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Abstract: Load shedding processes are widespread in hydropower stations, which has great influence
on the safe and stable operation of the hydro–turbine governing system. In order to study the dynamic
characteristics of the hydro–turbine governing system during the load shedding process, a novel
nonlinear mathematical model of the hydro–turbine governing system is established considering
the hydro–turbine system, the generator system and the governor system. In particular, a novel
nonlinear mathematical model of the six hydro–turbine transfer coefficients is presented based on the
definitions and hydro–turbine internal characteristics. After that, from the viewpoint of nonlinear
dynamics and the practical engineering, the dynamic characteristics of the hydro–turbine governing
system are investigated utilizing bifurcation diagrams, time series, Poincare maps, power spectrums
and phase planes. Some meaningful results are found. The advantages of the novel nonlinear
mathematical model are illustrated and commented in detail in comparison with the previous model.
Finally, these models and analysis results will provide some theoretical references for the operation
of hydropower stations in the load shedding transient.

Keywords: nonlinear dynamic; mathematical model; chaos; hydro–turbine governing system;
load shedding

1. Introduction

Hydraulic power, as a kind of renewable, clean, and economical resource, has been well developed
in China [1–3]. By the end of 2015, the combined installed hydropower station capacity reached
320.03 GW [4,5]. However, some challenges are also found in the operation of the hydro–turbine
generator units [6–10], such as water hammer in the penstock, the self–oscillation of the machinery,
the unbalanced magnetic pull, and so on. At the same time, with the rapid development of wind energy
and the photovoltaic power generation in recent years, these unstable resources need to be balanced
utilizing hydropower stations [11–14]. All these factors could increase the instability of the whole
hydro–turbine generator system, especially, the hydro–turbine governing system (HTGS). Therefore,
to ensure the safe and stable operation of the hydro–turbine generator unit, the study of the dynamic
characteristics of the HTGS is necessary.

The transient process of the HTGS mainly comprises the major fluctuation processes and the small
fluctuation processes. In the previous studies, much attention has been paid to the small fluctuation
processes [15–23]. Many scholars have proposed excellent control algorithms [15–20] to adjust the
hydro–turbine generator unit when some small disturbances appear, or established reasonable models
to study the stability and other dynamic characteristics of the HTGS during the small fluctuation
process [21–23]. Chang et al. [15] proposed a kind of effective neural–network–predict–control method
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to optimizing the control of the HTGS. Based on the polynomial robust H∞ optimization method,
Eker [16] presented a robust single–input multi–output design approach for governors for speed control
of hydro–turbines. Khodabakhshian and Hooshmand [17] put forward a new robust proportional-
integral-derivative (PID) controller for automatic generation control of hydro–turbine power systems,
which is designed mainly based on a maximum peak resonance specification. Ren et al. [18] proposed
an improved cascade control strategy for hydro–turbine speed governors, which can effectively
decrease fluctuations of the rotational speed under non–Gaussian disturbance conditions in practical
hydropower plants. Chen et al. [19] focused on designing the fractional–order PID controller using a
chaotic non–dominated sorting genetic algorithm II for the HTGS, which has a better performance
than traditional integer PID controllers. Zhang et al. [20] created a brand new non–linear predictive
control method using the Takagi–Sugeno (T–S) fuzzy method and the generalized predictive control,
which can govern a non–linear system more effectively. Chen et al. [21] established a new nonlinear
mathematical model of the HTGS with a surge tank, and then, the nonlinear dynamical behaviors of
the system in small fluctuation process were studied in detail. Guo et al. [22] studied the stability of
the HTGS of the hydropower station with sloping ceiling tailrace tunnel utilizing the Hopf bifurcation
theory, and also got the algebraic criterion of the occurrence of Hopf bifurcation. Xu et al. [23] built
the Hamiltonian mathematical model of the multi–hydro–turbine governing system with a sharing
common penstock under the excitation of stochastic and shock load, and then, discussed the stability
of the system by comparing it with a real hydropower station. In these studies, constant or linear
hydro–turbine transfer coefficients are mainly applied to.

Regarding the major fluctuation process, many published papers [24–28] mainly adopt a simple
nonlinear model to analyze the dynamic characteristics of the HTGS during the major fluctuation,
in which some linear or approximate nonlinear hydro–turbine transfer coefficient models are widely
applied. However, when the hydro–turbine generator unit undergoes a major fluctuation process, the
dynamic characteristics of the hydro–turbine generator unit are very complex, including hydraulic [6,8],
electrical [26], and mechanical instability [29,30], so the hydro–turbine transfer coefficients expressed by
the constant value, the linear model or the approximate nonlinear model could lead to unreasonable,
and even wrong results. In light of the foregoing analyses, previous simple models cannot meet
the needs of scientific researches and engineering practices, a more reasonable model needs to be
established to describe the dynamic characteristics of the HTGS in the major fluctuation process.

