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Abstract: During tanker transportation, crude oil is heated occasionally to ensure its good flowability.
Whether the heating scheme is scientific or not directly influences the safety and economy of the
tanker transportation. The determination of a scientific heating scheme requires fully understanding
of the characteristic of oil temperature drop during tanker transportation. However, the oscillation
caused by the marine environment leads to totally different thermal and hydraulic characteristic
from that of the static cases. Therefore, a systematic investigation of thermal and hydraulic process
of the motion system is more than necessary. Since the marine is subjected to rotational and/or
translational motion, the essence of the temperature drop process is an unsteady mixed convection
process accompanied with free liquid surface movement. In this study, the movement of the free
liquid surface and the characteristic of the temperature drop of the crude oil in the cargo when the
tanker is subjected to rotational motion were investigated using ANSYS FLUENT (15.0, Ansys, Inc.,
Canonsburg, PA, USA) with user defined functions. The research result shows that the oscillating
motion leads to the motion of the free surface, converting the natural convection for the static case to
forced convection, and thus significantly enhancing the temperature drop rate. It is found that the
temperature drop rate is positively related to the rotational angular velocity.

Keywords: oil tanker; temperature drop; oscillating motion; numerical simulation

1. Introduction

Crude oil, the lifeblood of the national economy, is the most important energy in the world at
present and will be in the long future. China’s demand for crude oil is large, and is still growing [1].
In 2015, China became the world’s largest oil importer, when the net annual import of crude oil
amounted to 328 million tons. The foreign dependence of crude oil exceeded 60% [1] for the first time,
and is expected to reach 75% by 2035 [2,3]. In China, about 90% of crude oil import depends on tanker
transport [4]. During tanker transportation, crude oil should be heated occasionally, which consumes a
large amount of energy and discharges large quantities of pollutants. Making a scientific heating plan
to heat the crude oil reasonably is the precondition to guarantee the normal operation of the tanker
and to realize the energy saving and emission reduction. However, formulating the heating scheme
requires fully understanding of the temperature drop characteristic of crude oil in the cargo during the
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transportation. Therefore, the study of the thermal and hydraulic characteristic of the crude oil in oil
tankers is necessary and bears great significance.

During the tanker transportation, the tanker will be subjected to oscillating motion due to the
special nature of the marine environment, as shown in Figure 1. Accordingly, the crude oil in the cargo
will be forced to flow occasionally. Oscillating involves six degrees of freedom motion, including three
degrees of freedom rotational motion and three degrees of freedom translational motion. Therefore,
under oscillating conditions, the process of oil temperature drop is an unsteady mixed convection
process accompanied with free liquid surface movement. The thermal and hydraulic characteristic of
this mixed convection is more complicated than that of static condition. To formulate the scientific
scheme for oil heating, the thermal and hydraulic characteristic of oil temperature drop must be
thoroughly investigated.
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Figure 1. Schematic of tanker navigation at sea.

Due to the late development of oil tanker, there are limited studies in this field in China. Yue [5],
Zhang [6,7] and Zhang [8] adopted the lumped parameter method to study the average temperature
drop and heat source required to heat the crude oil. The lumped parameter method treats the crude
oil as a whole without considering the internal temperature gradient. Although it is convenient
for calculating, it does not accurately reflect the thermal and hydraulic characteristic of crude oil.
Shi et al. [9] set up a two-dimensional analog “resistance capacitance” network to calculate the
characteristic of temperature field change. However, the heat transfer process of crude oil was treated
as heat conduction during calculation. Jin [10] employed ANSYS FLUENT to analyze the velocity and
temperature distribution of crude oil during heating and naturally cooling process in the tanker cargo.
The heat transfer process was considered as the natural convection. Most of the research in China did
not consider the effect of oscillation motion on the temperature drop characteristic of crude oil.

