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Abstract: The analysis of partial discharge (PD) signals has been identified as a standard diagnostic
tool for monitoring the condition of different electrical apparatuses. This study proposes an approach
to detecting PD patterns in gas-insulated switchgear (GIS) using a long short-term memory (LSTM)
recurrent neural network (RNN). The proposed method uses phase-resolved PD (PRPD) signals as
input, extracts low-level features, and finally, classifies faults in GIS. In the proposed method, LSTM
networks can learn temporal dependencies directly from PRPD signals. Most existing models use
support vector machines (SVMs) and mainly focus on improving feature representation and extraction
manually to analyze PRPD signals. However, the proposed model captures important temporal
features with the help of its low-level feature extraction capability from raw inputs. It outperforms
conventional SVMs and achieves 96.74% classification accuracy for PRPDs in GIS.

Keywords: fault diagnosis; gas-insulated switchgear (GIS); long short-term memory (LSTM); partial
discharges; recurrent neural network (RNN)

1. Introduction

Power systems are rapidly growing in popularity because of increasing power demands, and the
reliability of the power grid is critical to stable power system operation. The gas-insulated switchgear
(GIS), which is applied to a substation, is the main protection device for electric power facilities. It is
a device that protects the electric power system by not only opening and closing normally, but also
by quickly shutting off excessive current in case of a fault. In the case of a GIS, if a failure occurs
and overcurrent happens, it will cause large-scale effects and requires a long time to recover from
the accident. In addition, the power failure time becomes lengthy. Various abnormalities that cause
dielectric breakdown of GISs also cause partial discharge before dielectric breakdown. Therefore,
detecting partial discharges (PDs) in GISs to avoid failures and ensure high reliability and safety is
crucial [1–6]. Various electrical, mechanical, and chemical methods have been used to detect PDs in
GISs [7,8]. Some existing electrical methods use ultra-high frequency (UHF) sensors [9–13], while
sound measurement methods use acoustic sensors [14,15] and chemical methods use dissolved gas
analysis [16,17]. In this study, an electrical method that employs a UHF sensor is used for the PD
measurement system.

Time-resolved PD (TRPD) and phase-resolved PD (PRPD) analyses have been studied in order to
examine the characteristics of PDs in GIS [18–27]. The TRPD-based method is a method of analyzing
the time-domain features of PD pulses, frequency-domain features of PD pulses, and both time-domain
and frequency-domain features of PD pulses [19–21]. The PRPD-based diagnostic method analyzes
phase-amplitude-number (φ-q-n) measurements, where φ is the phase angle, q is the amplitude, and n
is the number of discharges [26]. It identifies the fault type by analyzing the number of PD pulses, the
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maximum amplitude, or the average amplitude in each phase [19–21,25,27,28]. From these features,
fault types are classified by many methods, including a knowledge-based fuzzy logic analysis [26]
and machine learning techniques such as K-means cluster analysis [23,29], artificial neural networks
(ANNs) [19,27,30,31], or support vector machines (SVMs) [19–21,25,32,33]. Among the ANN and
fuzzy logic methods, ANNs provide higher accuracy in classifying fault types and fault severities [26].
However, existing methods have studied either feature extraction or classification for PD diagnosis.
To improve the accuracy of fault diagnosis, it is necessary to consider feature extraction from raw data
and classification simultaneously.

In this study, a data-based approach to PRPD diagnosis that combines automatic feature extraction
and PRPD classification is proposed. The proposed method is based on a recurrent neural network
(RNN) chosen from a variety of deep neural networks that have recently achieved state-of-the-art
performances in a range of pattern recognition tasks [34]. The RNN model has been actively applied to
various fields, such as language modeling [35], speech recognition [36], and machine translation [37].
When compared to traditional neural network structures, such as those of a fully-connected neural
network and a convolutional neural network, an RNN model uses a recurrence formula during every
time step in order to consider sequential information [35]. This makes it a candidate to model PRPD
patterns. The long short-term memory (LSTM) model, which is one of the most widely used RNN
models, avoids the long-term dependency problem caused by the vanishing gradient in gradient-based
learning methods by using four gates to adjust the flow of information [38]. For LSTM models,
we use experimental PRPDs with training data to determine appropriate parameters for the model.
The trained network is analyzed using t-distributed stochastic neighbor embedding (t-SNE) for the
visualization of high-dimensional datasets [39]. The following contributions are made in this study:

• For the first time, an RNN structure is applied to classify PRPDs in a GIS. The proposed LSTM
RNN model can learn features from PRPDs without manual feature extraction.

• To obtain training and test data for the proposed LSTM RNN model, we conduct PRPD and noise
experiments for a GIS. We collect extensive data with respect to various fault types and noise for
a GIS.

