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Abstract: Conventional single-phase Vienna rectifiers employ proportional-integral (PI) controllers
which are appropriate for controlling DC components, to regulate their line currents. However, in the
regions close to the line current’s zero-crossing point, the dynamics of PI controllers are too slow
to respond to the reference current, which has an AC component. Hence, the power factor (PF) of
the device is degenerated, and total harmonic distortion (THD) increases. A controller with a fast
dynamic response is thus required to solve this problem. In this paper, we investigate the use of
a model-based predictive controller (MPC), which has a faster dynamic response than a PI controller,
to improve the line current quality of a single-phase Vienna rectifier. With this method, the average
current in both the continuous current mode (CCM) and the discontinuous current mode (DCM)
of operation are controlled using a mode detection method. Moreover, we calculate the optimized
duty cycle for the single-phase Vienna rectifier, by predicting the next current state. We verify the
operation of the proposed algorithm using a PSIM simulation, and a practical experiment conducted
with a 1-kW-rated single-phase Vienna rectifier prototype. With the proposed method, the quality of
the line current near the zero-crossing point is improved, and the PF is controlled to unity.

Keywords: predictive control; E.V. charger; controllable rectifier; single-phase Vienna rectifier; power
factor correction; on board charger

1. Introduction

Recently, there has been a growing interest in eco-friendly electric vehicle (EV) systems, because of
the depletion of fossil-fuels, and in order to reduce greenhouse gas emissions [1]. With the development
of EV systems, the demand for related infrastructure has also increased. In particular, the development
of chargers for EV systems remains the biggest infrastructure-related issue. An EV charger consists of
two parts [2–4], one to deliver energy from the AC grid to the DC link, and another to deliver energy
from the DC link to the battery [5–7]. Two different circuits can be considered for construction of
the AC to DC conversion system: a bidirectional inverter, which is capable of AC-DC and DC-AC
conversion, and a unidirectional Vienna rectifier, which is only capable of AC-DC conversion. As a fast
charging characteristic and high efficiency are required of EV chargers, the Vienna rectifier, which
has a simple structure and high efficiency, is typically used as the pulse-width modulation (PWM)
converter in this device, to control the grid side current [8–11].

The Vienna rectifier discussed in this paper is similar in structure to a T-type inverter. However,
in this device the outer switches are substituted for diodes, Dp and Dn, as shown in Figure 1, which
restrict the flow of energy from DC to AC. Furthermore, we consider a single-phase topology,
for application to the on board charger (OBC) of an EV, because of the simplified structure of this
configuration, and its use of fewer switching devices [12–15].
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To control a Vienna rectifier in normal operation, the “important rule”, defined as the sign of
the voltage being equal to the sign of the current, should be satisfied. Failure to meet this criterion
contributes to the degradation of current quality and an increase in total harmonic distortion (THD) [16].
Conventional Vienna rectifiers apply proportional-integral (PI) controllers to the line current control
loop. These devices are optimized for regulating DC, and not AC components [17], as their dynamic
response is not fast enough to control alternating current. Hence, an appropriate output cannot be
estimated if a PI controller is used in an AC current control loop [18], and THD of the line current
consequently increases [19,20]. Therefore, as the line current frequency increases and the system power
decreases, the line current distortion problem becomes dominant [21].

In addition to large errors and the slow dynamic response of the PI controller, another reason
for current distortion is a difference between the sensed current and the average current caused by
discontinuous current mode (DCM) operation around the input voltage’s zero crossing point [22].
The phase difference between the input voltage and the line current also increases around this neutral
region. Thus, to reduce the response error and alleviate problems associated with the DCM, a controller
that has a fast dynamic response and can control the power factor (PF) to unity is necessary [23–28].

The predictive control method was researched to make the controller with faster dynamics.
The predictive control is designed with the system model. Generally, in this method, the current is
predicted by the past state data. The optimal duty cycle is derived by using this predicted current.
Hence, the controller is possible to get the faster dynamics than the PI control method. As mentioned
before, in order to deduce the optimal duty cycle, the current prediction is one of the important
procedure. The study of [29] was considered for the next current prediction. The inductance model
and simple mathematical method is used for calculating the predicted current.