Since the tanker business is mainly monopolized by western countries, more research regarding
the thermal and hydraulic characteristic of tanker oil have been conducted. However, the calculation
is still not accurate enough. Akagis [11] experimentally studied the oil heating by a steam coil in
the tanker, focusing on the heating efficiency and the heat loss from the bulkhead. Suhara [12]
experimentally measured the heat loss during the heating process of a 33,000 DWT (Dead Weight
Tonnage) tanker. According to the principle of heat conservation, Chen [13] calculated the heat loss
during the heating and storage cooling process of crude oil in the tank cargo. However, the research
mentioned above did not consider the influence of oscillation motion on the thermal and hydraulic
process of crude oil in the tank cargo. To fully investigate the effect of oscillating on the thermal and
hydraulic process of crude oil, Kato [14] experimentally studied the heat transfer process of crude oil in
the tank cargo subjected to oscillation, obtaining the heat transfer formula for the bulkhead and the top
of the tanker, finding that the heat transfer coefficient increases linearly with respect to the oscillating
angle and frequency. Doerffer et al. [15] studied the correlation between heat transfer in the flow
boundary layer and the external disturbance with the analytic method, taking the forced convection
caused by the oscillating motion of the ship in actual navigation into consideration. However, the
analytic method is only suitable for small perturbations, and is only flexible for heat flow in the
boundary layer. It is impossible to obtain the complete thermal and hydraulic characteristic of crude
oil in the tank cargo. Akagi et al. [16] considered the forced convection caused by the oscillation,
established a mathematical model based on body fitted coordinate system by introducing an inertia
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force in the momentum equation. With the proposed model, the influence of related parameters on the
thermal and hydraulic characteristic was studied. However, the gas–liquid interface movement, which
seriously influences the thermal process, was not considered in the study.

To sum up, there has not been a comprehensive study which accurately considered the influence
of oscillation of the tanker. The related previous research results cannot meet the requirements of
precise design. Therefore, in this study, the thermal and hydraulic process of crude oil under the
condition of oscillating motion will be studied in detail, and the thermal and hydraulic characteristic
of crude oil under oscillating condition will be clarified. This study will provide theoretical basis for
the related design and heating program formulation.

2. Physical and Mathematical Model

2.1. Physical Model

Modern large oil tankers are usually double hull vessels, with special ballast tanks at the sides of
cargo tanks. The cross section of the tanker holds is shown as Figure 2. When the ship is sailing in
ballast, the heat of crude oil in the tank is released to the sea through the inside shell, ballast water and
outer shell. When the ship is not sailing in ballast, the heat of crude oil in the tank is released to the
sea through the shell, the air and the shell. In addition, the crude oil in the tank exchanges heat with
the inert gas at the top of the tank by convection. The inert gas occupies a small part of the oil tank,
and the heat of the inert gas is released to the atmosphere through the upper deck. A heating coil is
installed at the bottom of the cabin to avoid the oil temperature naturally cooling below freezing point
due to the influence of the above factors. Considering the economy and practicability, the crude oil in
the tank is heated to a temperature which is 10 ◦C above the gel point.
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Figure 2. Schematic of the transverse section of a tanker.

Since the temperature gradient of the crude oil in the longitudinal direction is very small, and the
temperature gradient in the transverse direction is very large, the three-dimensional physical model
is simplified to a two-dimensional one. This paper focuses on studying the influence of oscillating
motion on the thermal and hydraulic characteristic of crude-oil, so the ballast water tank and inert gas
tank are not considered. In addition, to save computation time, we only study a 40 cm × 30 cm model
tank cargo. As mentioned above, the physical model of the thermal and hydraulic process of the crude
oil in the tank cargo is shown in Figure 3.
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Figure 3. The physical model of the tank cargo system.

The red section in Figure 3 represents the crude oil, the blue part indicates the air above the crude
oil, and there is a phase interface between the crude oil and the air. The upper boundary is the deck
of the tanker, exposed to the air and is subjected to the third boundary condition. The left and right
sides are two side walls of the ship respectively, the lower part is immersed in the sea water, and
the upper part is exposed to the air. Thus, the left and right boundaries are also subjected to third
boundary condition. The lower boundary is the bottom of the ship and immersed in sea water, which
is subjected to the third boundary condition. When the oil tanker is subjected to an oscillating motion,
it is assumed that the tanker rotates with an imagined z axis which is perpendicular to x and y axis
at the original point o of the coordinate system in Figure 3. To simplify calculations, the following
assumptions are introduced:

(1) The liquid oil does not evaporate, and the total volume does not change with temperature
and time.