• The performance of the proposed LSTM RNN model is verified with conventional ANNs and
SVMs. The proposed method yields highly accurate results even for the PRPD data observed in a
very short time. Therefore, it considerably reduces the number of PRPDs for PD classification,
thus saving the data for fault diagnosis.

The rest of the paper is organized as follows: we discuss PRPDs and noise experiments for a GIS
in Section 2, Section 3 presents the proposed LSTM RNN model, a performance evaluation is presented
in Section 4, and Section 5 concludes the study while also discussing future research topics.

2. Experiments in the GIS

In this section, we present our experimental setup and results obtained from PRPD measurements
after modeling four types of artificial defects—namely protruding electrodes, floating electrodes, free
particles, and void defects. In addition, we conducted artificial noise measurements to obtain data
for noise.

2.1. PRPDs in the GIS

In the measurement system, artificial cells for the modeling of PDs and an external UHF sensor
were installed in the 345 kV GIS chamber. Figure 1 shows the measurement system for conducting
PRPD experiments in the GIS. A high voltage was applied to the AC voltage tester to generate the GIS
PD signal in one of our experiments. The cavity-backed patch antenna for the external UHF sensor
and an amplifier with a gain of 45 dB and a signal bandwidth ranging from 500 MHz to 1.5 GHz were
used for PD detection. Figure 2 shows the measured reflection coefficient of the external UHF sensor
using an E5071C network analyzer. The measured reflection coefficient was less than −6 dB in the
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target frequency range from 500 MHz to 1.5 GHz, which allowed the external UHF sensor to operate
with a favorable impedance matching.
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All artificial cells were filled with 0.2 MPa of sulfur hexafluoride (SF6) gas. 
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Figure 1. Measurement system in the gas-insulated switchgear (GIS): (a) block of the measurement
system, and (b) high-voltage test site. PD: partial discharge; UHF: ultra-high frequency.

Energies 2018, 11, x FOR PEER REVIEW  3 of 13 

 

UHF sensor using an E5071C network analyzer. The measured reflection coefficient was less than 
−6 dB in the target frequency range from 500 MHz to 1.5 GHz, which allowed the external UHF 
sensor to operate with a favorable impedance matching. 

(a) (b) 

Figure 1. Measurement system in the gas-insulated switchgear (GIS): (a) block of the measurement 
system, and (b) high-voltage test site. PD: partial discharge; UHF: ultra-high frequency. 

 
Figure 2. Measured reflection coefficient of the external UHF sensor. 

Figure 3 displays the artificial cells that model four types of faults (corona, floating, 
particle, and void PDs) to simulate possible defects in a GIS. As shown in Figure 3a, the artificial 
cell for modeling the corona simulated the protrusion of an electrode through a needle with a tip 
radius of 10 μm and a diameter of 1 mm (Ogura), while the distance between the needle and the 
ground electrode was 10 mm, and the test voltage was 11 kV. To simulate an unconnected cell, 
the cell of a floating electrode was fabricated with 10 mm between the high-voltage (HV) and 
middle electrodes, and 1 mm between the middle and ground electrodes, as illustrated in Figure 
3b, where the test voltage was 10 kV. To simulate the free particle discharge, a small sphere with 
a diameter of 1.0 mm was placed on a concave ground electrode, and the HV electrode was a 
45-mm-diameter sphere fixed at 10 mm from the ground electrode, where the test voltage was 
10 kV, as represented in Figure 3c. For the artificial void defect, there was a small gap between 
the epoxy disc and the upper electrode, as shown in Figure 3d, where the test voltage was 8 kV. 
All artificial cells were filled with 0.2 MPa of sulfur hexafluoride (SF6) gas. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency (MHz)

-30

-25

-20

-15

-10

-5

0

Figure 2. Measured reflection coefficient of the external UHF sensor.

Figure 3 displays the artificial cells that model four types of faults (corona, floating, particle, and
void PDs) to simulate possible defects in a GIS. As shown in Figure 3a, the artificial cell for modeling
the corona simulated the protrusion of an electrode through a needle with a tip radius of 10 µm
and a diameter of 1 mm (Ogura), while the distance between the needle and the ground electrode
was 10 mm, and the test voltage was 11 kV. To simulate an unconnected cell, the cell of a floating
electrode was fabricated with 10 mm between the high-voltage (HV) and middle electrodes, and 1 mm
between the middle and ground electrodes, as illustrated in Figure 3b, where the test voltage was
10 kV. To simulate the free particle discharge, a small sphere with a diameter of 1.0 mm was placed
on a concave ground electrode, and the HV electrode was a 45-mm-diameter sphere fixed at 10 mm
from the ground electrode, where the test voltage was 10 kV, as represented in Figure 3c. For the
artificial void defect, there was a small gap between the epoxy disc and the upper electrode, as shown
in Figure 3d, where the test voltage was 8 kV. All artificial cells were filled with 0.2 MPa of sulfur
hexafluoride (SF6) gas.
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Figure 4 presents the PRPDs, with 60 power cycles in the four artificial cells, recorded through
the UHF sensor. In the PRPDs recorded by the UHF sensor, the 360◦ power cycle was divided into
small-phased windows. Some corona PDs were observed in the positive half-cycle band (from 0◦

