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Abstract: Many different methods have been proposed for determining islanding and most of them
have drawbacks. The main issue is the difficulty of detecting islanding when the current and voltage
values are of the same phase or the frequency remains within the normal range of the grid when
islanding occurs. In this study, a non-autonomous Chua’s circuit was used to preprocess the grid
signal after which a method based on the fractional Lorenz chaotic system and extension theory
was used to analyze the preprocessed voltage signal. The capability of a chaotic system to amplify
an extremely small signal was effectively utilized for the diagnosis of grid islanding. Simulation
results showed that the diagnostic accuracy of the proposed method could be 100% and no other
diagnostic method has offered such accuracy. Furthermore, the method proposed in this study is
simple, easy to implement, and could be used as a portable system for the real-time monitoring and
diagnosis of islanding in a conventional home grid system.
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1. Introduction

Grid-connected solar power systems [1,2] have now become main stream [3]. The structure
is simple, easy to maintain, and can effectively increase the power grid peak backup capacity [4],
but protection against islanding is needed. The term islanding refers to a situation that can arise should
the solar generation system continue to power the load when the main grid has been interrupted
for some reason. During an islanding event, workers making repairs may be in serious danger and
the equipment and even the power generation system itself might sustain damage. The detection
of islanding can be active or passive. Passive detection involves monitoring the voltage, frequency,
and phase at the load end and the data is analyzed to determine islanding. Active detection involves
perturbation of the voltage or frequency in such a way that when islanding occurs, the resulting
disturbance causes a clear variation in the system, which can then be used to determine if islanding
exists. Several relatively simple diagnostic methods have been devised. Some of those presently in use
include the power changing rate detection [5,6], the voltage harmonic detection [5,6], and the phase
jump detection methods [5,6]. These are all simple and easy to implement. However, when the output
of the solar power generation system and load consumption are close to being in balance, these methods
all become less effective. Consequently, there is a need for a better way to detect islanding.

Recently, many methods have become available and new intelligent algorithms have been
developed, which improve detection accuracy and efficiency. Among these is a method for islanding
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detection based on new active disturbance [7] and one for active movement frequency anti-islanding
detection [8]. Even though these methods can reduce the time taken to detect islanding, they can
also affect the stability of the system or even lead to overall harmonic distortion. Furthermore,
if the operating area (for islanding detection) includes other relatively stable power sources connected
in parallel such as cogeneration systems. These methods will fail. New algorithms such as the Neural
Network Algorithm (NNA) [9] have also been used in detecting islanding. Even though the neural
network learns fast, it has a free mode and error tolerance and allows the use of reverse transmission
direction to modify the weight and make corrections after repetition. It has a complicated training
process that takes a long time. Accurate determinations cannot be made with other algorithms such
as Fuzzy Theory [10] or the Genetic Algorithm (GA) [11] when the voltage, frequency, and phase
differences are small. The Goertzel Algorithm [12], which is a Discrete Fourier Transformation
(DFT) [13], has been recommended in some studies, but the conversion time is long and the width of the
Fourier conversion window is fixed. This means that, when the time domain requires high resolution,
the harmonic resolution will drop and the method is less than optimal. In 2015, a new, very accurate
method has been proposed by Wang et al., which uses the Lorenz integer order [14] to detect islanding.
However, many nonlinear systems exhibit fractional-order behavior. Therefore, if the fractional-order
concept is considered in the diagnosis system, more accuracy can be obtained with a real physical
system. In this study, the use of a non-autonomous Chua’s circuit [14] for preliminary processing
of the grid signal is described. This is followed by fractional Lorenz chaotic synchronization [15]
and the product element model characteristics of the self-synchronization dynamic error are then
analyzed. Afterward, the extension method is used to detect the occurrence of islanding. The Chua’s
circuit is simple, uses few components, and is easy to connect. Chaotic synchronization detection and
extension allows for fast calculation and the method is expected to reduce the time for retrieving the
waveform characteristics as well as computation time. Chaos is a nonlinear solution type. Therefore,
the chaotic system has an advantage of sensitivity for the initial condition and the small change
of system parameters. The chaotic system has been applied to many fields such as the design of
a controller to avoid or keep chaos motion in the system [16–18] and even the design of a controller to
synchronize between different fractional order chaotic systems [19].