In this paper, we propose a model-based predictive control algorithm for a single-phase Vienna
rectifier, to improve the quality of its line current. The proposed controller has fast dynamics and
simple algorithm. The optimal duty cycle for regulating the reference current in the shortest timescale
is deduced by the controller algorithm predicting the next current state, and subsequently minimizing
the error between the reference current and the line current. In addition, to control the rectifier
in continuous current mode (CCM) and DCM operation separately, a mode detection algorithm is
adopted. Hence, different optimized duty cycles for controlling the line current in CCM and DCM are
deduced. In spite of this, the algorithm is capable of controlling the average line current, even if these
two modes of operation are mixed. In contrast to PI control, the proposed algorithm has a fast dynamic
response, making it possible for the line current to follow the reference current with the smallest error.
Hence, the PF can be controlled to unity and THD of the line current can be decreased. We verify
the operation of the proposed control algorithm using PSIM simulation and practical experiments
performed with a 1-kW-rated single-phase Vienna rectifier prototype. Moreover, we compare the
line current of a rectifier controlled using a conventional PI algorithm and the proposed algorithm,
to demonstrate its performance.
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2. Vienna Rectifier Control

2.1. Operation of the Vienna Rectifier

A circuit diagram of the single-phase Vienna rectifier employed in this study is shown in Figure 1.
To the grid side, input filter of this topology is composed of inductor, L. The resistor, R, means the
resistive component in the inductor. As previously stated, the topology of this device is similar to that
of a single-phase T-type inverter, with the outer switches of the inverter having been replaced by the
diodes Dp and Dn in the rectifier. The rectifier topology includes two inner switches, a top switch, Sp,
which only operates when the top capacitor, Ctop, is charging, and a bottom switch, Sn, which only
operates while the bottom capacitor, Cbot, is charging. The detail nomenclature of the components
is shown in Table A1 in appendix A. Figure 2 shows the equivalent circuit and the current path of
a single-phase Vienna rectifier when the top switch is in operation. Figure 3 shows the equivalent
circuit and the current path of a single-phase Vienna rectifier when the bottom switch is in operation.

Figures 2 and 3 are further subdivided into different modes. Mode 1 and Mode 2 are operational
when the grid voltage is positive, and Mode 3 and Mode 4 operate when the grid voltage is negative.
When Mode 1 is in operation, both switches, Sp and Sn, are turned off. The line current flows through
the top diode, Dp, and charges Ctop. In Mode 2, Sp is turned on and the line current flows through this
switch and the anti-parallel diode of Sn. The closed current path consists of the switching device and
the neutral point of the DC link to the grid. The current path in Mode 3 is as with Mode 2. However,
the direction of current flow is reversed in this mode. In Mode 4, Sn is turned off and current flow
from the DC link to the grid side is in the same direction as in Mode 3. In this mode, the current path
includes the bottom diode.
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2.2. Conventional PI Control of a Vienna Rectifier

A block diagram of a complete Vienna rectifier system, including control circuitry, is shown in
Figure 4. The voltage controller comprising the outer control loop consists of a PI controller, the input
to which is the error between the sensed DC link voltage and the reference DC link voltage. The voltage
controller of the conventional and proposed method applied system is same, both are PI controller.
The output of the voltage controller is the reference current. In this image, sinωt is the waveform of the
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grid voltage, which is obtained by dividing the sensed grid voltage by its magnitude. The final line
current reference, iL*, is obtained by multiplying i* with sinωt. The input to the inner current control
loop is the error between the sensed line current, iL, and iL*. A PI controller is adopted for the current
controller, the output of which is the PWM duty cycle. The bandwidth, ωcc, of the current control loop
should be wider than that of the voltage control loop. In addition, to prevent noise and disturbance,
this ωcc should be 1/20 or 1/10 of the switching frequency. Hence, the ωcc of the system is limited by
the switching frequency.
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Figure 5 shows the closed current loop of the PI controller applied system. The GPI(s) means the
model of PI controller and Gplant(s) means the large signal mode of plant. GPI(s) and Gplant(s) can be
expressed as:

GPI(s) = Kp,current(s) +
KI,current

s
, Gplant(s) =

1
sL

, (1)

where Kp,current is proportional gain (or P gain) of the current controller, KI,current is integral gain (or I
gain) of the current controller, L is the inductance of system. From (1) the closed current loop transfer
function based on PI controller equation can be expressed as:

T(s) =
GPI Gplant

1 + GPI Gplant
, (2)

Hence, the closed current loop transfer function based on PI controller, T(s), can be derived as:

T(s) =
KI,current

Ls2 +
Kp,current

Ls
KI,current

Ls2 +
Kp,current

Ls + 1
. (3)