to 180◦), but they were more densely distributed in the negative half-cycle band (from 180◦ to 360◦),
as shown in Figure 4a. The floating PDs were clearly observed in the positive and negative half cycles,
as depicted in Figure 4b. The particle PDs were distributed across all bands, as depicted in Figure 4c.
Figure 4d shows that the void PDs were observed around 90◦ and 270◦.
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2.2. Noise Measurement

Noise measurements were performed by generating artificial noises that might occur in power
grids. In the noise measurements, an air purifier (Samsung AC-121B) was used as a noise source and
noise signals were obtained using the external UHF sensor. One example of noise signals is shown
in Figure 5. Here, noise signals exist in all ranges of phases and power cycles, and the amplitudes of
noise signals are smaller than those of PRPDs in the GIS.
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3. Neural Network Model for Diagnosing PRPDs

In this section, we propose an LSTM RNN model to detect PRPDs in the GIS. The first task was
to generate an appropriate input vector from the PRPD measurements. The PRPD signal at the m-th
power cycle was defined as:

xm = [xm
1 , xm

2 , . . . , xm
N ]

T , (1)

where m = 1, . . . , M and N = 128 was the number of data points in a power cycle.
Figure 6 shows the architecture of the proposed RNN model, which was composed of LSTM

modules and an output layer for classification. The standard RNN structure causes the gradient
descent method in the network to struggle in minimizing the cost function because of a vanishing
gradient, which means long-term dependencies become exponentially smaller in the sequence and
therefore have less impact on the gradient when compared to short-term dependencies. Among many
LSTM-based structures, the proposed RNN is a many-to-one model and conducts representation
learning of deep learning.

The structure of the LSTM module is shown in Figure 7. The inputs to the m-th LSTM module
in layer l consisted of hl−1

m , hl
m−1, and cl

m−1, where hl−1
m was the output of the m-th LSTM module

in the previous layer l − 1, and hl
m−1 and cl

m−1 were the outputs of the (m − 1)-th LSTM module in
the current layer l. The equations below describe the internal structure of the cell at the m-th LSTM
module in layer l:

cl
m = fl

m � cl
m−1 + il

m � gl
m, (2)

hl
m = ol

m � tanh
(

cl
m

)
, (3)

fl
m = sigm

(
Wl

f

[
hl−1

m , hl
m−1

]
+ bl

f

)
, (4)

il
m = sigm

(
Wl

i

[
hl−1

m , hl
m−1

]
+ bl

i

)
, (5)

gl
m = tanh

(
Wl

g

[
hl−1

m , hl
m−1

]
+ bl

g

)
, (6)
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ol
m = sigm

(
Wl

o

[
hl−1

m , hl
m−1

]
+ bl

o

)
, (7)

where Wl
{ f ,i,g,o} are N ∗ N weight matrices, bl

{ f ,i,g,o} are N ∗ 1 bias vectors, � denotes an element-wise
multiplication, sigm(·) is a sigmoid activation function, tanh(·) is a hyperbolic tangent activation
function, and

[
hl−1

m , hl
m−1

]
denotes a concatenation. For the first layer, the inputs of LSTM blocks

were the PRPD vectors as xm = h0
m, where m = 1, . . . , M. The LSTM model avoids long-term

dependency obstacles by using four hidden layers
{

fl
m, il

m, gl
m, ol

m

}
as four gates to adjust the flow of

information [38], where each gate controlled the information flow in cell state cl
m.

- fl
m is the forget gate, which can decide what information is unnecessary from the cell state.

- il
m is the input gate, which decides which values in the cell state should be updated.

- gl
m is the external output gate, which is a vector of new candidate values that could be added to

the state.
{

fl
m, il

m, gl
m

}
gates are used to modify the cell state between time steps as shown in

Equation (2).
- ol

m is the output gate, which acts as a filter to decide what parts of the current cell state should go
the output, hl

m. The cell state is then put through tanh(·) and filtered through ol
m to become the

hidden state hl
m of the current time step as shown in Equation (3).