When voltages value from the normal state to the islanding state, the chaotic system will be
a good method for identifying and diagnosing the islanding state in this study. The system can be
realized easily as a chip and, when compared to the integral Lorenz chaotic system [20], its dynamic
error values are seen to be more suitable for analysis because the method reduces detection time and
includes real-time monitoring while maintaining detection accuracy.

2. The Islanding Effect

According to a report from the Sandia National Laboratory in the USA [21], Islanding arises
when the main power company supply is interrupted by malfunction or as a result of direct action
taken for maintenance. The individual solar power generation systems connected to the grid cannot
readily detect the power outage situation and may remain connected to the grid power network.
In such a case, the solar power generation system continues to supply power to the grid. This provides
self-sustained power to the load [22], which is outside the control of the power company. This can
lead to voltage, phase, and frequency disturbances. The phenomenon is termed islanding [23] and is
illustrated in the photovoltaic power generation system and the grid-connected network diagram in
Figure 1. IEEE 1547, IEC 61727, and NEC 690 have detailed specifications of power system distribution
and grid-connected networks. The need for detecting and preventing islanding is growing because
grid-connected power supply systems are now becoming much more common. When islanding does
occur, it can put workers in serious jeopardy as well as cause damage to the equipment.
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Figure 1. Photovoltaic power generation system and grid-connected network. 
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Figure 1. Photovoltaic power generation system and grid-connected network.

The current methods used to prevent islanding [14] include Voltage Harmonic Detection,
Phase Jump Detection, and Power Change Rate Detection. However, a nonlinear load, incorrect
impedance matching, or an unbalanced load can cause these methods to malfunction.

3. The CHUA’s Circuit

The simple layout of Chua’s Circuit [14] designed by Chua in 1983 is shown in Figure 2. The circuit
has three active components, capacitors, inductors, and resistors including a nonlinear resistor RL.
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According to the Kirchhoff Circuit Laws, the state of the Chua’s circuit can be obtained from
Equation (1). 

C1
dVC1

dt = −gVC1 + iL1 − iL2

C2
dVC2

dt = iL1 − iRL

L1
diL1
dt = −VC1 − iL1R1 + Vin sin(2πk)

L2
diL2
dt = VC1 + VC2 + iL2R5


(1)

where k refers to the high-level harmonic correspondence parameter. iLR is defined in Equation (2).

iLR = GaVc2 +
1
2
(Gb − Ga)[|Vc2 + Ea| − |Vc2 − Ea|] (2)

where Ga and Gb are slopes and Ea is a breakpoint.
In this study, the grid voltage was input to a non-autonomous Chua’s circuit followed by capture

of the VA and VB waveforms as characteristics (see Figure 3). The extension element model was formed
after a fractional chaotic self-synchronization dynamic error conversion on the voltage waveform,
which had been carried out. Finally, the extension algorithm was used to determine the presence or
absence of islanding. Figure 4 is a diagram showing the grid-connected network with Chua’s circuit.
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Figure 3. VA and VB voltage waveform graph.
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4. Master and Slave Chaotic System

The chaotic dynamic characteristics are frequently discussed in nonlinear systems theory [24].
The signals generated by a chaotic system can cause a signal to generate an ordered but aperiodic
motion path under the influence of a chaotic attractor and, if such a motion path is subjected to tiny
changes, these can have a much greater effect on the result. Chaotic signal self-synchronization can
be regarded as being comprised of a Master System (MS) and a Slave System (SS). When the initial
values of the two systems are different, the motion paths of each system will exhibit different chaotic
behavior. However, synchronized action can be generated by adding a controller to the slave system to
track the master system.

In this study, the characteristic extracted is the amount of naturally caused dynamic error of the
MS and the SS in a synchronized system. Therefore, the master and slave synchronization system
described here does not require the installation of a controller because the dynamic error state can
be obtained from the difference between the MS and SS. Using the Lorenz system as an example,
the dynamic equation is as expressed by Equations (3) and (4).

Master: 
.
x1 = α(x2 − x1)
.
x2 = βx1 − x1x3 − x2
.
x3 = x1x2 − γx3

 (3)

Slave: 
.
y1 = α(y2 − y1)
.
y2 = βy1 − y1y3 − y2
.
y3 = y1y2 − γy3

 (4)
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The dynamic error is defined as e1 = x1 − y1, e2 = x2 − y2 and e3 = x3 − y3. Therefore,
the error dynamic vector is e = [e1, e2, e3]

T and the equation of the dynamic error state is expressed
by Equation (5). 

