and γ = 0 or (2) χ = 1 and γ = 1, the two models are equivalent,
which indicates that the characterization of flow regimes caused by two models is identical.

For model 1 seen in Figure 5a,b, with the increase of the pore volume ratio χ, the gas rate firstly
increases and then decreases. When matrix and NF simultaneously deplete into HF, desorption occurs
earlier and the rate is higher. However, when gas depletes from the matrix to HF, the boundary
dominated flow occurs earlier, so the gas rate become lower. In term of model 2 seen in Figure 5c,d,
with the increase of the thickness ratio γ, gas rate decreases. Model 2 assumes that there is no
connection between the upper and lower layers. Meanwhile, the matrix and NF have no connection in
the lower layer, so the impact of boundary is more severe and the gas rate decreases.

It is noted that this phenomenon mentioned above is not the most interesting part in this paper.
By comparing Figure 5a,c, it is easily found that the gas rate is distinct at the early production period
(less than 2 years), dependent on the pore volume ratio χ and the thickness ratio γ. During late
production period, the gas rate is approximately identical under different values of χ and γ. It is a
significant discovery in the field of reservoir engineering when conducting production prediction and
estimating recovery in the case that the available data are limited, especially for shale gas wells. If pore
volume ratio χ or thickness ratio γ are presented in the reasonable range, model 1 or 2 can perfectly
match with the actual production data at the early stage, and then the future performance of gas well
can be predicted based on the matched model. It is the reason that the intermediate- and late-time
production performance is almost independent on the values of pore volume ratio χ or thickness
ratio γ.

4. Model Aggregation

The numerical and semi-analytical results have been presented in Figure 4b. It is emphasized that
the semi-analytical transient rate behavior presented by model 1 is higher than model 2. However,
the rate predicted from the numerical simulation is in the range of two models. It indicates that the
simulated curve of model 1 overlies model 2 during the whole production period when the value of
pore volume ratio χ or thickness ratio γ is reasonable. Therefore, it makes sense to integrate the two
models together to develop a generalized framework model for eliminating the error when predicting
future performance of gas well. Here, an approach of Generalized Likelihood Uncertainty Estimation
(GLUE) methodology is employed [27]. The approach of GLUE is presented based on the probabilistic
aggregation theory. Using this approach, these two models can be integrated according to the personal
weight which reduces the uncertainties.

4.1. GLUE Method

The theory of the GLUE method will be discussed in this section. When the pore volume ratio
χ and thickness ratio γ can be reasonably chosen, the resulting simulation based on new model
could provide better matching of limited history data. However, there exists remarkable error on
rate prediction.

This study proposed an approach to integrate these two models, which includes two steps. (1) Two
models are used to match the data to obtain reasonable values of the pore volume ratio χ and the
thickness ratio γ; (2) A weight is assigned to each model based on some goodness-of-fit statistics, and
then weighted mean and standard deviation of desired performance measures (the rate and cumulative
rate) could be calculated. Here, a simple likelihood measure in the GLUE method can be defined using
the root-mean-square-error (RMSE):

Lj = (1/RMSEj)
2 (18)
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where, RMSEj represents the j-th model, j = 1, 2 in this paper. Normalizing the likelihoods, the sum is
equal to one, which provides the GLUE weight for the two models:

wj =
PRj · Lj

2
∑

j=1

(
PRj · Lj

) =
PRj/RMSE2

j
2
∑

j=1

(
PRj/RMSE2

j

) (19)

where, Lj is the likelihood functions, PRj is the prior weight of each model (i.e., PRj = 1/2 if all are
assumed to be equally likely prior weighting). From these weights, the integrated gas rate q and
cumulative rate G on certain production time T0 can be calculated as:

qt=T0 =
2

∑
j=1

wj (qt=T0)
∣∣

j (20)

Gt=T0 =
2

∑
j=1

wj (Gt=T0)
∣∣

j (21)

and the standard deviation can be computed from:

SD[qt=T0 ] =

√√√√ 2

∑
j=1

wj[qt=T0(avg)− (qt=T0)
∣∣

j]
2 (22)