In the proposed model, the output y for K classes is related to the last LSTM layer z as follows:

y = [y1, · · · , yK]
T = σ(z), (8)

where z = [z1, · · · , zK]
T = WzhL

M + bz, Wz is a K by N weight matrix, bz is a K by 1 bias vector, and
σ(z) is a softmax function. In Equation (8), the j-th element of y represents the likelihood that the fault
is recognized as the j-th category in K classes and is defined as:

yj = [σ(z)]j =
ezj

K
∑

k=1
ezk

. (9)

The parameters of the proposed LSTM RNN model were learned through the training data set G
to minimize the following cost function:

J(Θ) =
1
|G| ∑g∈G

Loss(g), (10)

where |G| is the number of elements in a set and Loss(g) is the loss value of the g-th training data.
In Equation (10), Loss(g) measures how accurately the proposed LSTM RNN model predicts that the
label c(g) = [c1, · · · , cK]

T corresponds to the training data, where cj = 1 and ck = 0 for k 6= j if the
target classification is a fault type j. Among the many choices of loss functions, we used cross-entropy,
which is expressed by:

Loss(g) = − log
(

y(g)
)

, (11)

where y(g) = yj from Equation (9) if the target classification of the g-th training data is a type j fault.
To minimize the loss function, many variants of the gradient descent method have been examined

in previous studies. These include AdaGrad, AdaDelta, and Adam optimizers [40–42]. These
optimizers adaptively change the learning rate to minimize the loss function in a precise manner.
In this study, the Adam optimization algorithm was applied with a learning rate of 0.001 to train our
proposed LSTM RNN model [42]. Adam was chosen because it requires that only first-order gradients
be calculated, thus reducing computational complexity.
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4. Performance Evaluation

In this section, we discuss the performance evaluation results of the proposed RNN model using
PRPDs in the GIS. We conducted artificial noise measurements and PD experiments for four types of
faults—namely, corona, floating, particle, and void PDs. The numbers of experiments for each fault
type are given in Table 1, where the PRPD signals or noise signals with M = 3600 power cycles were
obtained in one experiment.

Table 1. Experimental data set.

Fault Types Corona Floating Particle Void Noise

Number of experiments 94 35 66 242 16

We divided the dataset into three parts: training, validation, and test sets. For these three sets, we
used 80%, 10%, and 10% of the data, respectively. During the training process, the optimization step
was carried out in small batches of 512 samples. To prevent overfitting, we applied an early stopping
technique so that the training process stopped itself when the validation accuracy was stable after
10 consecutive epochs. The model was implemented using TensorFlow [43] and Keras [44].

Without sufficient training samples, the deep learning model will easily run into an overfitting
problem [45]. In deep learning models, data augmentation is frequently used to increase the number
of training samples in order to enhance the generalization performance [45]. Here, slicing the
experimental data with overlap was used to achieve high classification precision in fault diagnosis.
This process is shown in Figure 8. For example, a single PRPD experiment with 3600 cycles can provide
the proposed RNN with training samples, each with a length of M when the shift size is 1.
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Multiple experiments with different parameters were conducted using the validation data to
tune our model. Figure 9 shows the training and validation accuracies of the proposed RNN model
according to the number of power cycles M for L = 1 or L = 2 layer models. The accuracy improved
as the number of power cycles M increased. This was because more information about PRPDs
(x1, · · · , xM) could be obtained as M increased. In addition, when the model expanded to a larger scale,
the accuracy increased because more parameters were introduced, thus better fitting the model to the
data. We set the power cycles to M = 60 and the number of layers to L = 2.
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Figure 9. Training and validation accuracies of the proposed RNN model based on the number of
power cycles M for L = 1 or L = 2 layer models.

Figure 10 illustrates the convergence of the model over epochs with the training and validation set.
As shown in this figure, the accuracy with training data tended to improve with the epoch, whereas
the accuracy with cross-validation data diminished up to a certain epoch and then improved again.
After achieving the maximum accuracy, the model firstly paused, recorded the parameters, and then
continued the training process for an additional 10 epochs. This was part of the early stopping method
for identifying another peak. After determining that the accuracy with cross-validation data could not
be further improved, the model stopped the training process to prevent overfitting the training dataset.
As the figure shows, the training process finished after 55 epochs. The maximum accuracy of 96.62%
achieved at epoch 45 with the cross-validation data is presented in Figure 10 as an “×” mark.
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For comparison, we used an ANN model and linear and nonlinear SVMs with a radial basis
function (RBF) [46,47] as baseline models. The ANN model consisted of an input layer, 2 hidden layers
with 256 hidden nodes at each layer, and an output layer, where the input data was M = 60 PRPDs
and the cross-entropy cost function and Adam optimization function were used. In SVMs, the feature
vector was obtained by the mean of the amplitudes and occurrence numbers in each phase from
M = 60 PRPDs [32], and therefore, was a 2N by 1 vector. The normalized feature vectors were
used to optimize and train SVMs to classify faults in the GIS. The parameter C = 0.01 for the
linear SVM and the parameters C = 0.01 and γ = 0.1 could be learned using training data, where
C ∈

