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Abstract: This article presents results from modelling spot oil prices by Dynamic Model Averaging
(DMA). First, based on a literature review and availability of data, the following oil price drivers
have been selected: stock prices indices, stock prices volatility index, exchange rates, global economic
activity, interest rates, supply and demand indicators and inventories level. Next, they have been
included as explanatory variables in various DMA models with different initial parameters. Monthly
data between January 1986 and December 2015 has been analyzed. Several variations of DMA models
have been constructed, because DMA requires the initial setting of certain parameters. Interestingly,
DMA has occurred to be robust to setting different values to these parameters. It has also occurred
that the quality of prediction is the highest for the model with the drivers solely connected with the
stock markets behavior. Drivers connected with macroeconomic fundamental indicators have not
been found so important. This observation can serve as an argument favoring the hypothesis of
the increasing financialization of the oil market, at least in the short-term period. The predictions
from other, slightly different modelling variations based on DMA methodology, have happened to
be consistent with each other in general. Many constructed models have outperformed alternative
forecasting methods. It has also been found that normalization of the initial data, although not
necessary for DMA from the theoretical point of view, significantly improves the quality of prediction.

Keywords: Bayesian forecasting; dynamic model averaging; DMA; forecasting oil price; oil price;
predicting oil price; spot oil price; time-varying parameters

1. Introduction

Forecasting oil prices is an important problem in the energy market. It is crucially important
for both oil-importing and oil-exporting countries. Moreover, oil prices are a key factor in many
macroeconomic forecasts. Unfortunately, this task happens to be very hard. One of the reasons is
the very high complexity of the oil market. As a result, there is no fixed or even commonly accepted
forecasting technique [1].

Various forecasting methods have been developed in case of oil prices. For example, time-series
models, financial models, structural models, qualitative models, artificial neural network-based models,
and many other sophisticated techniques. However, none of these has been found as a superior to the
others. Therefore, many institutions (for example, Eurosystem/ECB staff macroeconomic projections
and International Monetary Fund) focus mostly on the predictions based just on futures contracts [2].
Unfortunately, the predictive power of such a method is not satisfactory. Moreover, such forecasts are
usually worse than naïve forecasts [3,4].

Therefore, the problem of developing forecasting method for oil price is still an open and
challenging task. Herein, a novel Bayesian method, i.e., Dynamic Model Averaging (in short:
DMA) is presented. This method starts from considerably many simple regression models (it is
not known a priori which model is the best). Next, in each period forecasts produced by each of these
regression models are given weights, and the weighted average forecast is computed [5]. In particular,
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the important advantage of DMA is that both the state space model and models’ regression coefficients
can vary in time.

Indeed, various studies have shown that the significant determinants of oil price might vary in
time [6–10]. Therefore, it seems interesting to consider a methodological framework in which several
potentially important oil price drivers would be examined. For example, DMA estimates certain
time-varying posteriori probabilities which might be used to quantify the importance of the considered
drivers in influencing oil price.

It is worth noting that such an approach has recently been applied in economics and
finance [11–17]. However, DMA has still not been studied too extensively. Naser [18] has applied
DMA to oil prices, but her conclusions were that the quality of prediction is not so good. Herein,
it is argued that DMA actually performs very well for oil prices. Moreover, this research extends the
previous applications of DMA. In particular, herein a more thorough examination of DMA in the
context of oil price is performed, rather than just a simple model estimation and its diagnostic. Indeed,
several remarks on data preselection, within the particular context of the oil market, are formulated.
It is shown that they can significantly improve the quality of prediction given by DMA. Therefore,
this paper is a try to fill the existing literature gap.

Amongst various conclusions derived from this research are the following: that Chinese economy
is an important oil price driver since 1990s; market stress’ impact on oil price decreased in 2000s;
generally, indices from stock markets play important roles as oil price drivers, not fundamentals like
supply and demand; there are some weak arguments in favor of speculation during the oil price surge
in 2007–2008, but they might also be applied to periods when oil price used to be more stable. Generally,
except better quality of forecast, DMA brings new knowledge about the oil market. Technically, it has
been found that data normalization is highly beneficial, sometimes a reduction of the number of
drivers leads to better forecasts, and DMA is robust to initial parameters’ calibration.

The structure of this paper is as follows: first, a two-part literature review is presented. In the
first part a short review with arguments why a new method, especially one like DMA, can be useful in
forecasting oil price is given. The second part is devoted to preselecting potential oil price drivers, i.e.,
to find which drivers have already been found useful in forecasting oil prices in previous researches.
Next, a shortly reminder about DMA methodology is provided. Finally, DMA models are estimated
and outcomes are discussed. For the reader’s convenience a Glossary is added at the end of this paper.

2. Literature Review

2.1. Models

First of all, it should be noted that various modelling approaches have been applied to forecasting
oil prices. Herein, just a short overview is presented. The interested reader is referred to, for example,
papers by Xu [19], Fan and Li [20] or Behimri and Pires Manso [21]. Generally, the oil price forecasting
techniques can be classified according to the following scheme: time-series models [22–25], financial
models [26–30], structural models [31,32], qualitative models [33–35], artificial neural networks based
models, support vector machines, and other sophisticated methods [36–38].

All of them have some advantages, as well as, certain drawbacks [39]. First of all, even if a model
has a strong predictive power, it may still omit important factors. As a result, after a period of good
performance, the model may fail when the economic situation changes. This remark highly applies
to time-series models, i.e., especially ARIMA and ARCH/GARCH-based ones. Such models usually
produce very accurate results, but only where a short-term prediction is concerned. Indeed, a structural
change or an unexpected event on the market can drastically lower the model accuracy. Changes in
policies also strongly affect the performance of other types of models, for example, Dynamic Stochastic
General Equilibrium models [40].

In econometrics, the classical approach requires a researcher to choose the most suitable model
out of a few proposed, based on his or her knowledge and experience. Sometimes, if several models
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provide good descriptions for the given data, the common practice is to select a model based on some
criteria, for example, minimizing errors. A bit more sophisticated criteria are also used, like information
criteria [41].

Another approach is based on combining forecasts from different methods. Interestingly,
such weighted forecasts have already been found very useful for modelling oil prices [39]. However,
such methods use a constant weight for each of the applied models. This can be an important obstacle,
as for example, the uncertainty about the true model is ignored. On the other hand, it would be
desirable to model this uncertainty itself.

Therefore, according to, for example, Salisu and Fasanya [42] and Baumeister et al. [43], there is
still a need for a more developed combining scheme than the existing ones. In particular, to consider a
method, which would allow both the state space model and its (regression) coefficients to vary in time,
seems to be both novel and desirable approach for oil prices.

Such considerations directly lead to Bayesian econometrics. It should be noticed that such an
approach has already garnered increasing attention when studying the oil market [44,45], as well as
the use of models with many explanatory variables [46].

Indeed, the Bayesian inference becomes especially helpful in such a case. In other words, it would
be highly desirable to update the weights of models used in a combining forecast as more data becomes
available and the forecast performance for each of these models can be updated. Within this context,
Hoeting et al. [47] proposed Bayesian Model Averaging (BMA). It is an extension of the usual Bayesian
inference, which models parameter uncertainty both through the prior distribution and with obtaining
posterior parameter. More on Bayesian econometrics can be found, for example, in a book by Koop [48].
A quick and popular motivation for Bayesian approach in economics and finance has been given by
Sims [49].