(2) The oil tanker is only subjected to rotational motion.
(3) The change of density with temperature is described by the Boussinesq approximation in the

momentum equation, while the change of other physical properties with temperature is not
considered, i.e., only the average value in the range of temperature change is used.

(4) There is no phase change in the crude oil during temperature drop.

2.2. Mathematical Model

2.2.1. Governing Equations

The nature of the physical problem studied in this paper is the mixed convection heat transfer
under external disturbances, so the governing equation is a convection diffusion equation. Since the
computation domain is changing its position all the time, the governing equations is provided in the
framework of dynamic grid system.

(1) Volume Fraction Equation

The tracking of the interface between the phases is accomplished by solution of a continuity
equation for the volume fraction of one of the phases. For the qth phase, this equation has the
following form:

∂

∂t
(
αqρq

)
+∇·

(
αqρqUq

)
= Saq +

n

∑
p=1

( .
mpq −

.
mqp

)
(1)
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In Equation (1), αq denotes the volume fraction of qth phase in the cell; Uq is the velocity of qth
phase, m/s;

.
mpq indicates the mass transfer from phase p to phase q, kg/(m3·s); and Saq is the source

term and is zero in this research, kg/(m3·s). The volume fraction equation is not solved for the primary

phase; the primary-phase volume fraction is computed by
n
∑

q=1
αq = 1.

The properties appearing in the transport equations are determined by the presence of the
component phases in each control volume. In a gas–liquid system, if the phases are represented by the
subscripts 1 and 2, and if the volume fraction of the second of these is being tracked, the density in
each cell is given by

ρ = α2ρ2 + (1− α2)ρ1 (2)

All other properties (for example, viscosity) are computed in this manner.

(2) Momentum conservation equation

∂

∂t
(ρU) +∇·

[
ρ
(
U−Ug

)
V
]
= −∇p +∇·τ − ρg (3)

where Ug is the velocity of moving mesh, m/s; p is static pressure, Pa; and τ is stress vector, Pa. U is
the volume-averaged velocity, m/s, which is calculated by

U =
n

∑
q=1

αqUq (4)

The density ρ in the last term in Equation (3) is described by Boussinesq approximation, i.e.,
ρ = ρc[1− β(T − Tc)].

(3) Energy conservation equation

∂

∂t
(ρh) +∇·

[
ρ
(
U−Ug

)
h
]
= ∇·

(
ke f f∇T

)
+ Sh (5)

In Equation (5), volume-averaged value of h is calculated by

h =

n
∑

q=1
αqρqhq

n
∑

q=1
αqρq

(6)

where h is the enthalpy, J/kg; ke f f is the effective conductivity, m2/s; and Sh is the defined volume
source term, W/m2.

Because of the oscillation, forced convection heat transfer will occur. Since the Reynolds number
for a real-size oil tanker is large, the turbulence model should be employed for establishing a general
mathematical model. In this paper, k-epsilon model is used to describe the turbulence effect. The
equations of turbulent energy k and turbulent dissipation rate ε are as follows:

∂

∂t
(ρk) +∇·

[
ρk
(
U−Ug

)]
= ∇·

[(
µ +

µt

σk

)
∇k
]
+ Gk + Gb + ρε (7)

∂
∂t (ρε) +∇·

[
ρε(U−Ug)

]
= ∇·

[(
µ + µt

σε

)
∇ε
]
+ ρC1Sε

−ρC2
ε2

k +
√

vε
+ C1ε

ε
k C3εGb

(8)

In these equations, µt is turbulent viscosity (µt = cµk2/ε), Pa·s. Gk represents the generation
of turbulence kinetic energy caused by mean velocity gradients, kg/(m·s3). Gb is the generation of
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turbulence kinetic energy brought by buoyancy, kg/(m·s3). C1, C2, C1ε and C3ε are constants. σk and σε

are the turbulent Prandtl numbers for k and ε, respectively.
With respect to dynamic meshes, the integral form of the conservation equation for a general

scalar, φ, on an arbitrary control volume, V, whose boundary is moving can be written as

d
dt

∫
V

ρφdV +
∫

∂V
ρφ(U−Ug)·dA =

∫
∂V

Γ∇φ·dA +
∫

V
SφdV (9)

where Γ is the diffusive coefficient, m2/s; Sφ is the source term of φ; and ∂V indicates the boundary of
control volume V.