{
10−2, 10−1, · · · , 103} and γ ∈

{
10−2, 10−1, · · · , 103}.
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Classification performance comparisons of the proposed LSTM RNN model, SVMs, and ANN
are presented in Table 2. From this table, we can see that the proposed LSTM RNN model achieved
the highest overall classification accuracy performance (96.74%), when compared to the ANN and the
linear and nonlinear SVMs. Note that the ANN was superior to the SVMs and the nonlinear SVM with
RBF was somewhat superior to the linear SVM. This was because the proposed LSTM RNN method
automatically obtained the sequential characteristics of PRPDs from the raw input, whereas the ANN
used the raw input without phase information of PRPDs and the SVMs used the manually-created
feature vector that combined characteristics of PRPDs. For corona faults, the performance of the
proposed method was the highest at 97.04%, approximately 1.5% higher than the ANN and the SVMs.
In floating fault classifications, the performance of the proposed method achieved the best result,
at 79.54%. In the case of particle faults, the performance of the proposed technique was 93.18%, which
was 7.84%, 27.71%, and 15.56% better than that of the ANN, the linear SVM, and the nonlinear SVM
with RBF, respectively. In the case of void faults, the proposed method achieved a nearly perfect
99.94% accuracy, better than the ANN and the SVMs. For noise classification, the proposed method
outperformed all other methods and achieved a 98.26% accuracy rate.

Table 2. Classification performance comparisons. ANN: artificial neural network; RBF: radial basis
function; SVM: support vector machine.

Fault Types Overall Corona Floating Particle Void Noise

Linear SVM 88.63% 91.87% 73.94% 65.47% 98.19% 51.94%
Nonlinear SVM with RBF kernel 90.71% 95.28% 67.81% 77.62% 98.69% 45.53%

ANN 93.01% 95.87% 76.27% 85.34% 98.12% 65.11%
Proposed LSTM RNN model 96.74% 97.04% 79.54% 93.18% 99.94% 98.26%

Table 3 shows training and testing timing comparisons for the ANN, the SVMs, and the proposed
LSTM RNN methods, where the timing was normalized to a hypothetical 1 GHz single-core CPU to
make the measurement meaningful. In our experiments, the models were trained and tested on an
NVIDIA Titan X GPU with 3584 cores, each running at 1.4 GHz. It can be seen that the training and
testing times of the proposed LSTM RNN model were slower than those of the ANN and the SVMs.
This was because the design of the RNN required the output of the previous time step for the current
time step output calculation. The test time of the proposed LSTM RNN model took longer than that of
other methods, but the test time per sample of the proposed method was only 1 (s*GHz).

Table 3. Training and testing time comparisons.

Train Time
(min)

Train Time
(min*GHz)

Test Time on
Test Set (s)

Test Time per
Sample (s*GHz)

Linear SVM 5 26,880 ~0.2 s 0.013
Nonlinear SVM with RBF kernel 5.66 30,428 ~0.3 s 0.02

ANN 6.66 35,804 ~6 s 0.403
Proposed LSTM RNN model 33.33 179,182 ~15 s 1

To better understand what the model learned, we analyzed the internal representations of the
trained network at the end of two layers. Following the training procedure, the hidden state vectors of
the last LSTM modules in the two layers were used to visualize the trained network. Figure 11 shows
t-SNE representation of h1

M and h2
M using 5000 inputs from the training set, where t-SNE projected

128 dimensional vectors to two-dimensional spaces while retaining their pairwise similarity [39].
Therefore, hidden state vectors h1

M and h2
M, which are similar according to the network, occur close

together in Figure 11. Here, the opposite does not have to be true because large distances in Figure 11
do not necessarily imply that the hidden state vectors h1

M and h2
M are dissimilar. In the figure, we

can see that the hidden state h2
M of layer 2 was much more dispersed when compared to the hidden
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state h1
M of layer 1. This explains the improved accuracy based on the number of layers as shown in

Figure 9. As shown in Figure 11b, the hidden states h2
M for some data of corona, floating, particle, and

void faults in a GIS were similar with those for some noise data. This was because PRPDs existed with
small amplitudes in the whole phase for the power cycles M = 60, as shown in Figure 4a.
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5. Conclusions

Deep learning is a state-of-the-art technique used in many different applications. Using this
technique, we proposed a fault diagnosis method using an LSTM RNN structure, which employed
a series of PRPDs in a GIS. Instead of utilizing handcrafted features to classify PRPDs in the GIS,
the proposed model efficiently learns low-level features and temporal dependencies of PRPDs using
training data. To adjust parameters in the proposed model, we conducted extensive PRPD experiments
using artificial defects and noise in a GIS. To lower the risk of overfitting, the data sets were obtained
using data augmentation for PRPDs and were divided into three sets. These three sets were used for
the purposes of training, cross-validation, and performance evaluation. The proposed model achieved
a higher accuracy than the conventional ANN and SVM methods for classifying PRPDs in GIS.