Interestingly, in a method explored in this paper, i.e., DMA, a state space model for the parameters
is combined with a Markov chain model for the true model. As a result, the true model can vary in
time. Moreover, in the original paper introducing DMA by Raftery et al. [5] it can be found that a
recursive implementation of BMA can be recovered as a special case of DMA. It is worth noticing
that BMA has already been extensively used in social sciences, and that it was found very useful in
economics [50], and also in energy markets [51,52]. Therefore a more thorough exploitation of a similar,
but more developed model seems to be both highly desirable and interesting.

The DMA methodology combines various already existing ideas, like the already mentioned
BMA, hidden Markov models, and forgetting in the state space model [48,53,54]. The forgetting factor
allows for controlling the degree of instability in coefficients. For example, Baur et al. [16] have noticed
that for their a data lower value of a forgetting factor (i.e., allowance for more abrupt coefficients’
changes) resulted in smaller forecast errors. On the other hand, lower values of a forgetting factor
might lead DMA model to “catch the noise”, which is not a desired property [55,56].

Moreover, BMA is restricted to static problems. Therefore, Raftery et al. [57] proposed an extension
to dynamic updating by using a sliding window estimation. However, DMA is a more novel approach,
as it is rather a recursive updating method [5].

From practical point of view, it should be stressed that in DMA a focus is made on building
possibly large set of potential oil price drivers. It is not important whether a particular driver is
important for the whole analyzed period, but only that it probably might be important in some
subperiod of the whole analyzed period. However, if such a preselected driver is not truly important,
then this will emerge in the post-estimation results. Certain weight parameters for this driver will be
marginally small, but the other estimations will be unaffected by inclusion of such a driver.

Indeed, there are many studies suggesting that the determinants of oil price might vary in time,
for example, due to the structural breaks [58–61]. For example, Fan and Xu [62] have stressed that the
structure of the oil market changed significantly since 2000. First of all, the strength of the relationship
of oil price with macroeconomic fundamentals and financial markets has changed. Secondly, the role
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of supply and demand factors has been argued to decline. On the other hand, an increasing role of
exchange rates and stock markets has been found [52].

Of course, the strength of interaction between oil price and its potential drivers can be measured
by correlation coefficients. Unfortunately, such an approach is too simple. Moreover, in DMA this
interaction is time-varying and its quantification is crucially connected with the forecast performance
of regression models containing given driver. In other words, correlations say nothing about the
time-varying predictive power of the model. Whereas with a help of DMA the significance of a
given driver can be measured with respect to the quality of oil price forecast produced with a model
containing this driver as an explanatory variable.

2.2. Oil Price Drivers

One of the first attempts in modelling price of a non-renewable resource has been done by
Hotelling [63]. According to his arguments the price should depend on the interest rate. Recently,
Arora and Tanner [64] have examined such a relationship for the oil market, and found that it is true,
and, moreover strength of this relationship varies in time.

Further, researchers have focused on supply and demand factors when examining the oil market.
The arguments up to 1980s used to come mostly from the belief that oil price is determined generally
by OPEC decisions. Within this context, it is worth to notice that between 1930 and 1970 the long-term
path of oil price was quite stable. Even in later periods, short-term fluctuations used to be explained
mostly by events like the Arab states instituting embargoes against countries supporting Israel in
the Yom Kippur War, Iran-Iraq War, Iraq war, Saudi Arabia’s increase of production quotas, the Iraq
invasion of Kuwait, or the Asian financial crisis. However, this relationship can be complex and
time-dependent [65].

Since 1990s more attention has been placed on financial factors, like, for example, gross domestic
product, stock market activity, exchange rates, etc. [66,67]. For example, Basher et al. [68] have noticed
that growth of prices on emerging stock markets might result in higher pressure on the increase of oil
price. Indeed, certain researches have shown that even volatility of stock markets might significantly
affect the oil market [69–71].

Moreover, such an impact can be time-varying [72]. For example, Silvennoinen and Thorp [73]
have observed that higher stock market volatility increases the correlation of commodities prices with
equity markets. Also, the volatility transmissions to and from stock markets and the oil market has
been observed [74,75]. Similarly, as in the case of other factors, this relationship varies in time [76,77].
For example, a concise analysis of the period between 1968 and 2012 in the time-varying context was
provided by Kang et al. [78].

It can also be argued that an appreciation of a domestic currency against the currency in which
the oil price is denominated lowers the oil price expressed in the domestic currency. This can lead
to the demand increase, and, furthermore, to the oil price increase [79,80]. The confirmation of such
a hypothesis has been successfully examined for both developed and emerging economies [81–83].
Interestingly, in the context of this paper, this relationship also varies in time [84–87].

However, there are also evidences for the important and time-varying relationship between oil
price and exports in developed countries (i.e., the Euro area). This was examined, for example, by Riggi
and Venditti [88].

Additionally, Bekiros et al. [89] noticed the impact of policy uncertainty on oil prices, as well
as that allowing for time-varying parameters in modelling scheme improves the forecast quality.
This topic was also discussed by Andreasson et al. [90].

In recent years it has become questionable whether the oil price surge between 2003 and 2008
can be explained by the variability of the above mentioned, classically recognized, fundamental
factors. For example, the financialization of the oil futures markets has been a subject of serious
discussion. Within this context, a speculation was tentatively proposed as to the major oil price driver
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for the period of late 2000s. Unfortunately, no consensus amongst researchers has been found on this
hypothesis [91,92].

However, such a debate has led to an extensive interest in the role of speculative pressures on
the oil market [44,93]. Moreover, some evidence has been found that previous shocks (i.e., in 1979,
1986 and 1990) could have been connected with speculation [94]. In case of quantitative analysis,
speculative pressures on the oil market are usually measured by the level of inventories [91,94,95].

Also this relationship, i.e., between the level of inventories and oil price can vary in time [96].
It has been verified that in certain period this correlation is positive; whereas in some other periods it
is negative. For example, between 2005 and 2010 the correlation of total U.S. inventories and NYMEX
oil spot price was between −0.48 and 0.13 [97].

Kilian and Hicks [98] have proposed that the increase in the oil price between 2003 and 2008 could
have been mostly due to the dynamic growth of emerging Asian economies, which resulted in the
increased demand for industrial commodities. Economic growth and economic activity have commonly
been perceived as significant oil price determinants for many years [99] However, this relationship
used to be analyzed mostly with a focus on developed economies.

Whereas, recently the role of emerging economies in the oil market became much greater than
before. Energy Information Administration has estimated that by 2030 China will account for 42%
of the increase in the global oil demand. It should be noticed that China used to be a net petroleum
exporter until 1992, but it become the world’s third biggest importer in 2007. Since 2010 it is the fourth
largest petroleum producer, and since 2003 the second biggest petroleum consumer.

According to Li and Leung [100] China has already become an important player in the global oil
market. Kaufmann [95] has suggested that oil price changes between 2007 and 2008 can be mostly
explained by the drop in the Chinese demand and supply.