2.2.2. Boundary Conditions

As indicated in Figure 3, all the boundaries are subjected to the third-type boundary condition.
The temperature of sea water is set to be 290.4 K, which is the annual average temperature of sea
water; the temperature of air is chosen to be 293 K, which is also the annual average temperature. The
initial temperature of the crude oil in the cabin is set at 323 K. It is provided in [17] that the forced
heat transfer coefficient of water is 1000–1500 W/(m2·K), and that of air is 20–100 W/(m2·K). In this
paper, the forced heat transfer coefficient of water is 1250 W/(m2·K), and that of air is 50 W/(m2·K).
In conclusion, the detailed information about the boundary conditions is provided in Table 1.

Table 1. Boundary conditions.

Boundaries Convective Heat Transfer Coefficient Fluid Temperature

X = −20 cm, Y ≥ 15 cm h f = 50 W/
(
m2·K

)
Tf = 293.15 K

X = 20 cm, Y ≥ 15 cm h f = 50 W/
(
m2·K

)
Tf = 293.15 K

X = −20 cm, Y ≤ 15 cm h f = 1250 W/
(
m2·K

)
Tf = 290.4 K

X = 20 cm, Y ≤ 15 cm h f = 1250 W/
(
m2·K

)
Tf = 290.4 K

−20 cm ≤ X ≤ 20 cm, Y = 0 cm h f = 1250 W/
(
m2·K

)
Tf = 290.4 K

3. Numerical Method

The computational domain is mapped by structured quadrilateral mesh generated by ICEM (The
Integrated Computer Engineering and Manufacturing code) combined in ANSYSY FLUENT 15.0 [18],
and the grid system is sketched in Figure 4. The rational grid density, which is 200× 150, is determined
after grid independent testing shown in Figure 5.

The governing equations are discretized in the framework of the finite volume method. The
convection terms are discretized with the QUICK scheme. The volume fraction is discretized by
QUICK scheme. The unsteady term is discretized by the first order forward difference. The coupling
between velocity and pressure is calculated by semi-implicit pressure correction algorithm (SIMPLE
algorithm). Since the problem studied involves the motion of the region and the free surface, the time
step is set as 0.01 s. The discretized equations were solved by ANSYS FLUENT 15.0 solver.

Since the computational domain is changing its position with time, so a dynamic mesh technique
is used in this research. The movement of the grid system is defined by a user defined function
(DEFINE_CG_MOTION).
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4. Results and Discussion

In this section, the temperature drop characteristic of the crude oil in the cargo tank at different
oscillating frequencies is studied. To save computation time, only a small-size model tank cargo,
which is 40 cm × 30 cm, is studied and shown in Figure 3. The depth of the crude oil is 22.5 cm (i.e.,
the thickness of air layer is 7.5 cm). The initial temperature in the tank cargo is 323.15 K uniformly.
The physical properties of crude oil and air in the calculation are shown in Table 2. Non-Newtonian
behavior of crude oil is not considered in this research, if anyone who wants to include this behavior,
a power law [19] can be applied to characterize the non-Newtonian behavior of crude oil. With the
parameters provided, the maximum Raleigh number for the static case can be calculated, which is
5 × 108.
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Table 2. Physical properties of crude oil and air.

Materials Density
(kg/m3)

Thermal
Conductivity

(W/m·◦C)

Specific Heat
Capacity
(J/kg·◦C)

Dynamic
Viscosity

(Pa·s)

Volume Expansion
Coefficient (1/◦C)

crude oil 850 0.14 2000 0.004 1.0 × 10−5

air 1.225 0.0242 1006.43 1.7894 × 10−5 0.00272

In this study, three different cases named Case 1, Case 2 and Case 3 will be tested for clarifying the
influence of the oscillation on the temperature drop. The variables of the three cases are the rotational
angular velocity. In Cases 1, the rotational angular velocity is 0, i.e., the tanker does not oscillate.
In Cases 2 and 3, the rotational angular velocity is described by Equation (10).