.
e1
.
e2
.
e3

 =

 −α α 0
β −1 0
0 0 −γ


 e1

e2

e3

+

 0
−e1e3

e1e2

 (5)

According to the similar fractional value [25] proposed by Grünwald-Letnikov, this can be
expressed by Equation (6), which is shown below.

D±α
e em ≈ Γ(m + 1)

Γ(m + 1± α)
em±α (6)

where e is the dynamic error, m is any real number, and Γ(•) is the gamma function. By using the
aforementioned equation to perform the fractional conversion on a fractional system (7), Equation (8)
is obtained.

d
dt

d−α

dt−α
≈ A(e)

d−α

dt−α

 e1
1

e1
2

e1
3

+
d−α

dt−α

 e0
1

−e1e3

e1e3

 (7)

 Dqe1

Dqe2

Dqe3

 ≈
 −α′ α′ 0

β′ 0 0
0 0 −γ′


 e1+α

1
e1+α

2
e1+α

3

+


Γ(1)eα

1
Γ(1+α)

Γ(1)e1e3eα
2

Γ(1+α)

Γ(1)e1e2eα
3

Γ(1+α)

 (8)

where q = (1− q), 0 < q ≤ 1 is a fractional order between 0 and 1, and Γ(1) = Γ(2) = 1 wherein
the system parameters of α′, β′, and γ′ are nonzero parameters after conversion. The relationship is
expressed by Equation (9).

α′ =
αΓ(2)

Γ(2 + α)
, β′ =

βΓ(2)
Γ(2 + α)

, γ′ =
γΓ(2)

Γ(2 + α)
(9)

To establish a self-synchronizing error system, the equation of the dynamic error is below.

e1[i] = x1[i]− y1[i], e2[i + 1] = x2[i + 1]− y2[i], e3[i] = x3[i + 2]− y3[i + 2]

Therefore, the dynamic equation of the self-synchronizing error system can be defined by
Equation (10) below.

 Φ1[i]
Φ2[i]
Φ3[i]

 ≈
 −α′ α′ 0

β′ 0 0
0 0 −γ′


 e1[i]

1+α

e2[i]
1+α

e3[i]
1+α

+


Γ(1)e1[i]

α

Γ(1+α)

Γ(1)e1[i]e3[i]e2[i]
α

Γ(1+α)

Γ(1)e1[i]e2[i]e3[i]
α

Γ(1+α)

 (10)

The preprocessed VA and VB voltages from the Chua’s circuit are used as the signals to be added
to the MS and SS and yield chaotic fractional self-synchronization dynamic error signals between the
two systems. Finally, using the dynamic errors e2, e3 phase plane paths, an extension theory element
model is constructed and used to determination the presence of islanding in the output signal of the
monitored system. Figure 5 is a diagram of the system flow chart.
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5. Extension Theory

The extension theory [26] was proposed by Professor Wen Tsai in 1983 to handle the paradox
issue among objects and events such that by using its extensibility, the regularity among states can be
found, and the mathematical computation method can be used to perform characteristic categorization.
The extension theory has two cores including the element theory and the extension set. The element
theory is used to study the property of element conversion to use it to solve the paradox issue.
The extension set uses an extension model to solve the paradox issue and cannot be explained by
traditional or fuzzy mathematics. The traditional logic only has 0 and 1. The fuzzy set range is
extended from [0, 1] and the extension theorem extended the region from [0, 1] to [−1, 1]. The fuzzy
set and the extension set are shown in Figure 6 [27]. Please refer to references [28,29] for introductions
to element theory and the extension set.
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In this study, the extension theory was used for fractional Lorenz chaotic system backend detection.
The extension theory has the advantage that the closer the element to be measured is to the classic
domain, the greater the correlation function. The degree of correlation will reveal the presence of
islanding in a simple evaluation of objects with a high level of compliance.

6. Simulation Results

MATLAB (2015) was used to simulate the grid-connected solar power generation system used as
the basis of this study (see Figure 7). Figure 8 shows the waveforms when the solar power system has
been disconnected from the grid.
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Figure 7. (a,b) Waveforms of generated solar power connected to the grid.
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Figure 8. (a,b) Waveforms of generated solar power disconnected from the grid.