Motivated by the above discussions, there are three advantages that make our research more
attractive. First, the six hydro–turbine transfer coefficients are calculated more accurately based on
definitions and hydro–turbine internal characteristics, which are appropriate for nonlinear dynamic
studies of the HTGS in the major fluctuation. Second, a novel nonlinear mathematical model of the
HTGS in the load shedding transient process is established with the elastic water hammer model of
the penstock. Finally, the nonlinear dynamic characteristics of the HTGS are studied in detail, and
some meaningful results are also presented. The rest of the paper is organized as follows: in Section 2,
the mathematical model of the HTGS is established. Section 3 analyzes the nonlinear dynamic
characters of the system. Section 4 closes the paper.

2. Mathematical Model of the Hydro–Turbine Governing System

2.1. Mathematical Model of the Francis Hydro–Turbine

The structure of the Francis HTGS [24] is usually described as shown in Figure 1.
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Figure 1. The structure diagram of the Francis hydro–turbine governing system. 
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where hw is a coefficient describing the pipe characteristic, Tr is the elastic hammer time constant. 
Thus, the state–space equations of Equation (3) can be expressed as: 
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Figure 1. The structure diagram of the Francis hydro–turbine governing system.

The dynamic characteristics of the Francis hydro–turbine [21–24] can be expressed as:{
Mt = Mt(H, W, Y)
Q = Q(H, W, Y)

, (1)

where Mt, Q, H, W and Y are the mechanical torque of the hydro–turbine, the hydro–turbine flow, the
hydro–turbine head, the rotational speed and the guide vane opening, respectively. For convenience,
the relative deviation values of them are denoted by mt, q, h, ω and y, respectively, and the
corresponding relative values (m∗t , q∗, h∗, ω∗ and y∗) are marked by the superscript (*). Then, mt and q
can be written as: {

mt = emyy + emhh + emωω

q = eqyy + eqhh + eqωω
, (2)

where emy, emh, and emω are transfer coefficients of the hydro–turbine torque (mt) with respect to
the guide vane opening (y), the hydro–turbine head (h), and the rotational speed (ω), respectively.
eqy, eqh and eqω, respectively, denote transfer coefficients of the hydro–turbine flow (q) with respect
to the guide vane opening (y), the hydro–turbine head (h), and the rotational speed (ω). Thus,
these six hydro–turbine transfer coefficients can be calculated by emy = (∂mt/∂y), emh = (∂mt/∂h),
emω = (∂mt/∂ω), eqy = (∂q/∂y), eqh = (∂q/∂h), and eqω = (∂q/∂ω).

2.2. Dynamic Characteristics of the Penstock System

For simplifying the calculation, the elasticity of the water and pipes are usually ignored in the
modeling of the small fluctuation process for the penstock system, and a rigid water hammer model is
applied to. However, for the major fluctuation, the rigid hammer model cannot meet requirements of
the engineering, the influence of the elasticity of the water and pipes must be considered.

From [23,31], the transfer function of the penstock system with elastic water hammer can be
written as:

Gh(s) =
H(s)
Q(s)

= −2hw
sh( Tr

2 s)

ch( Tr
2 s)
≈ −2hw

1
48 T3

r s3 + 1
2 Trs

1
8 T2

r s2 + 1
, (3)

where hw is a coefficient describing the pipe characteristic, Tr is the elastic hammer time constant.
Thus, the state–space equations of Equation (3) can be expressed as:

.
x1 = x2
.
x2 = x3

.
x3 = −a1x2 + h

.
q = b1x2 − a1b2x2 + b2h

, overlapping symbols (4)

where a1 = 24/T2
r , b1 = −24/(hwT3

r ) and b2 = −3/(hwTr). x1, x2 and x3 are intermediate variables.
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2.3. Mathematical Model of the Generator

A second–order generator model [31] is considered, which can be written as:{ .
δ = ωBω

.
ω = 1

Tab
(mt −me − Dω)

, (5)

where δ is the rotor angle, me is the relative deviation of the electromagnetic torque, Tab is the mechanical
starting time, D is the damping coefficient, ωB = 2πf 0 and f 0 = 50 Hz.