The proposed method will be useful in other PRPD detections, such as power transformers and
wall bushings. We hope this represents a major advancement for grid asset management and will
contribute to stable power grid operation in the future.

Author Contributions: Y.-H.K. conceived of the presented idea. M.-T.N. and V.-H.N. developed the model and
performed the computations. S.-J.Y. verified the experimental setup and results. All authors discussed the results
and contributed to the final manuscript.

Acknowledgments: This research was supported in part by Korea Electric Power Corporation (Grant number:
R17XA05-22), and in part by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the
Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 17-02-N0202-04).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Okabe, S.; Ueta, G.; Hama, H.; Ito, T.; Hikita, M.; Okubo, H. New aspects of UHF PD diagnostics on
gas-insulated systems. IEEE Trans. Dielectr. Electr. Insul. 2014, 32, 2245–2258. [CrossRef]

2. Wang, Y.; Wang, Z.; Li, J. UHF Moore fractal antennas for online GIS PD detection. IEEE Antennas Wirel.
Propag. Lett. 2017, 16, 852–855. [CrossRef]

3. Schichler, U.; Koltunowicz, W.; Gautschi, D.; Girodet, A.; Hama, H.; Juhre, K.; Lopez-Roldan, J.; Okabe, S.;
Neuhold, S.; Neumann, C.; et al. UHF Partial Discharge Detection System for GIS: Application Guide
for Sensitivity Verification. In Proceedings of the VDE High Voltage Technology, Berlin, Germany,
14–16 November 2016; pp. 1–9.

http://dx.doi.org/10.1109/TDEI.2014.004391
http://dx.doi.org/10.1109/LAWP.2016.2609916


Energies 2018, 11, 1202 12 of 13

4. Schichler, U.; Koltunowicz, W.; Endo, F.; Feser, K.; Giboulet, A.; Girodet, A.; Hama, H.; Hampton, B.;
Kranz, H.-G.; Lopez-Roldan, J.; et al. Risk assessment on defects in GIS based on PD diagnostics. IEEE Trans.
Dielect. Electr. Insul. 2013, 20, 2165–2172. [CrossRef]

5. Kurrer, R.; Feser, K. The application of ultra-high-frequency partial discharge measurements to gas-insulated
substations. IEEE Trans. Power Deliv. 1998, 13, 777–782. [CrossRef]

6. Okabe, S.; Kaneko, S.; Yoshimura, M.; Muto, H.; Nishida, C.; Kamei, M. Propagation characteristics of
electromagnetic waves in three-phase-type tank from viewpoint of partial discharge diagnosis on gas
insulated switchgear. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 199–205. [CrossRef]

7. Wu, M.; Cao, H.; Cao, J.; Nguyen, H.L.; Gomes, J.B.; Krishnaswamy, S.P. An overview of state-of-the-art
partial discharge analysis techniques for condition monitoring. IEEE Trans. Electr. Insul. Mag. 2015, 31, 22–35.
[CrossRef]

8. Dong, M.; Zhang, C.; Ren, M.; Albarracín, R.; Ye, R. Electrochemical and Infrared Absorption Spectroscopy
Detection of SF6 Decomposition Products. Sensors 2017, 17, 2627. [CrossRef] [PubMed]

9. Judd, M.D.; Yang, L.; Hunter, I.B. Partial discharge monitoring of power transformers using UHF sensors.
Part I: Sensors and signal interpretation. IEEE Trans. Electr. Insul. Mag. 2005, 21, 5–14. [CrossRef]

10. Gao, W.; Ding, D.; Liu, W. Research on the typical partial discharge using the UHF detection method for GIS.
IEEE Trans. Power Deliv. 2011, 26, 2621–2629. [CrossRef]

11. Judd, M.D.; Farish, O.; Hampton, B.F. The excitation of UHF signals by partial discharges in GIS. IEEE Trans.
Dielect. Electr. Insul. 1996, 3, 213–228. [CrossRef]

12. Li, T.; Rong, M.; Zheng, C.; Wang, X. Development simulation and experiment study on UHF partial
discharge sensor in GIS. IEEE Trans. Dielect. Electr. Insul. 2012, 19, 1421–1430. [CrossRef]