By the characteristic equation of this transfer function, the P and I gain are simply derived as:

Kp,current = 2ζωccL, KI,current = ω2
ccL. (4)

where ζ is the damping-ratio. This value usually set as 0.707 for the critical damping characteristic.
In (4) the gain of the PI controller contains the ωcc. Thus, the gain of the controller is also limited by
the switching frequency. As the gain of the PI controller employed in the current controller is limited,
the regulation of the current is diminished when the input voltage crosses zero. As a result of the
minimal control at this point, the current becomes distorted. One reason for this distortion is the slow
dynamic response of the PI controller. The bandwidth of the controller is limited by the switching
frequency, which also affects the dynamic response. The change in the AC reference around the
zero-crossing section occurs too quickly for the controller to respond. The second reason for distortion
is the variable mode of operation of the rectifier. In the CCM region, the average inductor current is
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equal to the sensed current. This means that the average current follows the reference current. In the
DCM region, the average current does not match the sensed current and it thus cannot follow the
reference current. Hence, a controller with a fast dynamic response and a mode detection algorithm is
required to solve these problems.
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2.3. Model-Based Predictive Control of a Single-Phase Vienna Rectifier

The model-based predictive control algorithm predicts the next current state and calculates the
optimal duty cycle using data from previous states. Unlike the conventional PI control algorithm, this
technique has a fast dynamic response, suitable for control of AC components. Therefore, it is possible
to improve the line current distortion of the single-phase Vienna rectifier using the proposed algorithm.
However, in the real situation when using a digital signal process (DSP), there is one cycle delay for
an analog to digital conversion (ADC). Hence, in order to solve this problem, current prediction of
two cycle after state is applied. Moreover, the precision of the model affects the performance of the
controller. Thus, the compensation method for precise inductance model should be considered for the
modelling of the controller.

2.3.1. Estimating the Gradient of the Inductor Current

The optimal duty cycle of a Vienna rectifier is derived using the predicted current and the gradient
of the current flowing through the inductor. However, mode detection is required, as the shape of
the line current is different in DCM and CCM operation. Hence, a mode detection method is also
considered in addition to the current control method proposed in this paper.

The current paths, when the top switch is off or on, are shown in Figure 6a,b, respectively. When
the input voltage, VGrid, is positive, the current flows through the switches if Sp is on, and through Dp

if Sp is off. The voltage equation when the switch is on can be expressed as:

|VGrid| −VL = |VGrid| −
(

L
diL
dt

+ iLR
)
= 0, (5)

where VL is the voltage across the inductor and iL is the inductor current that passes the resistor.
The voltage applied to the inductor can be divided into two parts, one is voltage across the inductance
component and another is voltage across the resistance of inductor. Equation (5) can be rearranged to
obtain an expression for the slope, diL/dt. Based on this rearranged equation, the slope of the current
through the inductor when the switch is on, SL,on, can be expressed as:

SL,on =
diL
dt

=
|VGrid| − iLR

L
. (6)

As VGrid is positive in this sector, SL,on is also positive. The voltage equation when the switch is
off can be expressed as:

|VGrid| = Vtop + VL = Vtop + L
diL
dt

+ iLR, (7)

where Vtop is the voltage of the top DC link. As performed previously, (5) can be rearranged for the
slope of the current as:

SL,top,o f f =
diL
dt

=
|VGrid| − iLR−Vtop

L
, (8)
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where SL,top,off is the slope of the inductor current when the top switch is off. As the DC link voltage is
larger than |VGrid| in the steady state, the value of the slope is negative. In this equation the DC link
voltage is the difference between Vtop and Vbot. Hence, the expression calculated for SL,top,off is only
suitable for when the top switch is in operation, and a different equation is required for the slope of
the inductor current when the bottom switch is off. This can be obtained by substituting Vbot for Vtop.

The slope of the inductor current when the bottom switch is in operation can be expressed
similarly to (5)–(8). The equation for the current slope when the bottom switch is on is the same as (5),
as the input voltage is an absolute value. However, when the bottom switch is off, Vbot is applied.
Hence, the DC link voltage of the bottom capacitor, Vbot, is used instead of Vtop, in the slope equation.
The slope of the inductor current when the bottom switch is off, SL,bot,off, can be expressed as:

SL,bot,o f f =
diL
dt

=
|VGrid| − iLR−Vbot

L
. (9)

The optimal duty cycle can thus be calculated using the slope equations given in (6), (8) and (9).
However, considering the “skin effect” in the inductor, the R in slope equation has small value which
is enough to ignore.
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Figure 6. Current path of the single-phase Vienna rectifier. (a) Operation when the top switch is off;
(b) Operation when the top switch is on.