SD[Gt=T0 ] =

√√√√ 2

∑
j=1

wj[Gt=T0(avg)− (Gt=T0)
∣∣

j]
2 (23)

4.2. Application Illustration

4.2.1. Procedure

Based on above analysis, the procedure would be divided into three steps:

1. Actual production data are matched based on model 1 and model 2 respectively. As a result,
the most reliable value of pore volume ratio χ and thickness ratio γ can be obtained;

2. Based on history and predicted curves, the likelihoods can be calculated respectively for model 1
and model 2 using Equation (18), and then the likelihoods can be normalized using Equation (19);

3. Based on Equation (20), we can calculate the production rate and cumulative rate at a certain
production time T0, and then compare those results with the numerical simulation by calculating
standard deviation using Equation (21).

4.2.2. Field Example

A multi-stage fractured horizontal well is chosen from certain shale gas zone in Sichuan Basin,
China. The geometry and distribution of hydraulic fractures can be diagnosed with seismic events
during hydraulic-fracturing treatment. Fracture locations are interpreted by using the event amplitude
as an intensity measure, and fracture sizes are estimated by the relationship between the amplitude
and the seismic moment. It can be seen from Figure 6, the direction of fracture is N570E for this well.
The basic data from the well testing and the core analysis are listed in Table 4.
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Figure 6. Natural seismic event for this well, where the spots with different color stand for the
individual stages.

Table 4. Input parameters used in the field example.

Parameters Symbol Unit Value

Initial pressure Pi MPa 22.5
Downhole pressure Pwf MPa 15

Formation temperature T K 314
Horizontal length L m 1450

Formation thickness H m 48.3
Macro-fracture length yf m 214

Total compressibility of HF CtF MPa−1 5.2 × 10−4

Total compressibility of NF CtF MPa−1 5.2 × 10−4

Total compressibility of Matrix CtF MPa−1 5.2 × 10−4

Porosity of HF ΦF Dimensionless 4.6 × 10−4

Porosity of NF Φf Dimensionless 5.3 × 10−3

Total porosity of matrix Φm Dimensionless 0.078
Permeability of HF kF D 1.8

Permeability of natural fracture kf D 2.1 × 10−6

Permeability of sub-matrix m1 km1 D 1.2 × 10−8

Permeability of sub-matrix m2 km2 D 1.2 × 10−8

Langmuir pressure PL MPa 5.2
Langmuir volume VL sm3/m3 5.2

In Figure 7, the red pots indicates the actual production data (production period of this well is less
than 300 days), and colorful solid lines represent the simulated results from two semi-analytical models.
It is not difficult to observe that (1) when χ = 0.55, the predictive (cumulative) rate can effectively
match with the history data from model 1; and (2) when γ = 0.15, the (cumulative) rate can match with
history data from model 2.

Thus, the likelihood for those two models can be calculated based on the difference between
the history data and predictive data (see Figure 7), where L1 = 23.06, L2 = 19.88. Furthermore,
based on Equation (19), the weights for those two models are as follows: w1 = 0.54, w2 = 0.46. Finally,
the aggregation model can be presented based on Equation (20). Although the history data (less than
300 days) is limited from the viewpoint of establishing the integrated model, this new model has the
capacity to predict the rate and cumulative rate for this well (see Figure 8).
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Figure 7. Two models match with the field data: (a) rate vs. t, model 1; (b) cumulative rate vs. t, model
1; (c) rate vs. t, model 2; (d) cumulative rate vs. t, model 2.

Figure 8. Comparison between aggregation model and numerical simulation: (a) gas rate;
(b) cumulative rate.