According to generator dynamic characteristics, if the change of the electromagnetic torque caused
by rotational speed is included in damping coefficient, the electromagnetic torque (me) will be equal to
its electromagnetic power (Pe) [31]. Therefore, it can be written as:

me = Pe. (6)

The electromagnetic power of the salient pole hydro–turbine generator can be expressed as:

Pe =
E′qVs

x′dΣ
sin δ +

V2
s

2
x′dΣ − xqΣ

x′dΣxqΣ
sin 2δ, (7)

where E′q is the transient electric potential of the generator q-axis, Vs is the busbar voltage, x′d is the
transient reactance of the generator d-axis, xq is the synchronous reactance of the generator q-axis.
Besides, x′dΣ and xqΣ can be calculated by:{

x′dΣ =
.
xd + xT + 1

2 xL
xqΣ = xq + xT + 1

2 xL
, (8)

where xT is the short–circuit reactance of the transformer, xL is the reactance of the electric
transmission line.

Therefore, combining Equations (5)–(8), the generator model can be written as:
.
δ = ωBω

.
ω = 1

Tab

(
mt −

E′qVs

x′dΣ
sin δ− V2

s
2

x′dΣ−xqΣ
x′dΣxqΣ

sin 2δ− Dω

)
(9)

2.4. Mathematical Model of the Hydraulic Speed Regulation System

The parallel PID governor is wildly applied in many hydropower stations. Its regulator output u
can be expressed as:

u = −kpω− ki

∫ t

0
ωdt− kd

.
ω = −kpω− ki

ωB
δ− kd

.
ω, (10)

where kp, ki, and kd denote the proportional, integral, and differential adjustment coefficient,
respectively.

The dynamic characteristic of the hydraulic servo system can be described as:

Ty
dy
dt

+ y = u, (11)

where Ty is the response time of the servomotor.
Combining Equations (9) and (10), Equation (12) can be obtained:

.
y =

1
Ty

(−kpω− ki
ωB

δ− kd
.

ω− y). (12)
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2.5. Nonlinear Expressions of the Hydro–Turbine Transfer Coefficients

When the hydro–turbine generator unit operates under small fluctuation conditions, the transfer
coefficients of the hydro–turbine are usually calculated by the constant transfer coefficient method [31],
the simple linear method [26], or the external characteristic method [32]. However, the simple linear
method and the constant transfer coefficient method only apply to the small fluctuation condition.
At the same time, the external characteristic method cannot describe hydro–turbine characteristics
in the poor efficiency region, so the external characteristic method also loses efficacy when the
hydro–turbine generator unit operates under major fluctuation conditions. Therefore, in this paper,
the internal characteristic method will be used to calculate hydro–turbine transfer coefficients according
to their definitions.

For the Francis hydro–turbine, internal characteristic equations [33] can be written as:

Q =
Wr2 + 9.8ηH

W
cot α
2πb0

+ r cot β0
A

(13)

and:
Mt = Q[(

cot α

2πb0
+ r

cot β0

A
)Q−Wr2], (14)

where α is the guide vane discharge angle, b0 is the height of the guide vane, η is the efficiency of the
hydro–turbine, A is the runner outlet area, r is the radius of the runner intermediate flow surface and
β0 is the runner intermediate flow surface angle.

Combining Equations (12) and (13), and replacing Mt, W, H and Q by corresponding relative
values (m∗t , ω∗, h∗, q∗), it can be gotten:

Mtrm∗t −
(

cot α

2πb0
+ r

cot β0

A

)Wrω∗r2 + 9.8ηHrh∗
Wrω∗

cot α
2πb0

+ r cot β0
A

2

−Wrω∗r2

Wrω∗r2 + 9.8ηHrh∗
Wrω∗

cot α
2πb0

+ r cot β0
A

 = 0. (15)

The relationship between guide vane opening (Y) and the guide vane discharge angle (α) can be
written as:

Y = D0 sin(
β

2
) sin(α +

β

2
)− L sin(

β

2
), (16)

where D0 is the distribution circle diameter, L is the guide vane width, β is the width between two
guide vanes.