2.3.2. Deriving the Optimal Duty Cycle for CCM Operation

The inductor current during CCM, and the gate signal in the steady state region, are shown in
Figure 7. In the steady state CCM region, the inductor current sensed by the digital processor is equal
to the average inductor current. As such, the next inductor current state, iL,k + 1, can be calculated
using the current slopes previously derived as (6)–(8), and the present inductor current state, iL,k, as:

iL,k+1,top = iL,k + SL,onTon,top + SL,top,o f f · (Ts − Ton,top), (10)

where Ton,top,CCM is the period the top switch is on during CCM, Toff in Figure 7 is the period the switch
is off, and Ts is the sampling period, which is the sum of Ton and Toff. The error, ierr, between iL,k + 1

and the line current reference, iL*, can be expressed as follows:

ierr,top = i∗L − iL,k+1,top = i∗L − iL,k − SL,onTon,top − SL,top,o f f · (Ts − Ton,top) = 0. (11)

By rearranging (11), the on time interval for the duty cycle of the top switch can be derived
as follows:

Ton,top,CCM =
i∗L − iL,k − SL,top,o f f · Ts

SL,on − SL,top,o f f
. (12)
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The optimal duty cycle for the top switch during CCM, Dutytop,CCM, can be expressed as follows:

Dutytop,CCM =
Ton,top ,CCM

Ts
. (13)

The optimal duty cycle of the bottom switch during CCM, Dutybot,CCM, can be derived in a similar
manner. Using the inductor current slope of the bottom switch, Dutybot,CCM can be written as:

Ton,bot,CCM =
i∗L − iL,k − SL,bot,o f f · Ts

SL,on − SL,bot,o f f
, (14)

Dutybot,CCM =
Ton,bot ,CCM

Ts
, (15)

where Ton,bot,CCM is the period of time that the bottom switch is on during CCM.
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2.3.3. Deriving the Optimal Duty Cycle for DCM Operation

The steady state inductor current and gate signal during DCM are shown in Figure 8. In this mode
of operation, the average inductor current is different to the sensed inductor current. Furthermore,
the sum of the rise time and fall time does not correspond to the value of Ts. Hence, the inductor
current is improperly regulated with respect to the applied reference current when the current control
algorithm developed for CCM is applied in DCM. An appropriate optimal duty cycle prediction
method is thus required for DCM.
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The optimal duty cycle for DCM operation can be deduced by applying a similar method to that
used for CCM. The peak inductor current equation can be expressed as follows:

iL,peak = SL,on · Ton = −SL,top,o f f · Tzero, (16)

where Tzero is the time required for iL,peak to be reduced to iL,zero. From (16), Tzero can be expressed as:

Tzero = −
SL,onTon

SL,top,o f f
. (17)

In DCM, the next average inductor current state can be calculated using integration as follows:

iL,avg,k+1 =
1
Ts

∫
Ts

iL dt =
iL,peak · (Ton + Tzero)

2 · Ts
. (18)

The error can be calculated in a similar manner to (10) as:

ierr,DCM = i∗L − iL,avg,k+1. (19)

By rearranging (19), the on time interval can be expressed as follows:

Ton,top,DCM =

√√√√2 · i∗L · Ts/SL,on ·
(

1− SL,on

SL,top,o f f

)
, (20)

where Ton,top,DCM is the duration the top switch is on during DCM. The optimal duty cycle of the top
switch during DCM, Dutytop,DCM, can be expressed as follows:

Dutytop,DCM =
Ton,top ,DCM

Ts
. (21)

The optimal duty cycle of the bottom switch during DCM, Dutybot,DCM, can be derived in a similar
manner. Using the current slope expression for the bottom switch, Dutybot,DCM can be written as:

Ton,bot,DCM =

√√√√2 · i∗L · Ts/SL,on ·
(

1− SL,on

SL,bot,o f f

)
, (22)

Dutybot,DCM =
Ton,bot,DCM

Ts
, (23)

where Ton,bot,DCM is the period the bottom switch is on during DCM. Using the optimal duty cycles
calculated with (13), (15), (21) and (23), it is possible to control the system with a faster dynamic
response than a PI controller.