Within this context it should be mentioned that measuring the economic activity in a classical
way, i.e., in terms of GDP is a bit of a tricky task. The main disadvantage is that data has at least a
quarterly frequency. In order to overcome this obstacle, Kilian [101] has constructed a certain indicator
of global economic activity, connected with the demand for industrial commodities. The Kilian index
is based on dry cargo single voyage ocean freight rates. Indeed, such an index can serve as a good
measurement for the oil market [102].

3. Data

Based on the above literature review ten potential oil price drivers have been initially proposed:
stock markets indices, volatility of stock markets, interest rates, economic activity, exchange rates,
supply and demand, and inventories. All of them are presented in Table 1.

Monthly data beginning on January 1986 and ending on December 2015 has been analyzed.
As a result each of the initially considered time-series consists of 360 observations. The detailed data
description is given in Table 1. For more information on data and its methodology the reader is referred
to the diverse data providers (see the References and Data Sources (Appendix A) sections at the end of
the paper). The frequency of data has been chosen to be the highest one, which allows to merge several
economically justified drivers. For example, economic activity is measured by Kilian’s index [101],
which is given with monthly frequency. If GDP-based measures were to be used, at least quarterly
frequency is possible. On the other hand, daily (or even higher frequency) data is easily available
for stock markets, but for several interesting oil market factors the data availability frequencies are
no higher than monthly ones [103]. As a result, the monthly frequency has been chosen to obtain a
consistent collection of time-series.

The spot price of crude oil was measured by WTI spot price (WTI), because according to
Yu et al. [34] this is the most common benchmark oil price. The originally obtained data on the
oil import (IMP) is provided in the weekly frequency. It has been aggregated to monthly frequency
by taking mean values for the corresponding months. Following, for example, Bu [104], Karali and
Power [105] and Kao and Wan [106], strategic petroleum reserves (SPR) has been excluded from the
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data in order to measure private consumers’ demand only. Indeed, the change in SPR happens rather
due to political reasons, and they are influenced mainly by the occurrence of natural disasters and,
moreover, are prone to geopolitical decisions. Generally, such an exclusion has been performed in
numerous other studies for the oil market.

Table 1. Description of time-series used.

Name Description Economic Factor Measured by the
Driver (and Units)

dependent variable in regression models

WTI WTI spot price crude oil spot price (in USD)

independent variables in regression models (drivers)

MSCI MSCI World Index stocks prices (index)

TB3MS U.S. 3-month treasury bill secondary market rate interest rate (in percentages)

KEI Kilian’s index of global economy activity [101] global economic activity (index)

TWEXM trade weighted U.S. dollar index exchange rate (Mar, 1973 = 100)

PROD U.S. crude oil production oil supply (in thousand barrels)

IMP daily average of U.S. crude oil import oil demand (in thousand barrels
per day)

INV U.S. total ending stocks of commercial crude oil (excluding SPR) speculative pressures (in thousand
barrels)

VXO implied volatility of S&P 100 volatility of stocks market (index)

CONS total consumption of petroleum products in OECD oil demand (in quad BTU)

CHI Shanghai Composite Index merged with Hang Seng Index as a
representative of Chinese economy Chinese economy (rescaled index)

other time-series

NFP 1-month NYMEX WTI futures prices alternative forecast of crude oil price
(in USD)

The equity market stress has been measured by VXO (the volatility index based on trading of S&P
100 options, http://www.cboe.com/micro/vxo). Nowadays, such a measurement would rather be
done with a help of VIX (i.e., a measure of market expectations of near-term volatility conveyed by
S&P 500 stock index option prices, http://www.cboe.com/micro/vix). But the analysis provided in
this paper dates back to 1986. The calculation methodology of VXO has been changed in 2004, and the
new index, namely VIX, would not be consistent with data for the whole analyzed period.

The variable (driver) CHI has been constructed in the following way. Shanghai Composite Index
(http://english.sse.com.cn/home) was taken since December 1990. It has been rescaled at December
1990 in a way to glue with Hang Seng Index (http://www.hsi.com.hk), which has been taken for
the period before December 1990. Shanghai Composite Index is not available before December 1990.
Fortunately, Hang Seng Index is commonly seen as a back-door to China markets. Therefore it can
serve as a proxy for Chinese economy before December 1990. However, for the period when Shanghai
Composite is available it is better to use this index directly. Indeed, for example, taking look on data
from 2012, it can clearly be seen that Shanghai Composite Index and Hang Seng behave a bit differently.
On the other hand, it seems that there is no better alternative to measure Chinese economy before 1990
for the purposes of this paper.

Generally, there exists a lot of easily available data for U.S. On the contrary, corresponding
time-series for the whole world are usually missing. Therefore, following, for example, Hamilton [91]
and Kilian and Murphy [94], U.S. data has been taken as satisfactory proxies.

Futures (NFP) have not been included in the constructed models, except just one model, due to
the following two main reasons. First of all, following Alquist and Kilian [4], they were used as an
alternative forecast.

Such a practice is common in several financial institutions [107]. Secondly, the initial test
simulations of various models (not included herein) have indicated that the inclusion of NFP in
DMA models does not significantly improve the predictions. As clarified later in the text, the data

http://www.cboe.com/micro/vxo
http://www.cboe.com/micro/vix
http://english.sse.com.cn/home
http://www.hsi.com.hk
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are kept at their levels, if not stated otherwise. However, certain class of models is described later,
for which data were rescaled to fit between 0 and 1.

4. Methodology

All calculations were done in R [108] software with the help of Trapletti et al.’s [109]
tseries package.

4.1. Model Specification

The general idea of DMA framework is briefly sketched herein. For more details the reader is
referred to the original paper by Raftery et al. [5].

Suppose that there are given m potential determinants of the dependent variable (drivers). As a
result, K = 2m different regression models can be constructed, including the model with constant only.
Let t denote the time index, i.e., let t = {0, 1, . . . }, and let yt denote the dependent variable. Let xt

(k)

denote independent variables (drivers) in the k-th model.
Then, the state space model is given by the following equations:

yt = x(k)t θ
(k)
t + ε

(k)
t , (1)

θ
(k)
t = θ

(k)
t−1 + δ

(k)
t , (2)

where k = {1, . . . , K} and θt
(k) denotes regression parameters of the k-th model. It is assumed that errors

are normally distributed, i.e., εt
(k) ~N(0,Vt

(k)) and δt
(k) ~N(0,Wt

(k)). Starting at t = 0 the initial values
have to be assigned to variance matrices V0

(k) and W0
(k). Further, inference of Vt

(k) is estimated by
a recursive method of moments estimator [5], and inference of Wt

(k)—by the forgetting procedure.
In this paper, W0

(k) has been estimated following the procedure basing on the whole data sample given
by Raftery et al. [5]. It is also necessary to set the initial value for V0

(k). This is further discussed more
thoroughly in Section 4.3.2. The regression coefficients are updated with the help of the Kalman filter.