Replacing the guide vane opening (Y) in Equation (15) with corresponding relative value (y∗),
the guide vane discharge angle (α) can be expressed as:

α = arcsin

[
Yry∗ + L sin( β

2 )

D0 sin( β
2 )

]
− β

2
. (17)

Therefore:
∂α

∂y∗
=

1√
1−

(
Yry∗+L sin( β

2 )

D0 sin( β
2 )

)2
·Yr. (18)

Define a function F1(m∗t , α, h∗, ω∗) according to Equation (14), it can be expressed as:

F1(m∗t , α, h∗, ω∗) = Mtrm∗t −
(

cot α

2πb0
+ r

cot β0

A

)Wrω∗r2 + 9.8ηHr h∗
Wrω∗

cot α
2πb0

+ r cot β0
A

2

−Wrω∗r2

Wrω∗r2 + 9.8ηHr h∗
Wr ω∗

cot α
2πb0

+ r cot β0
A

. (19)
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Then according to Equation (18), the partial derivative of the hydro–turbine torque (m∗t ) with
respect to the guide vane discharge angle (α) can be expressed as:

∂m∗t
∂α

= −
∂F1
∂α
∂F1
∂m∗t

=
1

Mtr
· 1(

cot α
2πb0

+ r cot β0
A

)2 ·
csc2 α

2πb0
·
[(

2Wrω∗r2 +
9.8ηHrh∗

Wrω∗

)
·
(

Wrω∗r2 +
9.8ηHrh∗

Wrω∗

)]
. (20)

Thus, emy, emh and emω can be calculated as:

emy = ∂mt
∂y =

∂(m∗t−1)
∂(y∗−1) =

∂(m∗t−1)
∂y∗ · ∂y∗

∂(y∗−1) =
∂m∗t
∂y∗ ·

∂y∗

∂(y∗−1) =
∂m∗t
∂y∗ =

∂m∗t
∂α ·

∂α
∂y∗

= 1
Mtr
· 1(

cot α
2πb0

+r cot β0
A

)2 · csc2 α
2πb0

· Yr√√√√1−
(

Yr(y+1)+L sin( β
2 )

D0 sin( β
2 )

)2

×
[(

2Wr(ω + 1)r2 + 9.8ηHr(h+1)
Wr(ω+1)

)
·
(

Wr(ω + 1)r2 + 9.8ηHr(h+1)
Wr(ω+1)

)] , (21)

emh = ∂mt
∂h =

∂(m∗t−1)
∂(h∗−1) =

∂(m∗t−1)
∂h∗ · ∂h∗

∂(h∗−1) =
∂m∗t
∂h∗ ·

∂h∗
∂(h∗−1) =

∂m∗t
∂h∗

= −
∂F1
∂h∗
∂F1
∂m∗t

= 1
Mtr
· 1

cot α
2πb0

+r cot β0
A

·
[

2(h + 1) ·
(

9.8ηHr
Wr(ω+1)

)2
+ 3× 9.8ηHrr2

]
, (22)

and:
emω = ∂mt

∂ω =
∂(m∗t −1)
∂(ω∗−1) =

∂(m∗t −1)
∂ω∗ · ∂ω∗

∂(ω∗−1) =
∂m∗t
∂ω∗ ·

∂ω∗

∂(ω∗−1) =
∂m∗t
∂ω∗

= −
∂F1
∂ω∗
∂F1
∂m∗t

= 1
Mtr
· 1

cot α
2πb0

+r cot β0
A

·
{

2(ω + 1)

[(
Wrr2)2 −

(
9.8ηHr(h+1)
Wr(ω+1)2

)2
]
+ 2W2

r r4(ω + 1)

}
. (23)

Equation (13) can also be written as:

Mtrm∗t −Qrq∗[(
cot α

2πb0
+ r

cot β0

A
)Qrq∗ −Wrω∗r2] = 0. (24)

Define a function F2(q∗, m∗t , α, h∗, ω∗) according to Equation (23), it can be written as:

F2(q∗, m∗t , α, h∗, ω∗) = Mtrm∗t −Qrq∗[(
cot α

2πb0
+ r

cot β0

A
)Qrq∗ −Wrω∗r2]. (25)

Then ∂q∗/∂m∗t can be calculated as:

∂q∗

∂m∗t
= −

∂F2
∂m∗t
∂F2
∂q∗

= − Mtr

−2Q2
r

(
cot α
2πb0

+ r cot β0
A

)
q∗ + Wrr2Qrω∗

. (26)

Thus, eqy, eqh and eqω can be calculated as:

eqy =
∂q
∂y

=
∂q∗

∂y∗
=

∂q∗

∂m∗t
· ∂m∗t

∂y∗
= − Mtr

−2Q2
r

(
cot α
2πb0

+ r cot β0
A

)
· (q + 1) + Wrr2Qr(ω + 1)