To validate this proposed integrated model, a numerical model is developed to simulate the
performance within 1000 days. At the same time, the new model simultaneously predicts the rate and
cumulative rate within 1000 production days. We can apparently find that the rate can perfectly match
with each other, while the cumulative rate predicted from the aggregation model can approximately
match with the results calculated from the numerical model. In addition, those two models can provide
an approximate range for the cumulative rate. It has the potential of decreasing the uncertainty for the
prediction of estimation ultimate recovery, especially for unconventional reservoirs where the transient
flow regime lasts for extremely long time. Based on Equation (21), the standard deviations of the rate
and cumulative rate are obtained as follows: SD[qt = 1000] = 0.012 × 104 m3/day, SD[Gt = 1000] =
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12.4 × 104 m3. Therefore, this new aggregation model is a practical tool in terms of predicting shale
gas and tight gas rate.

5. Conclusions

This paper presents two new simple models for shale gas reservoirs with multi-stage fractured
horizontal well, where the USRV zone is regarded as a dual-porosity & dual-depletion system.
The resulting solutions are more universal for conducting type curve analysis in homogeneous and
naturally fractured reservoirs. Numerical simulation model is correspondingly developed to validate
the semi analytical solutions.

Two characteristic parameters, the pore volume ratio and thickness ratio are defined to characterize
the dual-depletion mechanism. A set of type curves is generated under different cases of those two
parameters. Several regular regimes can be identified, such as bilinear flow, linear flow, and outer
boundary-dominated flow, etc.

The Generalized Likelihood Uncertainty Estimation methodology is introduced to aggregate those
two models to reduce the uncertainties on future performance forecast. The numerical simulation and
field application further validate the new simplified aggregation model. This paper also demonstrates
that the proposed uncertainty assessment protocol using statistical model averaging concepts (GLUE)
is a robust method to quantify the uncertainty of production prediction and cumulative prediction.
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Appendix A. Details on Mathematical Model

Appendix A.1. Conceptual Model 1

Based on the assumptions mentioned in Section 2.1, a set of mathematical models are subsequently
established. According to the principle of mass balance, the fundamental partial differential equation
that governs fluid flow is given as,

1. For hydraulic fracture: diffusivity equation that control HF-horizontal well communication is
described as

∂2ψF

∂y2 −
1

LF/2
k f

kF

∂ψ f

∂x

∣∣∣∣
x=LF/2

− 1
LF/2

km1

kF

∂ψm1

∂x∗

∣∣∣∣
x∗=LF/2

=
(φµct)F

3.6kF

∂ψF
∂t

(A1)

2. For Natural fracture: diffusivity equation that control NF-HF communication is described as

∂2ψ f

∂x2 −
1

LF/2
km2

k f

∂ψm2

∂y∗

∣∣∣∣
y∗=L f /2

=
(φµct) f

3.6k f

∂ψ f

∂t
(A2)

3. For sub-matrix 1: diffusivity equation that control matrix-HF communication is described as

∂2ψm1

∂x∗2 =
χ(φµct)m

3.6km1

∂ψm1

∂t
+

µZpscTVL pL

3.6Tsckm1 p(pL + p)2
∂ψm1

∂t
(A3)
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4. For sub-matrix 2: diffusivity equation that control matrix-NF communication is described as

∂2ψm2

∂y∗2 =
(1− χ)(φµct)m

3.6km2

∂ψm2

∂t
+

µZpscTVL pL

3.6Tsckm2 p(pL + p)2
∂ψm2

∂t
(A4)

Appendix A.2. Conceptual Model 2

In Upper Layer, the pressure governing equations in hydraulic fracture (HF), natural fracture
(NF) and sub matrix 2 are given as:

∂2ψF2

∂y2 −
1

LF/2
k f

kF

∂ψ f

∂x

∣∣∣∣
x=LF/2

=
(φµct)F

3.6kF

∂ψF2

∂t
, in HF (A5)

∂2ψ f 2

∂x2 −
1

LF/2
km2

k f

∂ψm2

∂y∗

∣∣∣∣
y∗=L f /2

=
(φµct) f

3.6k f

∂ψ f 2

∂t
, in NF (A6)

∂2ψm2

∂y∗2 =
(1− χ)(φµct)m

3.6km2

∂ψm2

∂t
+

µZpscTVL pL

3.6Tsckm2 p(pL + p)2
∂ψm2

∂t
, in sub matrix 2 (A7)