Initially, at the first period, i.e., for t = 0, all of K models are assumed to be equally “good”.
In other words, the conditional distribution of the state is set equal for each model at time t = 0, i.e.,
it is defined as:

π0|0,k =
1
K

, (3)

Next, the recursive updating is performed according to the following two equations:

πt|t−1,k =
(πt−1|t−1,k)

α + c

∑K
i=1

[
(πt−1|t−1,i

)α
+ c]

, (4)

and:

πt|t,k =
πt|t−1,k fk(yt|Yt−1)

∑K
i=1 πt|t−1,i fi(yt|Yt−1)

, (5)

where fk(yt|Yt−1) is the predictive density of the k-th model at yt, given the data from previous
periods, and α is a certain forgetting factor fixed from (0,1). πt|t,k are called posteriori inclusion
probabilities and πt|t−1,k are called posteriori predictive probabilities. In order to guarantee non-zero
outcomes (which might happen because of numerical approximations) some small constant is added
in Equation (4). For example, c = 0.001/K.

Finally, the forecast is computed from the following equation:

yDMA
t = ∑K

i=1 πt|t−1,i
ˆ

y(k)t , (6)

where
ˆ

y(k)t is the prediction given by the k-th regression model.
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4.2. Assumptions and Limitations Involved in the DMA Method

It should be noticed that DMA allows for both the uncertainty of the model itself, as well as,
for the parameters of each model to change with time. Therefore, it is a significant extension of
time-varying regression. In other words, the final DMA forecast is computed as a weighted average
of the predictions from all possible K models, but the weights change in time in accordance with the
predictive power of each regression model at the given moment of time.

The standard assumption for DMA is that amongst the considered K models there is the true one.
Secondly, it is assumed that θt

(k) can be computed independently for each of K models. Except for in
Equation (4) the forgetting factor is also used in the estimation of the state error covariance during the
Kalman filtering. The details are in the paper by Raftery et al. [5].

It should be stressed that DMA does not require data to be stationary, despite the fact that it
combines regression models (and regression itself requires stationary data). Indeed, matrices Vt

(k)

and Wt
(k) are time-varying. In the previous applications of DMA to economic and financial problems

their Authors have been using stationary data [14–18], but it was rather due to the common habit in
economic research, than any real necessity for the applied method.

On the other hand, the serious drawback of DMA is that for large state space models it is
extremely time-costing method. For example, adding an extra driver to the analysis doubles the time
of computation. In other words, the time of computations is proportional to 2m. However, it is not
desirable to consider an enormous number of potential drivers. Definitely, it should not be taken for
granted that more drivers automatically lead to better forecast. Indeed, not only in DMA framework
it might happen that quite a high number of variables can worsen the forecast [110]. This effect is
theoretically understood when considering model structure estimation [111].

In Equation (3), initially, all regression models are assumed equally “good”, because a priori it is
not known anything about the models. For the general references to the role of data pre-processing
and prior elicitation the Reader is referred to, for example, [47,112–115] and references therein.

4.3. Model Calibration

4.3.1. Forgetting Factor

The forgetting factor α is responsible for how the previous estimations are remembered by the
process in the present prediction. In particular, data lagged by i periods, is given αi weight. So, α = 1
corresponds to no forgetting at all. In fact [5], if α = 1, then DMA reduces to Bayesian Model Averaging
(BMA). If α = 0.99, then in the considered case of monthly data, data from previous quarter is given
97% weight in comparison to the current one. But if α = 0.95, it is given 86% weight. The forgetting
factor α should be specified by the researcher. According to the remarks from the Literature review,
a few values have been tested, i.e., α = {1, 0.99, 0.95}.

Indeed, for some of pre-estimated test models (not reported) it has been observed that lower
α usually results in lower prediction errors (measured, for example, by MSE). Moreover, such a
relationship between MSE and α is the logarithmic one. Therefore, it is indeed reasonable to consider
α = {1, 0.99, 0.95} as mentioned above, i.e., the small step from BMA, and then relatively larger decrease
in the forgetting factor.

MSE (mean squared error) is the mean value of the squared deviations of the model’s predictions
from the true values. MSE heavily weights outliers, because it takes error in squares. As a result,
large errors are effectively weighted more heavily than small ones. Such a property is desirable in
financial models, because, for example an investor or a policymaker, can be much more aware of high
errors than the small ones.

4.3.2. Variance Matrix

It is also necessary to set the initial value for V0
(k). This should be done in correspondence to the

allowed variability of the used time-series. Therefore, for models with normalized time-series it has
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been set to the unit matrix. For models with non-normalized ones—to the unit matrix multiplied by
1002. In other words, for non-normalized models it has been rescaled by an arbitrary big number, as it
has been done in previous researches, for example, by Baur et al. [16].

The normalization has been done by the feature scaling (i.e., unity-based normalization). In other
words, let the variable Yt be scaled. Then, it is transformed into:

yt =

Yt − min
i=0, ..., t, ...

Yi

max
i=0, ..., t, ...

Yi − min
i=0, ..., t, ...

Yi
, (7)

Of course, for normalized models also other than unit matrix values can also be considered.
Therefore, some (unreported) simulations have been done for normalized time-series with a few
different initial V0

(k), i.e., a few unit matrices multiplied by a few numbers ranging from 0.25
to 4. However, the coefficient of variation for the obtained sample of various MSE was slightly
above 1%. Therefore, V0

(k) = I (i.e., the unit matrix) was used in further estimations. Generally,
some pre-simulations for the given data have indicated that higher values on the diagonal of V0

(k)

result in lower MSE in the logarithmic pattern. Indeed, data normalization is highly preferable for
DMA, because if time-series are rescaled to fit between 0 and 1, then setting V0

(k) = I corresponds to
reasonably high volatility [112,116,117].

Finally, it should be noticed that if Et are residuals from modelling the independent variable Yt,
and et are residuals from modelling yt, where Yt = a·yt + b, with a and b being some scaling parameters
(which corresponds to normalization), then Et = a·et. So, if Yt is obtained by normalization of yt,
then residuals can be rescaled from the model including non-normalized time-series (by dividing
them by max

i=0, ..., t, ...
Yi − min

i=0, ..., t, ...
Yi) and compared with residuals from the model with normalized

time-series. This observation can help to compare, whether time-series normalization really improves
the quality of prediction from the DMA model.

4.4. Time-Varying Parameters Preselection

Furthermore, each of the considered models has been constructed in two versions. The first one,
called “full”, consists directly of all drivers listed in a corresponding row in Table 2.

From Table 2 it can be seen that five models have been proposed to further analysis. Model 1
consists simply of drivers indicated by the Literature review and indicated in Table 1. However,
according to, for example, Alquist et al. [117], autoregressive models are very common in the oil price
modelling. Therefore, Model 2 is constructed by adding the 1st lag of WTI to the drivers present in the
initial Model 1.

It should be noticed that DMA models with 10 drivers can be estimated on an ordinary computer
device in a reasonable time of a few minutes. However, as already stated, adding a driver doubles the
time of computations. As a result, adding an extra lag to every driver from Model 1, resulting in 10
extra drivers, would increase the computation time by 210 = 1024. Consequently computations would
take rather days than minutes.

Model 3 has been constructed by adding futures prices to Model 2. As already stated, in this
research futures are used rather as an alternative benchmark forecast. However, it was desired to verify,
whether adding this driver (at least in one of the considered models) improves the forecast quality.