· emy, (27)

eqh =
∂q
∂h

=
∂q∗

∂h∗
=

∂q∗

∂m∗t
· ∂m∗t

∂h∗
= − Mtr

−2Q2
r

(
cot α
2πb0

+ r cot β0
A

)
· (q + 1) + Wrr2Qr(ω + 1)

· emh (28)

and:

eqω =
∂q
∂ω

=
∂q∗

∂ω∗
=

∂q∗

∂m∗t
· ∂m∗t

∂ω∗
= − Mtr

−2Q2
r

(
cot α
2πb0

+ r cot β0
A

)
· (q + 1) + Wrr2Qr(ω + 1)

· emω. (29)
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For analyzing the dynamic characteristics of the HTGS in the load shedding transient, a typical
major fluctuation process, the closing time of the guide vane is set for 3 s based on [24]. The closing
rule is shown in Figure 2. Besides, assuming the full load is rejected.
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2.6. Mathematical Model of the Hydro–Turbine Governing System

Combining Equations (2), (20)–(22), the hydro–turbine torque characteristic can be expressed as:
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According to Equation (2), the hydro–turbine head can be described as:
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Then, combining Equations (21)–(23), (27)–(29) and (31), we can obtain:
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In the end, based on Equations (4), (9), (12), (30) and (32), state–space equations of the HTGS in
the load rejection transient can be expressed as:
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3. Nonlinear Dynamic Analyses of the Hydro–Turbine Governing System

In this section, the nonlinear dynamic methods will be used to investigate the nonlinear dynamic
characteristics of the HTGS in the process of the load shedding. Specifically, bifurcation diagrams,
time series, Poincare maps, power spectrums and phase planes are applied in the study. Keeping
PID parameters at constant values, the Runge–Kutta method is applied in the numerical experiment.
The step–size is 0.01, the iteration steps are 5000 for each time of simulation, and the initial values [24,31]
specified for the computation are as follows: [x1, x2, x3, δ, w, y, h, q, mt] = [0.001, 0.001, 0.001, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01]. In addition, considering the complex nonlinear characters of the HTGS and the
elastic water hammer of the penstock in the load shedding transient process, the hydro–turbine
structure and the HTGS parameters are selected based on some published papers [24,31,34,35],
which are listed as follows: ωB = 314, D = 0.5, E′q = 1.35, x′dΣ = 1, x′dΣ = 2, Vs = 1, Ty= 1, Tab = 8,
Tw = 2, kp = 2, ki = 1, kd = 5, D1 = 1.4 m, b0 = 0.511 m, Z0 = 16, Wr = 300π rad/min, Qr = 12.75 m3/s, Hr

= 30.5 m, Yr = 0.24 m, r = 0.7 m, A = 0.49π m2.
Bifurcation diagrams of the relative deviation of the rotational speed (ω) and the relative deviation

of the mechanical torque (mt) with time from 0 s to 3 s in the load shedding process are shown in
Figure 3a,b, respectively.

As an overview, first, from Figure 3a,b, the whole process can be divided into four parts according
to differences of the nonlinear dynamic phenomena, which have been marked in figures. In part 1,
the relative deviation of the rotational speed (ω) and the relative deviation of the mechanical torque
(mt) maintain a chaos–1 state at 0 s < t < 0.202 s. In part 2, a huge jump appears at t = 0.202 s whether
the relative deviation of the rotational speed (ω) or the relative deviation of the mechanical torque (mt).
Then they turn back to the previous state at t = 0.362 s. In part 3, the two system parameters transit
from chaos to periodic oscillation when 0.362 s < t < 2.518 s. In part 4, the relative deviation of the
rotational speed (ω) and the relative deviation of the mechanical torque (mt) change from the periodic
oscillation, to the quasi–period oscillation, to the chaos.

Second, there are two typical fluctuations in bifurcation diagrams of the relative deviation of
the rotational speed (ω) and the relative deviation of the mechanical torque (mt) at t = 0.202 s and
t = 2.976 s, respectively.
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The first fluctuation appears at the start of the guide vane closure process. This phenomenon
means that the hydro–turbine generator unit operates at an extremely unstable state in this condition.
In actual engineering, a huge variation will also arise in this condition for the hydro–turbine generator
unit. Concretely, when the guide vane closes quickly, the pressure of the penstock and the rotational
speed will increase sharply, and the hydraulic imbalance and the mechanical vibration will also
be aggravated. All these phenomena indicate that the hydro–turbine generator unit maintains an
extremely precarious state, which is consistent with the analysis results of the bifurcation diagrams
shown in Figure 3. Therefore, it is necessary to pay more attention to the sudden close of the guide
vane in the operation.