In Lower Layer, the pressure governing equations in hydraulic fracture (HF), natural fracture
(NF) and sub matrix 1 are given as:

∂2ψF1

∂y2 −
1

LF/2
k f

kF

∂ψ f 1

∂x

∣∣∣∣
x=LF/2

− 1
LF/2

km1

kF

∂ψm1

∂x∗

∣∣∣∣
x∗=LF/2

=
(φµct)F

3.6kF

∂ψF1

∂t
, in HF (A8)

∂2ψ f 1

∂x2 =
(φµct) f

3.6k f

∂ψ f 1

∂t
, in NF (A9)

∂2ψm1

∂x∗2 =
χ(φµct)m

3.6km1

∂ψm1

∂t
+

µZpscTVL pL

3.6Tsckm1 p(pL + p)2
∂ψm1

∂t
, in sub matrix 1 (A10)

Appendix A.3. Initial and Boundary Condition

In addition, initial conditions in HF, NF and matrix are given as:
ψF(y, 0) = ψF1(y, 0) = ψF2(y, 0) = ψi in HF
ψ f (x, 0) = ψ f 1(x, 0) = ψ f 2(x, 0) = ψi in NF
ψm1(x∗, 0) = ψm2(y∗, 0) = ψi in matrix

(A11)

• In model 1, inner boundary conditions are given as:



∂ψF
∂y

∣∣∣∣
y=0

= − qscTpsc

TsckFxe H
in HF

∂ψ f

∂x

∣∣∣∣
x=0

= −0, ψ f

∣∣∣
x=LF/2

= ψF in NF

∂ψm1

∂x∗

∣∣∣∣
x∗=0

= −0, ψm1|x∗=LF/2 = ψF;
∂ψm2

∂y∗

∣∣∣∣
y∗=0

= −0, ψm2|y∗=LF/2 = ψ f in matrix

(A12)

• In model 2, inner boundary condition in HF, NF and matrix are given as:
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∂ψF1

∂y

∣∣∣∣
y=0

= − qscTpsc

TsckFxe Hγ

∂ψF2

∂y

∣∣∣∣
y=0

= − qscTpsc

TsckFxe H(1− γ)
in HF

∂ψ f 1

∂x

∣∣∣∣
x=0

= 0, ψ f 1

∣∣∣
x=LF/2

= ψF1;
∂ψ f 2

∂x

∣∣∣∣
x=0

= 0, ψ f 2

∣∣∣
x=LF/2

= ψF2 in NF

∂ψm1

∂x∗

∣∣∣∣
x∗=0

= −0, ψm1|x∗=LF/2 = ψF1;
∂ψm2

∂y∗

∣∣∣∣
y∗=0

= −0, ψm2|y∗=LF/2 = ψ f 2 in matrix

(A13)

• In model 1 and model 2, outer boundary conditions in HF, NF and matrix are given as:

∂ψF
∂y

∣∣∣∣
y=ye

= 0,
∂ψF1

∂y

∣∣∣∣
y=ye

= 0,
∂ψF2

∂y

∣∣∣∣
y=ye

= 0 (A14)

Appendix B. Constant Pressure Solution

Appendix B.1. Dimensionless Model in Laplace Domain

After using dimensionless definitions and Laplace transform to deal with Equations (A1)–(A14),
the diffusion equations could be rewritten in the Laplace domain:

Appendix B.1.1. Model 1

The pressure governing equations in hydraulic fracture (HF), natural fracture (NF), matrix 1 and
matrix 2 are list as follows:

dψ̃DF

dy2
D
−

λF− f

3
dψ̃D f

dxD

∣∣∣∣∣
xD=1

− λF−m1

3
dψ̃Dm1

dx∗D

∣∣∣∣
xD=1

= ωFsψ̃DF, in HF (A15)

dψ̃D f

dx2
D
− λF−m2

λF− f

dψ̃Dm2

dy∗D

∣∣∣∣
y∗D=1

=
3

λF− f
ω f sψ̃D f , in NF (A16)

d2ψ̃Dm1

dx∗D
2 =

3s
λF−m1

(χωm + ωd)ψ̃Dm1, in matrix 1 (A17)

d2ψ̃Dm2

dy∗D
2 =

3s
λF−m2

[(1− χ)ωm + ωd]ψ̃Dm2, in matrix 2 (A18)