2.3.4. Mode Detection for the Vienna Rectifier

The average current in both the heavy load and light load conditions are controllable using the
duty cycles optimized for CCM and DCM operation, respectively. However, in the medium load
condition where both conduction modes coexist, the appropriate control method should be determined
for the relevant mode of operation. During DCM operation, the duty cycle calculated using the CCM
equation is always larger than the duty cycle calculated using the DCM equation. In contrast, during
CCM operation, the duty cycle calculated using the DCM equation is always larger than the duty
cycle calculated using the CCM equation. Therefore, by verifying the smaller duty cycle in the present
state of operation, it is possible to select the appropriate duty cycle for each mode. Figure 9 shows
the operation of the mode detection method. The regions where the duty cycles for CCM and DCM
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intersect are shown in Figure 9a. At these intersection points, the conduction mode of the rectifier
changes. By applying the criterion defined in the mode detection method, it is possible to select the
optimal duty cycle for the relevant conduction mode, as illustrated in Figure 9b.
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2.3.5. System Stability of Proposed Predictive Control Method

The proposed method calculates the optimal duty cycle by the inductance value. Hence,
the performance of controller depends on the preciseness of the inductance model. The inductance
value can be changing by the experimental ambient. Therefore, it is important to consider this
inductance value variation. In order to confirm the stability of the proposed method, z-plane
discriminant analysis is used. The block diagram of simple system model is shown in Figure 10.
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The rectifier system is simply derived by the small signal model of the voltage equation of
inductor as:

Gp(s) =
iL(s)
d(s)

=
VDC
sL0

, (24)

where, L0 is the actual inductance value with considering inductance value changing. Then changing
this equation to the z-domain the equation is rearranged as:

Gp(z) =
iL(z)
d(z)

=
VDCTs

L0

(
z−1

1− z−1

)
, (25)

As shown in this figure, z-domain equation of the controller is simply model with the (5), (7) and
(11) as:

Gc(z) =
d(z)
ie(z)

=
Lcal

VDCTs
, (26)
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where Lcal is the nominal inductance value without considering of inductance value changing.
The transfer function of the system is derived by (25) and (26) as:

H(z) =
Gc(z)Gp(z)

1 + Gc(z)Gp(z)
=

z−1

1 + (K− 1)z−1 , (27)

where K = (Lcal/L0). From (27), the system pole is calculated as:

z = 1− K. (28)

The system pole is in the unit circle on the z-plane, it is possible to confirm the system is stable.
Figure 11 shows the simulation results of system poles of the proposed controller on z-plane with
using MATLAB. When the L0 is changed to the 50% error of its value, the system pole is on the unit
circle and the L0 is closer to the Lcal the system pole became closer to the origin. Thus, considering this
simulation results, the inductance error should be less than 50% of Lcal in order to make the system
stable. As the L0 increased, the system pole is moving from origin to the positive side of unit circle.
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2.3.6. Consideration of Inductance Variation

As mentioned in the previous section, the inductance variation affects to the controllability of the
proposed method. The actual inductance value became different to the nominal inductance by the
out ambient. This makes the changing of the calculation result of the inductor current slope. Hence,
the inductance compensation method is necessary for the proposed control. The researches of [30–32]
the compensation method for the inductance is introduced. This paper adopts the simple mathematical
method of [32] for the inductance value compensation.

The next inductor current is decided by the next state inductance value and the current state of
duty and the inductance value. Hence, by using this relation, the actual inductance is possible to be
estimated on line. The equation for the online inductance estimation can be expressed as:

Lk+1 =

[
iL,k · Dutyk

iL,k+1 · Dutyk+1

]
Lk, (29)
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where Lk is the current state of online-estimated inductance, Lk + 1 is the current next of online-estimated
inductance iL,k is the current state of the inductor current, iL,k + 1 is the next state of inductor current,
Dutyk is the optimal duty cycle in current state and Dutyk+1.

3. Simulations

To verify the operation of the proposed algorithm, we performed a simulation using PSIM
software. Figure 12 shows a schematic of the 1-kW-rated single-phase Vienna rectifier used in
simulation. Moreover, both the top and bottom DC voltage are sensed, for calculating the optimal
duty cycle of the model-based predictive controller (MPC). The input voltage of the system is 110 Vrms,
varied at 60 Hz. The DC link voltage is controlled to 350–400 V. The controller should conduct one
control operation per one control period because the proposed method should predict the next state
current based on system model. Hence the sampling time is selected as 100 µs. Detailed simulation
parameters are given in Table 1.
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Table 1. Simulation parameters.