Model 5 has been constructed basing on the off-line structure estimation with an assumption
that regression coefficients do not vary [111]. It is worth noting that only stock market indicators are
present in Model 5. Moreover, this model contains lagged variables. Therefore, it would be tempting
to expand this model by other drivers from Table 1 with lags. Unfortunately, such a model would
again consist of too many drivers, leading to a serious computational burden. Model 4 is a pruned
version of such a model, which is possible to be estimated in a reasonable time.

Each of these models has also been estimated in a “reduced” version. Drivers for the “reduced”
version are chosen according to the following algorithm [111]. First, all regression models that can be
constructed out of drivers given in Table 2 are estimated in the time-varying regression framework.
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In other words, similar computations as described in Section 4.1 are performed, but no weighted
forecast is computed. For a time-varying regression the forgetting factor α = 0.99 is taken [118]. Next,
the model with the highest predictive density in the last period is chosen. Then, drivers included
in this model are taken as the initial set of drivers for the DMA model, and such a DMA model
is called a “reduced” one.However, the “reduced” version of Model 1 has been constructed in a
different way. For this model the “reduced” version contains the following drivers: MSCI, TB3MS,
KEI, TWEXM, PROD, INV, CONS and CHI. The selection has been done according to the principle
to drop drivers which might somehow “double” the information. For example, it was desired not to
include simultaneously CONS and IMP as both drivers correspond to demand factors (see Table 1).
Similarly, it has not been desirable to include simultaneously stock market index and stress index for
stock market, or to have more than one driver measuring supply forces, etc.

Such a “reduction” procedure is novel for DMA exploitation in economics and finance.
For example, Naser [18] has included many different interest rates as drivers in her DMA oil price
model. Bearing in mind the computational burden of DMA, it is worth examining whether such a
“reduction” procedure influences the quality of forecast.

Table 2. Lists of drivers considered in the constructed DMA models.

Model xt
(k) (Drivers Considered in the Model)

Model 1
1st lag of MSCI,

1st lag of TB3MS, 1st lag of KEI, 1st lag of TWEXM, 1st lag of PROD, 1st lag of IMP,1st lag of INV,
1st lag of VXO, 1st lag of CONS, 1st lag of CHI

Model 2

1st lag of WTI,
1st lag of MSCI,

1st lag of TB3MS, 1st lag of KEI, 1st lag of TWEXM, 1st lag of PROD, 1st lag of IMP, 1st lag of INV,
1st lag of VXO, 1st lag of CONS, 1st lag of CHI

Model 3

1st lag of WTI,
1st lag of MSCI,

1st lag of TB3MS, 1st lag of KEI, 1st lag of TWEXM, 1st lag of PROD, 1st lag of IMP, 1st lag of INV,
1st lag of VXO, 1st lag of CONS, 1st lag of CHI,

1st lag of NFP

Model 4

1st lag of WTI, 2nd lag of WTI,
1st lag of MSCI, 2nd lag of MSCI,

1st lag of TB3MS, 1st lag of KEI, 1st lag of TWEXM, 1st lag of PROD, 1st lag of IMP, 1st lag of INV,
1st lag of VXO, 1st lag of CONS, 1st lag of CHI,

Model 5
1st lag of WTI, 2nd lag of WTI, 1st lag of MSCI, 2nd lag of MSCI, 1st lag of VXO, 2nd lag of VXO,

1st lag of CHI, 2nd lag of CHI

Additionally, also time-varying parameters regressions were estimated for all possible to be
constructed models with variables as in Model 1. These TVP regressions were equally weighted in each
period. Such a model is called Equally-Weighted Averaging, and it was used as another benchmark
model. In other words, this model can be viewed as DMA with replacing the set of weights πt|t−1,k
and πt|t,k with 1/K. In W0

(k) approximation the forgetting factor 0.99 was used.

4.5. Economic Interpretation

A posteriori inclusion probabilities πt|t,k can be used for a nice economic interpretation. Indeed,
for every period t, we can sum up the a posteriori inclusion probabilities of every model which contain
a given driver. In other words, let us compute:

pt(X) = ∑i∈IN πt|t,i

where IN denotes the set of models which contain the driver X. Then, pt(X) is the probability that
a driver X is useful for forecasting oil price at time t based on weights attached by DMA to models
which include this driver. Therefore, this number can be interpreted as the importance of driver X in
predicting oil price. As pt(X) naturally changes with t, it is interesting to observe its time variation.
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However, the above interpretation should be taken with a caution, as it is not sure how much
of these variations are caused by the variation of a true significance of the driver, and how much by,
for example, over-parametrization and forgetting.

The last remark also motivates estimation of models with various forgetting factors
(see Section 4.3.1). It remains as an open problem, for further theoretical research, whether the
importance measured by pt(X) includes also joint statistical significance. In other words, a high
posteriori inclusion probability πt|t,i can be indicated by the i-th model containing the given driver
and some other driver(s), while a marginally small posteriori inclusion probability πt|t,j might be
indicated by the j-th model containing only the given driver, and the high value of πt|t,i can be the
result of including the other driver(s).

5. Results

According to Section 4.4 “full” and “reduced” DMA models have been estimated.
Drivers included in “full” DMA models are presented in Table 2, and drivers which have emerged to
be present in “reduced” versions of models are presented in Table 3.

MSE for all estimated models are presented in Table 4. Additionally, for an easier outlook
comparisons between “full” and “reduced” models, normalized and non-normalized models, and the
ones with different forgetting factors are presented in Figures 1–3.

Table 3. “Reduced” models.

Presence of the Driver in the Model with Normalized Data is Indicated by “x”, and in the Model with Non-Normalized
Data by “o”.

Model 1 Model 2 Model 3 Model 4 Model 5

α 1 0.99 0.95 1 0.99 0.95 1 0.99 0.95 1 0.99 0.95 1 0.99 0.95

1st lag of WTI x o x o x o x o x o x o x o x o x o x o x o x o
2nd lag of WTI x o x o x o x o x o x o
1st lag of MSCI x o x o o o x o x o o x o
2nd lag of MSCI x o o x o
1st lag of TB3MS x o x o x o x x o x x o x o x x o

1st lag of KEI x x o x o x o x x o
1st lag of TWEXM x o x o x o x x o x x x o x o x x o
1st lag of PROD o o x x o x x o x x x o
1st lag of IMP x o o x o x
1st lag of INV x o o x o x
1st lag of VXO x x o o x o o o o x o
2nd lag of VXO x x x
1st lag of CONS o x x o x o x x o x x o

1st lag of CHI x x o x x o
2nd lag of CHI o x o x o
1st lag of NFP x o o x o
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First of all, it should be noticed that in 75% of cases DMA has an advantage over BMA by
producing forecast of a better quality (measured by minimizing MSE). However, in 25% of cases BMA
is superior over any estimated DMA model. In 35% of cases DMA with α = 0.95 is superior over DMA
with α = 0.99. But only in 25% of cases DMA with α = 0.99 is superior over BMA and, simultaneously,
DMA with α = 0.95 is superior over DMA with α = 0.99. In other words, a smaller forgetting factor
leads to a smaller MSE. In 35% of cases DMA with α = 0.99 produces smaller MSE than BMA and
smaller than DMA with α = 0.95 (see Figure 1 and Table 4).