The second fluctuation appears at the end of the guide vane closure process, which also suggests
that the hydro–turbine generator unit is unstable. In actual engineering, in this condition, the rotational
speed is greater than the previous, and the inertia of the water cannot be effectively counteracted in the
guide vane closure process, so the water pressure in the penstock increases with the changing of the
time. In the end of the guide vane closure process, the water hammer and mechanical dynamic
unbalance have significant impacts on the hydro–turbine generator unit, which can lead to the
instability of hydro–turbine generator unit. According to above analyses, the influences of the elastic
water hammer and the mechanical dynamic unbalance are still remarkable in the load shedding
process, especially, in the end of the load shedding process, which should also be paid attention to in
the operation.

For further studying dynamic characteristics of the HTGS, as is shown in Figures 4–8, time series,
Poincare maps, power spectrums and phase planes at some representative points are presented.
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For t = 0.1 s, as is shown in Figure 4, time waveforms of the rotational speed (ω), the mechanical
torque (mt), and the hydro–turbine head (h) tend to divergence with the increasing time. And there are a
lot of chaotic points in Poincare map. Then in power spectrum, there are two peaks at frequency = 20.51 Hz
and frequency = 24.41 Hz, respectively, and there is a faint peak at frequency = 56.64 Hz. Besides,
the phase plane shows that the phase locus (mt–ω) tents to infinity. Based on above analyses, all these
results indicate that the HTGS tend to an unstable state at t = 0.1 s.
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Figure 4. Time series, Poincare map, the power spectrum and phase plane with t = 0.1 s. (a) The time
series with ω–t; (b) The time series with mt–t; (c) The time series with h–t; (d) Poincare map; (e) The
power spectrum; (f) The phase plane with mt–ω.

Figure 5 shows the time series, Poincare map, the power spectrum and phase plane at t = 0.645 s.
Concretely, the rotational speed (ω), the mechanical torque (mt), and the hydro–turbine head (h) always
maintain a quasi–periodicity motion. The Poincare map is a circle comprised by many discrete points.
And there is only one peak in power spectrum at frequency = 24.41 Hz. The phase locus (mt–ω) is
an annulus limited to a limit–cycle. In this condition, the HTGS maintains a critical state. The whole
HTGS can work normally, but, when a small disturbance appears, this balance could be broken easily.
Therefore, it is an omen for the instability of the HTGS.
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Dynamic behaviors of the HTGS at t = 1.257 s are shown in Figure 6. Obviously, the rotational
speed (ω), the mechanical torque (mt) and the hydro–turbine head (h) always keep a period–3 motion.
Interestingly, it can be found that in Figure 3b, one period is hidden in the bifurcation diagram of the
mechanical torque (mt), but it cannot influence the results of the stability analyses. Then the Poincare
map shows four discrete points. Besides, the power spectrum in this condition is similar with the
chart at t = 0.645 s. Finally, it can be found that the phase locus (mt–ω) is also limited to a limit–cycle.
Hence, according to these analyses for Figure 6, it is obvious that the operation state of the HTGS
at t = 1.257 s is similar with t = 0.645 s, and both of them keep a critical stable state. Differing from
Figure 5, the system state at t = 1.257 s is a kind of critical stable state with period–3 motion.
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Responses of the HTGS at t = 2.534 s are illustrated in details in Figure 7. Time waveforms of the
rotational speed (ω), the mechanical torque (mt) and the hydro–turbine head (h) converge to stable
values, respectively. In addition, there is only one point in Poincare map. And the power spectrum is
also similar with the chart at t = 0.645 s shown in Figure 5d. More obviously, from Figure 7f, it can be
gotten that the phase locus (mt–ω) is converging to a steady value with time. According to analyses
for Figure 7, the HTGS is stable in this condition. And the HTGS can work effectively to maintain the
safety and stability of the hydropower station.
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Finally, Figure 8 shows responses of the HTGS at t = 2.972 s. Time waveforms of the rotational
speed (ω), the mechanical torque (mt) and the hydro–turbine head (h) all gradually increase with the
time. Nevertheless, they are different from time series at t = 0.1 s. Specifically, the main difference of
them is that time waveforms at t = 2.972 s tend to chaos, while time waveforms at t = 0.1 s are regular.
The Poincare map is also composed by many chaotic points. In addition, differing from previous four
power spectrums, a lot of small peaks appear at t = 2.972 s. Interestingly, the phase plane contains six
vortexes, which is a typical character of chaos.