Parameter Value

Rated power 1 kW
Grid side voltage 110 Vrms
DC-link voltage 350–400 V

Inductor 1 mH
Top/Bottom Capacitor 450 µF

Grid frequency 60 Hz
Switching frequency 10 kHz

Sampling time 100 µs

The control algorithms for DCM and CCM operation were verified using a light load condition,
defined as 20% of the maximum load, and a heavy load condition, defined as 100% of the maximum
load, respectively. To compare the differences between the operation of a PI controller and the MPC,
simulations were conducted with a 40% load and a full load. The THD of the resulting current
waveforms were used as the standard for comparison.

Figure 13 shows the current waveform derived using the PI controller with a 20% load.
The rectifier is in DCM in this load condition, making it difficult for the PI controller to regulate
the line current to the reference current. Figure 14 shows the current waveform derived using the PI
controller in the 100% load condition. Even though the rectifier is in CCM, the slow dynamic response
of the PI controller contributes to the distortion of the line current. Therefore, the line current does not
fully mirror the reference current.
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Figure 15 shows the current waveform derived using the MPC with a 20% load. Although the
rectifier is in DCM, the proposed MPC algorithm is able to regulate the line current to the reference
current. As mode detection was applied, a suitable duty cycle for DCM was generated. Figure 16
shows the current waveform derived using the MPC in the 100% load condition. The MPC-regulated
system is able to mirror the reference current in the CCM region without problems, due to the fast
dynamic response of the control algorithm. A comparison of the waveforms generated using the
two systems shows that in DCM and CCM operation, there is more distortion in the current waveforms
created with the PI-controlled system than those observed with the MPC-regulated system. The mode
detection applied with the MPC makes it able to control the line current optimally in each conduction
mode. In addition, the dynamic response of the controller is fast enough to control AC waveforms.

Energies 2018, 11, x FOR PEER REVIEW  12 of 21 

 

systems shows that in DCM and CCM operation, there is more distortion in the current waveforms 307 
created with the PI-controlled system than those observed with the MPC-regulated system. The mode 308 
detection applied with the MPC makes it able to control the line current optimally in each conduction 309 
mode. In addition, the dynamic response of the controller is fast enough to control AC waveforms. 310 

Figure 17 shows the current waveform derived using PI control with a 40% load, in the time 311 
domain. In the low load region, current distortion is made worse by prolonged operation in DCM. 312 
As shown in Figure 17, it is difficult for the line current to mirror the reference current. This current 313 
distortion becomes more apparent with a low power load. In particular, the distortion is worsened 314 
near the zero-crossing point of the current. Figure 18 shows the corresponding current waveform in 315 
the frequency domain. With this figure, the harmonic components of the current can be observed. 316 

 317 

Figure 13. Current waveform derived using PI control in DCM. 318 

 319 

Figure 14. Current waveform derived using PI control in CCM. 320 

 321 

Figure 15. Current waveform derived using MPC in DCM. 322 Figure 15. Current waveform derived using MPC in DCM.



Energies 2018, 11, 1237 13 of 22
Energies 2018, 11, x FOR PEER REVIEW  13 of 21 

 

 323 

Figure 16. Current waveform derived using MPC in CCM. 324 

 325 

Figure 17. Time-domain current waveform derived using PI control with a 40% load. 326 

 327 

Figure 18. Frequency-domain current waveform derived using PI control with a 40% load. 328 

Figure 19 shows the current waveform derived using the MPC with a 40% load, in the time 329 
domain. With this algorithm, the line current is closer to the reference current. The difference in 330 
current quality between the conventional and proposed algorithms can be observed at the zero-331 
crossing points of the line current. At these points, the rate of change of current is steepest. Hence, in 332 
order to regulate this quick change, a controller with a fast dynamic response is required. The MPC 333 
deduces the optimal duty cycle for both the CCM and DCM. Hence, unlike the PI controller, it is 334 
capable of this faster dynamic response. Figure 20 shows the current waveform derived using the 335 
MPC, in the frequency domain. In contrast to the waveform observed with conventional PI control, 336 
the magnitude of the harmonics in the MPC-regulated system is too small to observe, indicating that 337 
the MPC improves line current quality. 338 