Secondly, if for a given forgetting factor the “reduced” and the “full” version of a model are
compared, it occurs that only in 1/3 of cases the “reduced” version of a model produces smaller MSE
than the “full” version of a model. However, if only models which have produced MSE smaller than
benchmark forecasts (i.e., naïve forecast and 1-month futures) are considered, then 52% of them are
models in the “reduced” version. Generally, only 38% of constructed models have produced MSE
smaller than benchmark forecasts (see Figure 2 and Table 4).
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In 70% of cases a given model has produced smaller MSE for normalized data than for
non-normalized data (see Figure 3 and Table 4). In various cases it has happened that a non-normalized
model has MSE no smaller than benchmark forecasts, but a normalized version of this model has
MSE smaller than benchmark forecasts. Therefore, the improvement gained from normalization can
sometimes even decide whether a model can beat benchmark forecasts (i.e., produce smaller MSE).

Table 4. MSE for estimated models.

Models
α

1 0.99 0.95

Model 1 (normalized)
reduced 0.03794 0.01949 0.00365

full 0.02169 0.00817 0.00298

Model 1 (non-normalized)
reduced 0.02176 0.01795 0.00365

full 0.02235 0.00654 0.00283

Model 2 (normalized)
reduced 0.00147 0.00145 0.00156

full 0.00131 0.00135 0.00141

Model 2 (non-normalized)
reduced 0.00215 0.00187 0.00144

full 0.00159 0.00132 0.00150

Model 3 (normalized)
reduced 0.00115 0.00138 0.00117

full 0.00115 0.00113 0.00126

Model 3 (non-normalized)
reduced 0.00120 0.00120 0.00142

full 0.00115 0.00118 0.00147

Model 4 (normalized)
reduced 0.00114 0.00112 0.00117

full 0.00117 0.00112 0.00127

Model 4 (non-normalized)
reduced 0.00119 0.00120 0.00136

full 0.00135 0.00136 0.00130

Model 5 (normalized)
reduced 0.00117 0.00113 0.00113

full 0.00115 0.00113 0.00117

Model 5 (non-normalized)
reduced 0.00122 0.00122 0.00124

full 0.00121 0.00120 0.00125

Benchmarks

1-month futures 0.00122
naïve (i.e., the last period’s actuals are used as this period’s forecast) 0.00124

Equal-Weighted Averaging 0.02694

MSE smaller than those of benchmark forecasts are bolded.

It is worth to notice that in the already performed financial applications of DMA [11,13–18]
explicit data normalization has not been considered. The original time-series have usually been taken
in 1st differences in order to obtain stationarity. Stationarity is a necessary assumption for ordinary
regression, but it is not necessary for DMA. Although, taking 1st differences of variables is a common
practice in economy and finance, it should be stressed that it is not required from the theoretical point
of view in DMA.

Of course, the outperformance of benchmark forecasts by selected DMA models is quite small
(approximately the best of estimated DMA models lowers MSE by 10% in comparison to the naïve
forecast, and by 8% in comparison to the 1-month futures forecast). In particular, from comparing
Model 2 and Model 3 it can be seen (Table 4) that adding NFP (futures prices) improves the forecast
quality. However, amongst all the considered models it is Model 4 with α = 0.99 and with normalized
data which is characterized by the smallest MSE (the difference between the “full” and the “reduced”
version is in this case negligible).
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However, outcomes are robust to the selection of the forgetting factor α. Amongst models
with α = 0.95 it is the “reduced” version of Model 5 with normalized data which minimizes MSE.
For α = 0.99 it is both the “reduced” and the “full” version of Model 4 with normalized data. For α = 1
it is the “reduced” version of Model 4 with normalized data. From Table 3 it can also be seen that when
working with non-normalized data, the algorithm described in Section 4.4 tends to exclude drivers
more often than if models with normalized data are applied. As the aim of this research is to find
drivers of oil price, this serves as another argument in favor of normalizing data.

It would be desirable to select one model amongst all the estimated models, i.e., the one which
behaves “the best”. First of all, it is reasonable to consider only models, which outperformed benchmark
forecasts. Secondly, it would be desirable if model’s errors (see Table 4) would not depend on the
forgetting factor α. Indeed, there is such a model, i.e., Model 5 in the “reduced” version with normalized
data. Clearly, it is the most robust model against changing the forgetting factor, even if all estimated
models are considered (not only those outperforming naïve forecast and futures forecast). Interestingly,
it is also the second “best” model under the criterion of minimizing MSE. (But the “best” one has only
1% smaller MSE.) It should be noticed that this model is the one, which, first, consists of normalized
data; secondly, is in the “reduced” version; and, thirdly, has been obtained by the off-line structure
estimation algorithm by Karny and Kulhavy [111] with an assumption that regression coefficients do
not vary (see Section 4.4).

Finally, it is stressed that the model which minimizes MSE is the one with the forgetting factor
α = 0.99 (as well as the above described, the “best”, model). Indeed, this observation supports the
hypothesis that DMA can be a useful method in oil price forecasting.

Therefore, in Figure 4 there are presented probabilities pt(X) described in Section 4.5. In Figure 4
they are presented for the above chosen, the “best” model, i.e., Model 5 with normalized data, in the
“reduced” version, and with the forgetting factor α = 0.99. These probabilities express the probability
that a driver X is useful for forecasting oil price at time t based on weights attached by DMA to
regression models which include this driver.

As some kind of a robustness check this model was also estimated with WTI oil price replaced
by the Brent oil price (BRENT). It can be seen that the outcomes are quite similar. Indeed, it should
be noticed that pt(X) start from the same value of 0.5, i.e., p0(X) = 0.5 for every X. This is just a direct
consequence of Equation (3). Afterwards, DMA “learns” from the upcoming new data. Therefore, it is
crucial to use DMA for sufficiently long time-series. Of course, this requirement is met in the analysis
presented herein. The period of 30 years is covered, with 360 observations. Approximately first 20%
of observations play a “learning” role for models. This can be seen in Figure 4 as pt(X) adapt quickly
their values. However, they are not the exact values of pt(X) which are important to interpret, but their
time-paths. In other words, from the economical point of view it is interesting to observe how the
probability that a given driver is important in forecasting oil price varies in time.

Usually, researchers divide samples into “learning” period and “testing” periods. Herein,
as already mentioned the “learning” one consists of 20% of the first observations, and the “testing”
one—from the remaining 80%. Indeed, the DMA is a recursively estimated model, in which the model
adaptation takes place every time the new information is added. Therefore, no fixed coefficients are
estimated during the “learning” period to be used in the “training” period. The “learning” period is
rather a period excluded from further evaluation, during which DMA adapts its parameters from the
starting values. In other words, the time given for DMA to “catch the signal”. Later on, the model still
continually changes its parameters. However, then it “catches the changes in the signal”, not that it
still tries to “catch the signal itself”.