ω = A· cos(Bt) (10)

In Equation (9), ω is the angular velocity of the oscillation motion, and varies by cosine. The period
of angular velocity is the same as that of the tanker oscillation (tc =

2π
B ); A and B are both constants.

The amplitude of the tanker wobble can be calculated by Θ =
∫ tc

4
0 ωdt, and Θ =

∫ tc
4

0 ωdt = A
B can be

obtained with ω and tc substituted. In the two oscillating cases, the time cycles of Case 2 and Case 3
are tc1 = 10 s and tc2 = 20 s, respectively. Therefore, B = 2π

tc
in Equation (9) gives B1 = 0.628 and

B2 = 0.314, respectively. In the two oscillating cases, the amplitudes are equal, Θ = 18.2 ◦. Thus, in
Equation (9), the values of A = BΘ are A1 = 0.2 and A2 = 0.1 respectively.

For easy reference, the information for Case 1 to Case 3 is listed in Table 3.

Table 3. Information for the three test cases.

Case Time Cycle of Oscillation Amplitude of Oscillation

Case 1 ∞ 0
Case 2 10 s 18.2 ◦

Case 3 20 s 18.2 ◦

Under the above-mentioned calculation conditions, the thermal and hydraulic processes of the
crude oil in the tanker cargo in three cases are calculated numerically. The hydraulic characteristics
(including liquid surface movement and stream function) and the thermal characteristics (including
boundary Nusselt number [20] and temperature field evolution) are investigated in detail. Afterwards,
the sensitivity of temperature drop to rolling frequency is analyzed.

Figures 6 and 7 show the gas liquid phase distribution at different time instants for Case 1 (static)
and Case 2 (oscillation), respectively. In Case 1, the interface of gas–liquid phase does not change
with time, and the phase distribution at different time is shown in Figure 6. Different from Case 1, the
interface of the gas–liquid phase in oscillating case changes with time. Figure 7 shows the four typical
time instants in Case 2 (tc = 10 s). As shown in the figure, there is a small amount of wave on the
surface at the beginning of the oscillation, and the liquid level tends to the horizontal surface as time
goes by. This is because the oscillation frequency is small and the liquid surface has enough time to
return to the horizontal plane.
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Figure 6. Instantaneous phase distribution in Case 1 (non-oscillation case).
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Figure 7. Instantaneous phase distribution in Case 2: (a) t = 1 s; (b) t = 18 s; (c) t = 42 s; and (d) t = 59 s.

Figure 8 shows four typical instantaneous stream functions in Case 1. As can be seen from the
figure, the stream function is basically symmetrical. There are local vortices generated by natural
convection at different position of the fluid region. There are two opposite vortices in the crude oil
region, which are generated by natural convection on the left lower boundary and the right lower
boundary. There are also a few pairs of vortices in the air region above the liquid level. In this static
case, the flow field is dominated by local natural convection at different position.

Figure 9 presents four typical instantaneous stream functions in Case 3, in which Figure 9a,b
shows two states at which the domain is rotating to the left, and Figure 9c,d, shows two states at
which the domain is rotating to the right. Different from Case 1, the flow field in Case 3 is dominated
by integral flow generated by rotation. Because of the effect of rotation, the distribution of stream
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function is asymmetric, running towards the direction of rotation, and the direction of the flow is also
alternately changing. In Figure 9, under the oscillating effect, the streamlines near the solid boundary
are running consistent with the solid boundary trend, while there is a central vortex in the core area of
the fluid.Energies 2018, 11, x FOR PEER REVIEW  10 of 15 

 

  
(a) (b) 

  
(c) (d) 

Figure 8. Instantaneous steam function in Case 1: (a) t = 60 s; (b) t = 660 s; (c) t = 1020 s; and  

(d) t = 2106 s. 