Figure 21 shows the current waveform derived using PI control, with a full load, in the time 339 
domain. In high load conditions, the rectifier operates predominantly in CCM. Although, there is 340 
little DCM operation, it is possible to observe current distortion with the conventional PI control 341 
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Figure 17 shows the current waveform derived using PI control with a 40% load, in the time
domain. In the low load region, current distortion is made worse by prolonged operation in DCM.
As shown in Figure 17, it is difficult for the line current to mirror the reference current. This current
distortion becomes more apparent with a low power load. In particular, the distortion is worsened
near the zero-crossing point of the current. Figure 18 shows the corresponding current waveform in
the frequency domain. With this figure, the harmonic components of the current can be observed.
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Figure 19 shows the current waveform derived using the MPC with a 40% load, in the time
domain. With this algorithm, the line current is closer to the reference current. The difference in current
quality between the conventional and proposed algorithms can be observed at the zero-crossing points
of the line current. At these points, the rate of change of current is steepest. Hence, in order to regulate
this quick change, a controller with a fast dynamic response is required. The MPC deduces the optimal
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duty cycle for both the CCM and DCM. Hence, unlike the PI controller, it is capable of this faster
dynamic response. Figure 20 shows the current waveform derived using the MPC, in the frequency
domain. In contrast to the waveform observed with conventional PI control, the magnitude of the
harmonics in the MPC-regulated system is too small to observe, indicating that the MPC improves line
current quality.
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Figure 20. Frequency-domain current waveform derived using MPC with a 40% load.

Figure 21 shows the current waveform derived using PI control, with a full load, in the time
domain. In high load conditions, the rectifier operates predominantly in CCM. Although, there is
little DCM operation, it is possible to observe current distortion with the conventional PI control
method, which is confirmed by analysis of the current in the frequency domain, as shown in Figure 22.
From this image, it can be observed that the magnitude of the harmonic components generated is
approximately 10% of the magnitude of the fundamental current component.
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at 40% of the rated power. In this load condition, DCM operation is dominant. Hence, current 373 
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Figure 22. Frequency-domain current waveform derived using PI control at full load.

Figure 23 shows the current waveform derived using the MPC, with a full load, in the time
domain. Based on this image, it can be observed that line current distortion is greatly decreased with
this system, in comparison to the distortion generated with the PI-controlled system. Furthermore,
the distortion near the zero-crossing point is also decreased. Figure 24 shows the corresponding
waveform in the frequency domain, where only the fundamental current component can be observed.
When all regions of the current waveform are considered in total, including the zero-crossing points
where the line current abruptly changes, we observe that the fast dynamic response of the MPC is able
to decrease line current distortion.
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4. Experimental Section

Figure 25 shows the components used in the practical experiments. These include the single-phase
Vienna rectifier prototype, depicted in Figure 25a, and the control circuitry, shown in Figure 25b, which
was installed on the rectifier. The MPC algorithm was programmed on a TMS320F28335 digital
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signal processor (DSP). In addition, the THD and PF were measured using a WT-3000 power analyzer
(Yokogawa, Tokyo, Japan). The experimental parameters are the same as the simulation parameters.
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Control board.

Figure 26 shows the line current waveform generated when conventional PI control was applied at
40% of the rated power. In this load condition, DCM operation is dominant. Hence, current distortion
is appreciable due to prolonged operation in DCM. Moreover, the dynamic response of the PI controller
is not fast enough to regulate the line current.
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Figure 26. Line current observed using PI control at 40% of rated power.

Figure 27 shows the waveform generated when the proposed MPC algorithm was applied at
40% of the rated power. The MPC deduces the optimal duty cycle for control based on the system
model, improving line current quality as a result of its fast dynamic response. This means that, with
this algorithm, it is possible to improve the THD and the PF of the line current.

Figure 28 shows the current waveform observed when conventional PI control was applied at
rated power. Near the zero-crossing point, where the line current changes quickly, the slow dynamic
response of the PI controller induces distortion. With this method, we also observe an increase in
harmonic current components and a decrease in the PF, indicating a deterioration of the line current
quality. Figure 29 shows the current waveform generated when the proposed MPC algorithm was
applied at rated power. In contrast to the PI-controlled system, the distortion near the zero-crossing
point is decreased. This image indicates that the line current mirrors the reference current.