In addition, the inner and outer boundary conditions are satisfied as:

dψ̃FD
dyD

∣∣∣∣
yD=0

= −2π

s
in HF

dψ̃ f D

dxD

∣∣∣∣∣
xD=0

= −0, ψ̃ f D

∣∣∣
xD=1

= ψ̃FD in NF

dψ̃Dm1

dx∗D

∣∣∣∣
x∗D=0

= 0, ψ̃Dm1
∣∣
x∗D=1 = ψ̃FD;

dψ̃Dm2

dy∗D

∣∣∣∣
y∗D=0

= 0, ψ̃Dm2
∣∣
y∗D=1 = ψ̃ f D in matrix

(A19)

dψ̃FD
∂yD

∣∣∣∣
yD=yeD/

√
Acw

= 0,
dψ̃DF1

dyD

∣∣∣∣
yD=yeD/

√
Acw

= 0,
dψ̃DF2

dyD

∣∣∣∣
yD=yeD/

√
Acw

= 0 (A20)
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Appendix B.1.2. Model 2

In the unit of upper layer, the pressure governing equations in hydraulic fracture, natural fracture
and matrix 2 are given as:

dψ̃DF2

dy2
D
−

λF− f

3
dψ̃D f 2

dxD

∣∣∣∣∣
xD=1

= ωFsψ̃DF2, in hydraulic fracture (A21)

dψ̃D f 2

dx2
D
− λF−m2

λF− f

dψ̃Dm2

dy∗D

∣∣∣∣
y∗D=1

=
3

λF− f
ω f sψ̃D f 2, in natural fracture (A22)

d2ψ̃Dm2

dy∗D
2 =

3s
λF−m2

[ωm + ωd]ψ̃Dm2, in matrix 2 (A23)

In the unit of lower layer, the pressure governing equations in hydraulic fracture, natural fracture
and matrix 1 are given as:

d2ψ̃DF1

dy2
D
−

λF− f

3
d2ψ̃D f 1

dx∗D
2

∣∣∣∣∣
x∗D=1

− λF−m1

3
d2ψ̃Dm1

dx∗D
2

∣∣∣∣
x∗D=1

= ωFsψ̃DF1, in hydraulic fracture (A24)

dψ̃D f 1

dx2
D

=
3

λF− f
ω f sψ̃D f 1, in natural fracture (A25)

d2ψ̃Dm1

dx∗D
2 =

3s
λF−m1

[ωm + ωd]ψ̃Dm1, in matrix 2 (A26)

In addition, the inner and outer boundary conditions are satisfied as:

dψ̃DF1
dyD

∣∣∣
yD=0

= − 2π
sγ , dψ̃DF2

dyD

∣∣∣
yD=0

= − 2π
s(1−γ)

in HF

dψ̃D f 1
dx̃D

∣∣∣∣
xD=0

= 0, ψ̃D f 1

∣∣∣
xD=1

= ψ̃DF1;
dψ̃D f 2
dxD

∣∣∣∣
x=0

= 0, ψ̃D f 2

∣∣∣
x=1

= ψ̃DF2 in NF

dψ̃Dm1
dx∗D

∣∣∣
x∗D=0

= −0, ψ̃Dm1
∣∣
x∗D=1 = ψ̃DF1; dψ̃m2

dy∗D

∣∣∣
y∗D=0

= −0, ψ̃Dm2
∣∣
y∗D=1 = ψ̃D f 2 in matrix

(A27)

dψ̃FD
∂yD

∣∣∣∣
yD=yeD/

√
Acw

= 0,
dψ̃DF1

dyD

∣∣∣∣
yD=yeD/

√
Acw

= 0,
dψ̃DF2

dyD

∣∣∣∣
yD=yeD/

√
Acw

= 0 (A28)

Appendix B.2. Laplace-Domain Solution

In the following section, the above equations of model 1 and model 2 are respectively solved in
Laplace space.