13. Álvarez Gómez, F.; Albarracín-Sánchez, R.; Garnacho Vecino, F.; Granizo Arrabé, R. Diagnosis of Insulation
Condition of MV Switchgears by Application of Different Partial Discharge Measuring Methods and Sensors.
Sensors 2018, 18, 720. [CrossRef] [PubMed]

14. Cosgrave, J.A.; Vourdas, A.; Jones, G.R.; Spencer, J.W.; Murphy, M.M.; Wilson, A. Acoustic monitoring of
partial discharges in gas insulated substations using optical sensors. IEE Proc. A Sci. Meas. Technol. 1993, 140,
369–374. [CrossRef]

15. Markalous, S.M.; Tenbohlen, S.; Feser, K. Detection and location of partial discharges in power transformers
using acoustic and electromagnetic signals. IEEE Trans. Dielect. Electr. Insul. 2008, 15, 1070–9878. [CrossRef]

16. Wang, Z.; Cotton, I.; Northcote, S. Dissolved gas analysis of alternative fluids for power transformers.
IEEE Trans. Electr. Insul. Mag. 2007, 23, 5–14.

17. Faiz, J.; Soleimani, M. Dissolved gas analysis evaluation in electric power transformers using conventional
methods a review. IEEE Trans. Dielect. Electr. Insul. 2017, 24, 1239–1248. [CrossRef]

18. Piccin, R.; Mor, A.R.; Morshuis, P.; Girodet, A.; Smit, J. Partial discharge analysis of gas insulated systems at
high voltage AC and DC. IEEE Trans. Dielect. Electr. Insul. 2015, 22, 218–228. [CrossRef]

19. Li, L.; Tang, J.; Liu, Y. Partial discharge recognition in gas insulated switchgear based on multi-information
fusion. IEEE Trans. Dielect. Electr. Insul. 2015, 22, 1080–1087. [CrossRef]

20. Zhu, M.X.; Xue, J.Y.; Zhang, J.N.; Li, Y.; Deng, J.B.; Mu, H.B.; Zhang, G.J.; Shao, X.J.; Liu, X.W. Classification
and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by
using cumulative energy technique. IET Sci. Meas. Technol. 2016, 10, 316–326. [CrossRef]

21. Gao, W.; Zhao, D.; Ding, D.; Yao, S.; Zhao, Y.; Liu, W. Investigation of frequency characteristics of typical PD
and the propagation properties in GIS. IEEE Trans. Dielect. Electr. Insul. 2015, 22, 1654–1662. [CrossRef]

22. Dai, D.; Wang, X.; Long, J.; Tian, M.; Zhu, G.; Zhang, J. Feature extraction of GIS partial discharge signal
based on S-transform and singular value decomposition. IET Sci. Meas. Technol. 2016, 11, 186–193. [CrossRef]

23. Lin, Y.H. Using k-means clustering and parameter weighting for partial-discharge noise suppression.
IEEE Trans. Power Deliv. 2011, 26, 2380–2390. [CrossRef]

24. Abdel-Galil, T.K.; Sharkawy, R.M.; Salama, M.M.; Bartnikas, R. Partial discharge pattern classification using
the fuzzy decision tree approach. IEEE Trans. Instrum. Meas. 2005, 54, 2258–2263. [CrossRef]

25. Si, W.R.; Li, J.H.; Li, D.J.; Yang, J.G.; Li, Y.M. Investigation of a comprehensive identification method used in
acoustic detection system for GIS. IEEE Trans. Dielect. Electr. Insul. 2010, 17, 721–732. [CrossRef]

26. Mas’ud, A.A.; Ardila-Rey, J.A.; Albarracín, R.; Muhammad-Sukki, F.; Bani, N.A. Comparison of the
Performance of Artificial Neural Networks and Fuzzy Logic for Recognizing Different Partial Discharge
Sources. Energies 2017, 10, 1060. [CrossRef]

http://dx.doi.org/10.1109/TDEI.2013.6678866
http://dx.doi.org/10.1109/61.686974
http://dx.doi.org/10.1109/TDEI.2009.4784568
http://dx.doi.org/10.1109/MEI.2015.7303259
http://dx.doi.org/10.3390/s17112627
http://www.ncbi.nlm.nih.gov/pubmed/29140268
http://dx.doi.org/10.1109/MEI.2005.1412214
http://dx.doi.org/10.1109/TPWRD.2011.2166089
http://dx.doi.org/10.1109/94.486773
http://dx.doi.org/10.1109/TDEI.2012.6260019
http://dx.doi.org/10.3390/s18030720
http://www.ncbi.nlm.nih.gov/pubmed/29495601
http://dx.doi.org/10.1049/ip-a-3.1993.0057
http://dx.doi.org/10.1109/TDEI.2008.4712660
http://dx.doi.org/10.1109/TDEI.2017.005959
http://dx.doi.org/10.1109/TDEI.2014.004711
http://dx.doi.org/10.1109/TDEI.2015.7076809
http://dx.doi.org/10.1049/iet-smt.2015.0171
http://dx.doi.org/10.1109/TDEI.2015.7116362
http://dx.doi.org/10.1049/iet-smt.2016.0255
http://dx.doi.org/10.1109/TPWRD.2011.2162858
http://dx.doi.org/10.1109/TIM.2005.858143
http://dx.doi.org/10.1109/TDEI.2010.5492244
http://dx.doi.org/10.3390/en10071060