First of all, it can be seen that stock markets played an important role as oil price driver between
1992 and 2000. This observation is consistent with previous researches. Later, it was decreasing
until around 2005. In 2008 this role suddenly increased, but since around 2013 it has kept to decline.
Therefore, it can be seen that during the oil price surge in 2007–2008 stock market behavior played an
important role.
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The market stress played an important role until around 2005. Since then, its role as an important
oil price driver started to decrease and this continued until 2007. This means that before the beginning
of the recent global financial crisis and the oil price surge investors were not putting much attention to
market risk. Indeed, many estimated DMA models gave posteriori inclusion probabilities of the 1st

and the 2nd lag of VXO marginal values shortly before 2007. Later, the role of this driver suddenly
increased. Its role was increasing until around 2012. Recently, its role as an important oil price driver
has been decreasing.

The role of Chinese economy was systematically increasing between 1992 and 2000. Later, its role
started to decline, but since around 2005 it started to increase again. These observations confirm
that China become an important player on the oil market. Moreover, this importance was present in
1990s also.

The role of interest rate was increasing between 1992 and 2000. Later, it started to decrease. Its role
as an important oil price driver started to increase around 2009, but recently it is again declining.
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The role of exchange rates keep rather a stable time-path, with just some slight exceptions
(oscillations). For example, its role as an important oil price driver was increasing before 2000. Later,
its role was slightly decreasing until 2007.

The role of global economic activity as an important oil price driver was increasing between 1992
and 2000. According to DMA models, it was playing an important role until around 2010. Later, its role
started to decrease.

The role of supply forces increased between 2000 and 2006. It can be seen that their role decreased
shortly before the oil price surge in 2007–2008. During this surge their role suddenly increased,
but recently they started to decline again.

The role of demand forces (measured by consumption and import quotas) present similar
conclusions with each other. Around 2000 their role as important oil price drivers increased. Later,
their role decreased. Around the recent global financial crisis and the oil price surge their roles
suddenly increased again. Also, recently their roles have increased.

Interestingly, the role of inventories as an important oil price driver increased between 1995 and
2004. However, in 2005 its role decreased. Suddenly, in 2007 its role increased again, but since around
2009 its role was decreasing. Just recently, its role started to increase again. This can serve as some
weak argument in favor of the previously mentioned hypothesis of the role of speculation on the oil
market in late 2000s.

The role of futures prices played an important role as an oil price driver in 1990s. However,
in 2000s (except some small peaks around 2005) they did not play an important role. But, since 2009 it
can be observed that their role systematically increases.

Finally, it can be seen that the autoregressive component, i.e., lags of WTI, plays an important role
as an oil price driver. Posteriori inclusion probability of the 1st lag of WTI decreased only occasionally.
For example, around 2001, 2005 and 2010. However, all decreases (except the one around 2001)
were compensated by increases of posteriori inclusion probability of the 2nd lag of WTI. Therefore,
the autoregressive component almost always have played an important role as an oil price driver.
If it has not been just the 1st lag, then it has been the 2nd lag. For example, in 1990s both lags played
an important role. It is interesting to notice that the decrease of the importance of both lags have
been observed around the oil price surge. In other words, highly common and advocated in literature
autoregressive models became less useful in this period, i.e., other drivers took the leading role then.

Similar interpretations can be based on selecting drivers for which pt is greater than 0.5. It can be
seen that during 1990s the main drivers of oil price were: developed stock markets, Chinese economy
and autoregressive components. Later, in the 2000s the importance of these drivers decreased.
Especially, the market stress index become less important as an oil price driver. During the oil
price surge Chinese economy was an important driver. Later, its role decreased, but recently it has
been increasing again. Recently, the role of futures prices has also been increasing. They played an
important role in 1990s, but later (in 2000s) their role decreased.

Summarizing the above considerations, it can be seen that in different periods, different drivers
play an important role in oil price forecasting. This is important and very characteristic advantage
of DMA models. Except that some of them have produced smaller errors than benchmark forecasts,
DMA models dynamically change weights ascribed to regression models. In other words, as the market
situation changes, DMA is able to select the most important drivers for the modelled time-series.

The forecast from the selected model, i.e., Model 5 for normalized data and in the “reduced”
version was compared with forecasts from some other models. The selected DMA models were
taken with the same forgetting parameter as Model 5 (i.e., 0.99) and also in the “reduced” versions.
The comparing was done with the Diebold-Mariano test [119]. This test was chosen because it relies
on relatively few assumptions and is quite popular. The results are presented in Table 5. The null
hypothesis of this test is that the forecast accuracies from both methods are different. The alternative
hypothesis is presented in rows of Table 5. It can be seen that, assuming 5% significance level, it cannot
be said that the selected model produced significantly more accurate forecast than BMA, 1-month
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futures or Model 4. However, it can be said that the selected model produced significantly more
accurate forecast than Equal-Weighted Averaging, naïve method and Model 1, Model 2 and Model 3.

Additionally, to illustrate the practical application, from the investors perspective it was checked
if DMA can be used as some kind of an investment strategy. For this, Model 1 in “reduced” version
and with normalized variables were taken. The forgetting factor was set to 0.99. The simple strategy
was constructed in the following way. If DMA predicted the oil price increase in the next month,
the investor should buy oil. Otherwise, he or she should “buy” MSCI index. This strategy is called
DMA in Table 6.

The benchmark strategy can be simply to buy/sell in one-month period oil. In other words,
this correspo nds just to buying oil and selling it after some time. This strategy is called “hold oil” in
Table 6. The third strategy considered was to buy oil, if 1-month futures prices were predicting its
increase; otherwise—to “buy” MSCI index.

The results are reported in Table 6. First of all, it should be noticed that the strategy based on
futures prices generates on average a loss. Table 6 reports mean monthly returns from the given
strategy, standard deviations of these returns, and the Sharpe ratio, i.e., the ratio of mean to standard
deviation. The higher values of Sharpe ratio are preferred, as this corresponds to higher expected
return under the same risk; or the same expected return under the smaller risk. It can be seen that
DMA-based strategy allows to obtain, first of all, a slightly higher returns; secondly—smaller risk,
comparing to benchmark strategies. Consequently, the Sharpe ratio from this strategy is approximately
45% higher than the one from the benchmark strategy “hold oil”.

Table 5. Results of the Diebold-Mariano test for forecast accuracy.

Halt: Forecast from the Chosen Model is More Accurate than the Forecast from the . . . Stat. p-val.

BMA 0.8676 0.1931
Equal-Weighted Averaging 9.5349 0.0000

1-month futures 0.7614 0.2235
naive 14.6047 0.0000

Model 1 (normalized) 8.7911 0.0000
Model 2 (normalized) 2.0940 0.0185
Model 3 (normalized) 1.8576 0.0320
Model 4 (normalized) −0.1078 0.5429

Table 6. Comparison of investment strategies.