Appendix B.2.1. Model 1

The general solution for Equations (A17) and (A18) can be obtained as follows:

ψ̃Dm1 = A cosh

(√
3s

λF−m1
(χωm + ωd)x∗D

)
+ Bsinh

(√
3s

λF−m1
(χωm + ωd)x∗D

)
(A29)

ψ̃Dm2 = A cosh

(√
3s

λF−m2
(ωm − χωm + ωd)y∗D

)
+ Bsinh

(√
3s

λF−m2
(ωm − χωm + ωd)y∗D

)
(A30)
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After using boundary condition, the special solution for matrix 1 and matrix 2 is given as:

ψ̃Dm1 =
ψ̃DF

cosh
(√

3s
λF−m1

(χωm + ωd)
) cosh

(√
3s

λF−m1
(χωm + ωd)x∗D

)
(A31)

ψ̃Dm2 =
ψ̃D f

cosh
(√

3s
λF−m2

(ωm − χωm + ωd)
) cosh

(√
3s

λF−m2
(ωm − χωm + ωd)y∗D

)
(A32)

Similarly, the solution of governing equations of natural fracture also has the same formation.
With the boundary condition, the final solution is as follows:

ψ̃D f =
ψ̃D f

cosh[ f f (s)]
cosh[ f f (s)xD] (A33)

where

f f (s) =
3s

λF− f
ω f +

λ f−m2

λF− f

√
3s

λF−m2
(ωm − χωm + ωd)tanh

(√
3s

λF−m2
(ωm − χωm + ωd)

)
(A34)

Similarly, the solution of governing equations of natural fracture also has the same formation.
With the boundary condition, the final solution is as follows:

ψ̃DFw =
2π

s
√

fF(s)
1 + exp[−2

√
fF(s)yDe]

1− exp[−2
√

fF(s)yDe]
(A35)

where

fF(s) = ωFs +
λF− f

3

√
f f (s)tanh[

√
f f (s)] +

λF−m1
3

√
3s

λF−m1
(χωm + ωd)tanh

(√
3s

λF−m1
(χωm + ωd)

)
(A36)

Based on the relationship between dimensionless pseudo pressure and dimensionless production,
the rate can be presented as follows:

q̃Dsc =

√
fF(s)

2πs
1 + exp[−2

√
fF(s)yDe]

1− exp[−2
√

fF(s)yDe]
(A37)

Appendix B.2.2. Model 2

Similarly, the solution of governing equations of model 2 also has the same formation like model
1. Because of the limitation of this paper, the pseudo pressure of hydraulic fracture is respectively
presented for upper layer and lower layer.

In upper Layer, the dimensionless rate is presented as follows:

q̃Dsc2 =
(1− γ)

√
fF2(s)

2πs
1 + exp[−2

√
fF2(s)yDe]

1− exp[−2
√

fF2(s)yDe]
(A38)

where

fF2(s) = ωFs +
λF− f

3

√
f f 2(s)tanh[

√
f f 2(s)] (A39)

In lower layer, the dimensionless rate is presented as follows:

q̃Dsc1 =
γ
√

fF1(s)
2πs

1 + exp[−2
√

fF1(s)yDe]

1− exp[−2
√

fF1(s)yDe]
(A40)
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In terms of conceptual model 2, the total production rate is the sum of upper layer and upper
layer, therefore, the final solution of production rate combing Equations (A36) and (A39):

q̃Dsc =
(1− γ)

√
fF2(s)

2πs

1 + exp
[
−2
√

fF2(s)yDe

]
1− exp

[
−2
√

fF2(s)yDe

] + γ
√

fF1(s)
2πs

1 + exp
[
−2
√

fF1(s)yDe

]
1− exp

[
−2
√

fF1(s)yDe

] (A41)
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