Figure 9 presents four typical instantaneous stream functions in Case 3, in which Figure 9a,b 

shows two states at which the domain is rotating to the left, and Figure 9c,d, shows two states at 

which the domain is rotating to the right. Different from Case 1, the flow field in Case 3 is dominated 

by integral flow generated by rotation. Because of the effect of rotation, the distribution of stream 

function is asymmetric, running towards the direction of rotation, and the direction of the flow is 

also alternately changing. In Figure 9, under the oscillating effect, the streamlines near the solid 

boundary are running consistent with the solid boundary trend, while there is a central vortex in the 

core area of the fluid. 

  
(a) (b) 

  

(c) (d) 

Figure 9. Instantaneous steam function in Case 3: (a) t = 264 s (moving to the left); (b) t = 660 s 

(moving to the left); (c) t = 990 s (moving to the right); and (d) t = 2112 s (moving to the right). 

stream function

0.034

0.032

0.030

0.028

0.026

0.024

0.022

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

stream function

0.060

0.055

0.050

0.045

0.040

0.035

0.030

0.027

0.026

0.025

0.020

0.015

0.010

0.005

stream function

0.040

0.035

0.030

0.028

0.025

0.020

0.015

0.010

0.005

stream function

0.024

0.022

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

stream function

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

stream function

1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

stream function

1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

stream function

1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

Figure 8. Instantaneous steam function in Case 1: (a) t = 60 s; (b) t = 660 s; (c) t = 1020 s; and (d) t = 2106 s.
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Figure 9. Instantaneous steam function in Case 3: (a) t = 264 s (moving to the left); (b) t = 660 s (moving
to the left); (c) t = 990 s (moving to the right); and (d) t = 2112 s (moving to the right).



Energies 2018, 11, 1229 11 of 15

To clarify the thermodynamic characteristics, the Nu distributions on the four boundaries are
studied in this part. Figure 10 shows the Nu distributions on the four boundaries of the four typical
time instants in Case 1. It can be seen from the figure that the left and right boundary have the identical
Nu; and the Nu on the lower part of left and right boundaries is larger than that on the upper part,
since the lower boundary immersed in the water and the upper part exposed in the air, and thus the
convective coefficient between sea water and solid wall is larger than that between air and solid wall.
On the lower boundary, Nu is larger in the middle and lower on both sides. As time proceeds, the Nu
decreases significantly, and eventually tends to be stable. For the upper boundary, because there are
pairs of vortices in the air region, the Nu of the upper boundary shows a wavy distribution. In general,
the Nu on different boundaries gradually decreases with time. In the static case, the heat in the crude
oil is mainly lost from the lower part of the left and right boundaries.
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Figure 11 shows the Nu distribution on four boundaries at different instances in Case 3. Different
from Figure 10, the length of the part immersed in the sea water varies during oscillation in Case 3, so
the Nu distributions around the left and right boundaries are different and the distribution characteristic
change with oscillation. With the oscillation, the flow field is in a complex change, so there is no
clear characteristic on the Nu difference between the left and right boundaries. The Nu of the upper
boundary is the smallest, and the Nu on the left, right and the lower boundaries are larger. As time
proceeds, the Nu on each boundary decreases slightly. Unlike the static case, the Nu on the lower
boundary does not decrease very much. The reason is that oscillation causes the fluid to move along
the solid wall all the time, while, in Case 1, the flow near the lower boundary is very weak after a
period of temperature drop. Thus, it can be concluded that the loss of heat from the left, right and lower
boundary is greater, and that from the upper boundary is relatively small, for the oscillation situation.
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Figure 11. Instantaneous boundary Nusselt number in Case 3: (a) t = 264 s (moving to the left); (b) t = 

660 s (moving to the left); (c) t = 990 s (moving to the right); and (d) t = 2112 s (moving to the right). 
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Figure 11. Instantaneous boundary Nusselt number in Case 3: (a) t = 264 s (moving to the left);
(b) t = 660 s (moving to the left); (c) t = 990 s (moving to the right); and (d) t = 2112 s (moving to
the right).