Energies 2018, 11, 1202 13 of 13

27. Chang, C.S.; Jin, J.; Chang, C.; Hoshino, T.; Hanai, M.; Kobayashi, N. Separation of Corona Using Wavelet
Packet Transform and Neural Network for Detection of Partial Discharge in Gas-Insulated Substations.
IEEE Trans. Power Deliv. 2005, 20, 1363–1369. [CrossRef]

28. Zhang, X.; Xiao, S.; Shu, N.; Tang, J.; Li, W. GIS partial discharge pattern recognition based on the chaos
theory. IEEE Trans. Dielect. Electr. Insul. 2014, 21, 783–790. [CrossRef]

29. Peng, X.; Zhou, C.; Hepburn, D.M.; Judd, M.D.; Siew, W.H. Application of K-Means method to pattern
recognition in on-line cable partial discharge monitoring. IEEE Trans. Dielect. Electr. Insul. 2013, 20, 754–761.
[CrossRef]

30. Mas’ud, A.A.; Ardila-Rey, J.A.; Albarracín, R.; Muhammad-Sukki, F. An Ensemble-Boosting Algorithm for
Classifying Partial Discharge Defects in Electrical Assets. Machines 2017, 5, 18. [CrossRef]

31. Mas’ud, A.A.; Albarracín, R.; Ardila-Rey, J.A.; Muhammad-Sukki, F.; Illias, H.A.; Bani, N.A.; Munir, A.B.
Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions.
Energies 2016, 9, 574. [CrossRef]

32. Kim, K.H.; Kang, M.C.; Kim, M.H.; Shin, Y.J.; Kim, Y.H. Recognition method of partial discharge based on
support vector machine in gas insulated switchgear. In Proceedings of the CIGRE Asia-Oceania Regional
Council Technical Meeting, Auckland, New Zealand, 10–15 September 2017.

33. Robles, G.; Parrado-Hernández, E.; Ardila-Rey, J.; Martínez-Tarifa, J.M. Multiple partial discharge source
discrimination with multiclass support vector machines. Expert Syst. Appl. 2016, 55, 417–428. [CrossRef]

34. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
35. Mikolov, T.; Karafiát, M.; Burget, L.; Cernocký, J.; Khudanpur, S. Recurrent neural network-based language

moDeliv. In Proceedings of the 11th Annual Conference of the International Speech Communication
Association, Makuhari, Chiba, Japan, 26–30 September 2010; Volume 2, p. 3.

36. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.

37. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. arXiv 2014,
arXiv:1409.3215v3.

38. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

39. Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
40. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res. 2011, 12, 2121–2159.
41. Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
42. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
43. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;

Devin, M. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016,
arXiv:1603.04467v2.

44. Keras-Team. 2015. Available online: https://github.com/fchollet/keras (accessed on 22 October 2017).
45. Cui, X.; Goel, V.; Kingsbury, B. Data augmentation for deep convolutional neural network acoustic modeling.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brisbane, Australia, 19–24 April 2015; pp. 4545–4549.

46. Cortes, C.; Vapnik, V. Support-vector network. Mach. Learn. J. 1995, 20, 273–297. [CrossRef]
47. Huang, H.Y.; Lin, C.J. Linear and kernel classification: When to use which. In Proceedings of the SIAM

International Conference on Data Mining, Miami, FL, USA, 5–7 May 2016; pp. 216–224.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRD.2004.839187
http://dx.doi.org/10.1109/TDEI.2013.004020
http://dx.doi.org/10.1109/TDEI.2013.6518945
http://dx.doi.org/10.3390/machines5030018
http://dx.doi.org/10.3390/en9080574
http://dx.doi.org/10.1016/j.eswa.2016.02.014
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://github.com/fchollet/keras
http://dx.doi.org/10.1007/BF00994018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experiments in the GIS 
	PRPDs in the GIS 
	Noise Measurement 

	Neural Network Model for Diagnosing PRPDs 
	Performance Evaluation 
	Conclusions 
	References