Energies 2018, 11, x FOR PEER REVIEW  13 of 17 

 

 
(e) 

 
(f) 

Figure 7. Time series, Poincare map, the power spectrum and phase plane with t = 2.534 s. (a) The 
time series with ω–t; (b) The time series with mt–t; (c) The time series with h–t; (d) Poincare map; (e) 
The power spectrum; (f) The phase plane with mt–ω. 

Finally, Figure 8 shows responses of the HTGS at t = 2.972 s. Time waveforms of the rotational 
speed (ω), the mechanical torque (mt) and the hydro–turbine head (h) all gradually increase with the 
time. Nevertheless, they are different from time series at t = 0.1 s. Specifically, the main difference of 
them is that time waveforms at t = 2.972 s tend to chaos, while time waveforms at t = 0.1 s are regular. 
The Poincare map is also composed by many chaotic points. In addition, differing from previous four 
power spectrums, a lot of small peaks appear at t = 2.972 s. Interestingly, the phase plane contains six 
vortexes, which is a typical character of chaos.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. Time series, Poincare map, the power spectrum and phase plane with t = 2.972 s. (a) The 
time series with ω–t; (b) The time series with mt–t; (c) The time series with h–t; (d) Poincare map; (e) 
The power spectrum; (f) The phase plane with mt–ω. 

According to these analyses, the HTGS is unstable in this condition. Combining the analysis 
results of the bifurcation diagrams, it can be inferred that the instability of the HTGS in this condition 

0 100 200 300 400 500
Frequency (Hz)

-30

-20

-10

0

10
Po

w
er

 (d
B)

Figure 8. Time series, Poincare map, the power spectrum and phase plane with t = 2.972 s. (a) The time
series with ω–t; (b) The time series with mt–t; (c) The time series with h–t; (d) Poincare map; (e) The
power spectrum; (f) The phase plane with mt–ω.



Energies 2018, 11, 1244 14 of 17

According to these analyses, the HTGS is unstable in this condition. Combining the analysis
results of the bifurcation diagrams, it can be inferred that the instability of the HTGS in this condition
mainly results from the water hammer. Therefore, close attention should be paid to the water hammer
of the penstock whether in the scientific research or in the actual operation in engineering.

In this research, a novel nonlinear mathematical model of the HTGS has been presented,
and comparing with a typical model in previous papers, it is more reasonable in describing nonlinear
dynamic characteristics of the HTGS. Concretely, the comparison of the bifurcation diagram between
the novel nonlinear mathematical model and the previous model is shown in Figure 9.

Energies 2018, 11, x FOR PEER REVIEW  14 of 17 

 

mainly results from the water hammer. Therefore, close attention should be paid to the water hammer 
of the penstock whether in the scientific research or in the actual operation in engineering. 

In this research, a novel nonlinear mathematical model of the HTGS has been presented, and 
comparing with a typical model in previous papers, it is more reasonable in describing nonlinear 
dynamic characteristics of the HTGS. Concretely, the comparison of the bifurcation diagram between 
the novel nonlinear mathematical model and the previous model is shown in Figure 9. 

 
Figure 9. The comparison diagram between the novel nonlinear mathematical model and the previous 
nonlinear mathematical model. 

First, the previous typical comparison model is introduced from [24], in which the six hydro–
turbine transfer coefficients (emy, emh, emω, eqy, eqh and eqω) in major fluctuation are calculated using an 
approximation method. Second, the system parameters are kept consistent with the previous model. 

From Figure 9, in the new model, when 0.7 s < t < 2.4 s, the rotational speed maintains a transition 
stage including the instability state, critical stable state and stable state. The relative deviation of the 
rotational speed (ω) in bifurcation diagram is larger than zero. However, in the previous model, the 
rotational speed always maintains stable state. The relative deviation of the rotational speed (ω) 
changes around zero all the time. In fact, in the load shedding transient process, the relative deviation 
of the rotational speed (ω) in bifurcation diagram should be larger than zero. Because of the water 
hammer, the mechanical unbalance, and other instability factors, the rotational speed cannot always 
remain in a stable state in this range. Therefore, the new model is more accurate on describing the 
state of the HTGS in the load shedding transient process. 