Figure 30 shows the transient of line current when the load is suddenly changed 60 to 100%.
In this figure, it is possible to see that the transient waveform has low overshoot and fast convergence
to the steady state region. Figure 31 shows the transient of line current when the load is suddenly
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changed 100 to 60%. This figure shows same manner as the previous waveform. This shows that the
line current is possible to control the sudden load changing without any problems.

Figure 32 shows the THD in the different load conditions. In the PI-controlled system, THD is
40.68% at 40% of the rated power, and 13.49% at the rated power. In the MPC-regulated system, THD
is 16.36% at 40% of the rated power, and 5.52% at the rated power. When the load is increased, the
THD is improved, regardless of if the PI controller or the MPC is applied. With the proposed MPC
algorithm, the value of the THD is approximately about 7–15% lower than the value obtained with
conventional PI control, in all load conditions.
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Figure 33 shows the value of the PF in the different load conditions. With the PI-controlled
system, the value of the PF is 0.902 with the 40% load and 0.991 at rated power. In contrast, with the
MPC-regulated system, the value of the PF is 0.986 at 40% of the rated power, and 0.997 at rated power.
Hence, with both control systems, the PF is brought closer to unity by increasing the load. As the
fundamental current component is increased in proportion to the harmonics, the PF is improved, and
THD is alleviated. The performance of the proposed MPC algorithm can thus be verified using these
two figures.
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5. Conclusions

This paper proposes the improvement of the line current distortion for the single-phase Vienna
rectifier using the model-based predictive control. Moreover, the conduction mode detection method
is applied to the proposed MPC algorithm. The proposed algorithm conducts the prediction of the
optimal duty cycle by using the previous and the current data of the inductor current. Therefore, this
makes the proposed method possible to have the fast dynamic response, unlike the conventional PI
control method. The PSIM simulation and the experimental result with the 1-kW single-phase Vienna
rectifier are used for verifying the performance of the proposed algorithm. The current waveforms
of the conventional method and the proposed method are compared. Moreover, THD and PF in the
various load condition is measured in order to prove the validity of the proposed MPC algorithm.
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Appendix

The variables, acronyms, indexes and constants defined in the manuscript is explained in the
Table A1.

Table A1. Nomenclatures.

Variables/Acronyms/Indexes/Constants Full Nomenclatures

EV Electric Vehicle
MPC Model-based Predictive Control
PWM Pulse-Width Modulation
OBC On Board Charger
THD Total Harmonic Distortion

PF Power Factor
FS-MPC Finite StateModel-base Predictive Control

DSP Digital Signal Processor
ADC Analog to Digital Conversion

PI Proportional-Integral
DCM Discontinuous Current Mode
CCM Continuous Current Mode
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Table A1. Cont.

Variables/Acronyms/Indexes/Constants Full Nomenclatures

L Filter inductor
R Filter Resistor

VGrid Grid Voltage
Dp Top Diode of Vienna rectifier
Dn Bottom Diode of Vienna rectifier
Sp Top Switch
Sn Bottom Switch

Ctop Top Capacitor
Cbot Bottom Capacitor
Rout Output Resistor
VDC DC Voltage

i* Voltage Controller Output
iL Sensed Inductor Current
iL* Inductor Current Reference
ωcc Bandwidth of PI controller

Kp,current Proportional Gain of PI controller
KI,current Integral Gain of PI controller

ζ Damping-Ratio
ipeak Peak Value of Inductor Current
iavg Average Value of Inductor Current
izero Zero Value of Inductor Current
SL,on Slope during Switch on time
Vtop Top DC link Voltage
Vbot Bottom DC link Voltage

SL,bot,off Slope during Bottom Switch off
SL,top,off Slope during Bottom Switch on

iL,k + 1,top Next State inductor Current
iL,k Current State Inductor Current

ierr,top Error of Inductor Current in CCM
Ton,top,CCM Top Switch on Time in CCM

Dutytop,CCM Top Switch Duty in CCM
Ton,bot,CCM Bottom Switch on Time in CCM

Dutybot,CCM Bottom Switch Duty in CCM
Tzero Zero drop Time of Inductor Current

iL,avg,k + 1 Average Current of Next Current
ierr,DCM Error in DCM

Ton,top,DCM Top Switch on Time in DCM
Dutytop,DCM Top Switch Duty in DCM
Ton,bot,DCM Bottom Switch on Time in DCM

Dutybot,DCM Bottom Switch Duty in DCM
L0 Actual Inductance Value
Lcal Nominal Inductance Value
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