Strategy Mean SD Sharpe Ratio

DMA 0.0069 0.0614 0.1131
“Hold oil” 0.0066 0.0848 0.0778

Based on futures −0.0010 0.0688 −0.0141

6. Conclusions

In this paper it has been discussed how Dynamic Model Averaging can help in forecasting and
finding drivers of crude oil prices in a time-varying context. In particular, this method allows for both
the model’s state space and models’ parameters (regression coefficients) uncertainty. It has been found
that Dynamic Model Averaging can slightly improve the quality of prediction for the crude oil price
in comparison to alternative methods. In particular, 10% decrease in mean squared error (MSE) has
been found. It should be stated that Dynamic Model Averaging has occurred to produce smaller errors
than its predecessor, i.e., Bayesian Model Averaging. In other words, it has been found that forgetting
definitely reduces the size of forecast error. Although, the improvement is not spectacular, it still seems
interesting, because there is no consensus amongst researchers and practitioners which forecasting
method of oil price is the best one.
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Technically, it has also been found that data should be normalized (rescaled to fit between 0 and 1)
before inserting into Dynamic Model Averaging. Usually, the common practice is to transform data in
order to obtain stationarity. This is not required in Dynamic Model Averaging. On the other hand,
arguments have been presented why normalization improves Dynamic Model Averaging forecast.
It might serve as a non-trivial advice for some future researches, as the popularity of Dynamic Model
Averaging is growing in recent years.

Moreover, Dynamic Model Averaging produces certain time-varying weights (probabilities)
which can be used to describe the importance of a given driver in oil price forecasting. In particular,
this research has confirmed that (according to Dynamic Model Averaging method) developed stock
markets, market stress, Chinese economy growth, global economic activity, interest rates, exchange
rates, oil futures prices and autoregressive behavior were most important oil price drivers in 1990s.
The role of the autoregressive behavior was especially important during 1990s and the oil price surge in
2007–2008. In 2000s the most important drivers were: global economic activity, autoregressive behavior,
and in a lesser degree, market stress and supply. During the oil price surge the important drivers
were: stock markets, market stress, production, consumption, inventories quotas and autoregressive
behavior. Recently, the dominant drivers are: Chinese economy, consumption, inventories quotas,
futures prices and autoregressive behavior. It has been observed that the role of Chinese economy
played an important role in impacting crude oil price also in 1990s. Interestingly, market stress’ role
has been declining in the beginning of 2000s, before the beginning of the recent global financial crisis.

As a result, it has been found that it is drivers from the equity market rather than the fundamental
microeconomic or macroeconomic factors which are useful in forecasting crude oil price. It has also
been found that adding autoregressive components is strongly preferred. This is an interesting result
as, for example, in the recent study Kruse and Wegener [120] indicated only Kilian’s index of global
economy activity as the significant determinant of oil price persistence. Nevertheless, that research
was focused on modelling the persistence. Moreover, the variables to further averaging were selected
through some initial testing one-variable models, which could have excluded certain joint relations.

From the policymaking point of view it seems that nowadays seeking a new swing producer of
crude oil (after Saudi Arabia abdicated its role in 2014) is useless. On the other hand, much volatility
of oil price can come from financial speculation. Therefore, ensuing commodities futures market
regulations seems to be a reasonable direction. Still, the performed research has shown that
the role of futures trading nowadays is similar to that in 1990s. Paradoxically, shortly after
deregulating Commodity Futures Modernization Act of 2000 speculative pressures on oil price
decreased. On the other hand, clearly the connection between spot and futures prices loosened greatly.
Nevertheless, this research has shown rather a general financialization of oil market through tight
links with stock markets. Therefore, it is rather a complex relation, instead of simple explanation by
speculation on futures. Also, for U.S. the Strategic Petroleum Reserves should be kept at relatively high
level. On the other hand, monetary policies had higher impact on oil price in 1990s than after 2000.
It seems that confronting oil price volatility should be rather by reducing overall demand for oil than
by increasing demand elasticity. Within this context, the performed research advocates rather search
for alternative energy sources than to extend offshore drilling or in wildlife terrains (like, for example,
in Arctic National Wildlife Refuge).

It has been found that in different periods, different drivers play a significant role as oil price
drivers. The inclusion of various drivers is beneficial, because the averaging approach is more
flexible to capture abrupt oil price changes. Initially, in this research ten drivers have been considered
(without lags, therefore, making 1024 regression models to be averaged). Whereas, the “best” estimated
model has consisted of three drivers, but with lags, therefore making totally seven variables and
128 models being averaged. Within this context, it is clear that prudent number of models has occurred
to be preferred in averaging procedure. However, this research has shown that Dynamic Model
Averaging can produce interesting results starting from even three variables.
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Although, numerous variations of Dynamic Model Averaging have been applied, results from
single models are consistent with each other. In other words, Dynamic Model Averaging has occurred
to be robust against different parameters’ settings, and, even changing the initial set of potential oil
price drivers. This presents the considered method as worth further studies.
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Appendix A. Data Sources

BRENT
Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/series/POILBREUSDM

WTI, PROD, IMP, INV, CONS and NFP:
U.S. Energy Information Administration,
http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_m.htm
http://www.eia.gov/dnav/pet/pet_move_wkly_dc_NUS-Z00_mbblpd_4.htm
http://www.eia.gov/dnav/pet/pet_stoc_wstk_dcu_nus_m.htm
http://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm
http://www.eia.gov/countries
http://www.eia.gov/dnav/pet/pet_pri_fut_s1_m.htm

MSCI:
MSCI World, http://www.msci.com/end-of-day-data-search

TB3MS and TWEXM:
Federal Reserve Bank of St. Louis, http://research.stlouisfed.org/fred2/series/TB3MS
http://research.stlouisfed.org/fred2/series/TWEXBMTH

KEI:
Kilian, L., http://www-personal.umich.edu/~lkilian/paperlinks.html

VXO:
Chicago Board Options Exchange, http://www.cboe.com/micro/vix/historical.aspx

CHI (Hang Seng and Shaghai Composite):
Stooq, http://stooq.com

Glossary

• BMA—Bayesian Model Averaging
• DMA—Dynamic Model Averaging
• forgetting factor—described in Section 4.1 and 4.3.1
• “full” model—described in Section 4.4
• futures forecast—a forecast is equal to the current price of 1-month futures price
• MSE—mean squared error, i.e., the average of the squares of differences between the real values

of a time-series and the forecasted values of this time-series
• naïve forecast—a forecast is equal to the last observed value
• normalization—defined by Equation (7)
• posterior probability—conditional probability assigned after the relevant evidence is taken

into account
• posteriori inclusion probability—defined by Equation (5)
• posteriori predictive probability—defined by Equation (4)

https://fred.stlouisfed.org/series/POILBREUSDM
http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_m.htm
http://www.eia.gov/dnav/pet/pet_move_wkly_dc_NUS-Z00_mbblpd_4.htm
http://www.eia.gov/dnav/pet/pet_stoc_wstk_dcu_nus_m.htm
http://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm
http://www.eia.gov/countries
http://www.eia.gov/dnav/pet/pet_pri_fut_s1_m.htm
http://www.msci.com/end-of-day-data-search
http://research.stlouisfed.org/fred2/series/TB3MS
http://research.stlouisfed.org/fred2/series/TWEXBMTH
http://www-personal.umich.edu/~lkilian/paperlinks.html
http://www.cboe.com/micro/vix/historical.aspx
http://stooq.com
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• prior probability—probability expressing the belief about it, before some evidence is taken
into account

• “reduced” model—described in Section 4.4
• swing producer—supplier of a commodity, controlling its global deposits, able to change the level

of supply at minimal cost, and, therefore, able to influence the price and balance the market
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