Besides, some details need to be paid attention to. From the bifurcation diagram of the new 
model, it can be found that there are a lot of turning points, which have been marked in Figure 9 by 
black arrows. However, these turning points are hidden in the previous model. In fact, when the load 
shedding transient appears in the actual hydropower station, the rotational speed will be influenced 
by many unstable factors, so the small turning and fluctuation are common in the load shedding 
process for the hydropower station. 

Based on the above analyses, it is apparent that the new model of the hydro–turbine transfer 
coefficients is more reasonable in the analyzing the nonlinear dynamic characteristics of the HTGS. 

Finally, it is also significant to discuss the reasons of the differences between the previous model 
and the new model. In previous model, the six hydro–turbine transfer coefficients are calculated 
using an approximation method, which are only the function of the time. However, in the new model, 
the six hydro–turbine transfer coefficients are the function of the hydro–turbine head (h), the 
rotational speed (ω), the guide vane opening (y), and the hydro–turbine flow (q). Therefore, the new 
model of the transfer coefficients can reflect complex relationships of the system parameters more 
accurately. And it also can describe more details of the nonlinear dynamic characteristic of the HTGS. 
  

Figure 9. The comparison diagram between the novel nonlinear mathematical model and the previous
nonlinear mathematical model.

First, the previous typical comparison model is introduced from [24], in which the six hydro–
turbine transfer coefficients (emy, emh, emω , eqy, eqh and eqω) in major fluctuation are calculated using an
approximation method. Second, the system parameters are kept consistent with the previous model.

From Figure 9, in the new model, when 0.7 s < t < 2.4 s, the rotational speed maintains a transition
stage including the instability state, critical stable state and stable state. The relative deviation of
the rotational speed (ω) in bifurcation diagram is larger than zero. However, in the previous model,
the rotational speed always maintains stable state. The relative deviation of the rotational speed (ω)
changes around zero all the time. In fact, in the load shedding transient process, the relative deviation
of the rotational speed (ω) in bifurcation diagram should be larger than zero. Because of the water
hammer, the mechanical unbalance, and other instability factors, the rotational speed cannot always
remain in a stable state in this range. Therefore, the new model is more accurate on describing the
state of the HTGS in the load shedding transient process.

Besides, some details need to be paid attention to. From the bifurcation diagram of the new
model, it can be found that there are a lot of turning points, which have been marked in Figure 9 by
black arrows. However, these turning points are hidden in the previous model. In fact, when the load
shedding transient appears in the actual hydropower station, the rotational speed will be influenced by
many unstable factors, so the small turning and fluctuation are common in the load shedding process
for the hydropower station.

Based on the above analyses, it is apparent that the new model of the hydro–turbine transfer
coefficients is more reasonable in the analyzing the nonlinear dynamic characteristics of the HTGS.

Finally, it is also significant to discuss the reasons of the differences between the previous model
and the new model. In previous model, the six hydro–turbine transfer coefficients are calculated using
an approximation method, which are only the function of the time. However, in the new model, the six
hydro–turbine transfer coefficients are the function of the hydro–turbine head (h), the rotational speed
(ω), the guide vane opening (y), and the hydro–turbine flow (q). Therefore, the new model of the
transfer coefficients can reflect complex relationships of the system parameters more accurately. And it
also can describe more details of the nonlinear dynamic characteristic of the HTGS.
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4. Conclusions

In this study, considering that the six hydro–turbine transfer coefficients will change with the
operation condition of the hydro–turbine generator unit, we propose a novel and creative calculation
method of the six hydro–turbine transfer coefficients based on their definitions and the hydro–turbine
internal characteristics, in which the transfer coefficients are complex nonlinear functions of the
hydro–turbine head, the hydro–turbine flow, the rotational speed, and the guide vane opening. Then,
a novel nonlinear mathematical model is established for the HTGS in the load shedding transient
process. Finally, the nonlinear dynamic characteristics of the HTGS are discussed from the perspective
of nonlinear dynamics and the engineering practice, and the advantages of the novel nonlinear
mathematical model are also presented by comparing with the previous model.

According to the numerical simulation results in Section 3, some meaningful conclusions are
drawn as follows: first, the HTGS presents a lot of complex nonlinear dynamic behaviors in the
load shedding transient process. Second, two drastic unstable states will appear at the start and
the end of the guide vane closing process, respectively, which should be paid more attention to for
the security and stability of the hydro–turbine generator unit. Third, some small turning points are
also found in the middle of the guide vane closing process. Finally, the comparison results indicate
that the new hydro–turbine transfer coefficient model is more reasonable than the previous models.
More importantly, these results could provide some theoretical references for the operation of the
hydropower stations during the load shedding transient process.
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