Based on the analysis of hydraulic characteristics, the thermal process of the system is investigated.
Figure 12 shows the temperature distribution at four typical time instants in the Case 1 (stationary
condition). It is found that the temperature field is symmetrical. With the decrease of temperature,
the temperature field of the crude oil shows stratified distribution that the lower part has a lower
temperature and the upper part has a high temperature. This is the typical stratified temperature
distribution formed by the natural convection of the crude oil in the tank. The temperature distribution
in the air region presents a vortex distribution. This is because the natural convection of air causes the
upper cold air to sink, while the hot air near the oil surface rises and transfers heat upwards. The air
zone has multiple adjacent vortices in opposite directions.

The oscillation converts the natural convection in the stationary condition to a mixed convection,
and thus the temperature drop characteristic changes dramatically. Figure 13 shows the temperature
field distribution at four representative time instants in case 3 (tc = 20 s). As can be seen in Figure 13,
due to the role of oscillation, the temperature field presents an asymmetric distribution, and the
temperature field has a tendency to shift toward the rotation. In the early phase of temperature drop,
the temperature of the crude oil shows an approximately uniform distribution, and the temperature
drop is very slight. However, the temperature drop in the air zone is obvious, and the oscillation
makes the temperature distribution in the air zone asymmetric. With the decrease of temperature,
the temperature near the four boundaries decreases rapidly, and the low-temperature zone expands
gradually to the center. The oil temperature shows the phenomenon that the middle center is higher
and the circumference is lower.
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Figure 12. Instantaneous temperature fields in Case 1 (non-osculating condition): (a) t = 1 s;
(b) t = 20 min; (c) t = 40 min; and (d) t = 60 min.
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Figure 13. Instantaneous temperature fields in Case 3: (a) t = 60 s (The tanker is rotating to the left);
(b) t = 682 s (The tanker is rotating to the left); (c) t = 992 s (The tanker is rotating to the right); and
(d) t = 2108 s (The tanker is rotating to the right).
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Comparing Figures 12 and 13, it is found that the oscillation changes the temperature field, and
the temperature field shifts to the direction of rotation. From the temperature data, the temperature
drop rate under oscillating condition is generally higher than that for the static condition, and the
greater the oscillating frequency, the greater the temperature drop rate. The quantitative contrast is
shown in Figure 14.
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Figure 14 compares the average temperature changes versus time in the cargo in Case 1 (static),
Case 2 (tc = 10 s) and Case 3 (tc = 20 s). The temperature drop is obviously enhanced by the oscillating,
and the larger the oscillating rate (i.e., the smaller the time cycle), the greater the temperature drop
rate. This is because temperature drop of the crude oil under the stationary condition mainly depends
on the natural convection, but, in oscillating condition, it depends on mixed convection (natural
convection + forced convection), which enhances the heat transfer effect.

Since a small-size model oil tanker is discussed in this research, the thermal process will change
if the size of the tanker is changed. If the size is increased to the real size, the Reynolds number,

which is defined as Re = vd
ν , and the Grashof number, which is defined by Gr = gβ∆Tl3

ν , will increase
dramatically. The Reynolds number and the Grashof number determine the strength of the forced
convection and natural convection, respectively. Thus, the larger the tanker size, the more the oscillation
will affect the thermal process.

5. Conclusions

In this paper, the thermal and hydraulic characteristic of the crude oil in the cargo tanker under
the oscillating condition is numerically studied, with consideration of the free liquid surface motion
under oscillating condition. The following conclusions are obtained:

(1) In the case of oscillation, the temperature drop process of crude oil is dominated by mixed
convection. The temperature drop process is greatly enhanced and the temperature drop rate is
remarkably increased compared with the natural convection for the static case.

(2) According to the actual oscillating period of the tanker, the wave of free surface is not obvious,
and the horizontal liquid surface distribution is dominant.

(3) The larger is the oscillation frequency (i.e., the smaller the cycle), the greater is the temperature
drop rate.

(4) For the static case, the heat in the crude oil is mainly lost from the lower part of the left and
right boundaries, while, in the oscillating case, the loss of heat from the left, right and lower boundary
is greater, and that from the upper boundary is relatively small.
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Since only a 2D simplified model is studied in this research, future work will be focused on the
real 3D model. In addition, the translational motion should be included in the future work as well.
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