In this study, the chaotic characteristic is utilized in such a way that, when islanding occurs,
the tiny vibrations generated can be observed as chaotic self-synchronized dynamic error waveforms.
This study uses an example where the nonlinear Chua’s circuit is utilized to capture voltages VA and
VB. Then the dynamic error equations of the fractional Lorenz chaotic system are used to convert the
VA and VB electric waveforms from the Chua’s circuit by using the master and slave chaotic system.
The resulting dynamic error value is then extracted to be used as the characteristic for the extension
identification method. The dynamic error path graphs for changes from α = 1 to α = 0.1 are shown in
Figure 9 (no islanding) and Figure 10 (showing islanding).

It can be seen, from the dynamic path graphs, that when α = 1 is a normal integral, the value
of the dynamic error is relatively large. This makes it difficult to determine whether islanding has
occurred because the dynamic error distribution points show no significant difference and the backend
use of the extension theory to detect islanding would be problematic. However, an examination of
Figures 9 and 10 clearly shows that the differences between the graphs of the chaotic paths under
different fractional orders is quite easy to see and islanding is obvious in many cases. After comparing
the waveform graphs in the figures and giving consideration to the form and the center of gravity,
the order with the greatest differences was selected. In this study, the order with the greatest
differences was 0.6 and was set between the −2~0 interval and 0~6 interval while the value was
the characteristic value extracted in this study. The center of gravity was located on the dynamic error
phase plane graph to extract a characteristic value. The red dot is at the center of gravity of the chaotic
characteristic waveform to emphasize the determination intensity. Table 1 refers to an element model
for determining whether islanding will occur. Finally, using the constructed element model with the
weight of each element set at 0.25, extension identification can be used for signal detection and the
accurate determination of the presence of islanding.
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Table 1. Extension element model showing when islanding will occur.


Normal C1 [0,−500]

C2
C3
C4

[1000, 1200]
[50, 80]
[1, 1.7]




Island C1 [0,−500]
C2
C3
C4

[1100, 1500]
[40, 60]
[1.5, 2]


Table 2. Real-time monitored results (correlation).

Sample Normal Islanding Actual Category Detection Category

1 −1 1 Islanding Islanding
2 1 −1 Normal Normal
3 −1 1 Islanding Islanding
4 −1 1 Islanding Islanding
5 −1 1 Islanding Islanding
6 1 −1 Normal Normal
7 1 −1 Normal Normal
8 −1 1 Islanding Islanding
9 −1 1 Islanding Islanding
10 −1 1 Islanding Islanding

Table 2 shows that, in a simulation of real-time monitoring, the accuracy of the fractional Lorenz
chaotic extension detection method for islanding is 100%. Simulations of the intelligent algorithms
of other studies as well as traditional detection methods were made as comparisons. The results are
shown in Figure 12. It is clear that the Lorenz method is the most accurate and can be of practical use.Energies 2018, 11, x FOR PEER REVIEW  13 of 15 
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7. Conclusions

In this study a new instant detection method has been presented that uses an extension of
Fractional Order Lorenz Chaos Synchronization. By including VA and VB from a Chua’s circuit in
a master-slave chaotic system to detect dynamic errors, a matter-element model was created to extract
visible Eigen values for extension identification. Matlab was used to simulate a parallel connection
between city power and a solar power generation system. Since the orders of the dynamic chart
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can be chosen when compared with other methods [14] reduces the difficulty of matter-element
model design and allows rapid detection of islanding. In the simulations, the accuracy rate for
instantaneous detection reached 100%. A practical and intelligent human machine interface for
monitoring a parallel connection between solar and city power can easily be set up using LabVIEW.
In this study, the combination of a non-volitional Chua’s circuit with chaotic extension was used.
The architecture is simple, easy to accomplish, and is fast and accurate. For this method, only the
voltage needs to be retrieved while the other more traditional methods require voltage, frequency,
phase data, and more. Such a system is very simple and inexpensive and could easily be included in
the original setup of a solar power mains electricity combination. A user would be able to quickly and
accurately detect islanding and take action to avoid problems. This would facilitate maintenance and
also help to ensure the safety of maintenance staff.

Furthermore, the system can be used to record and save captured signals and diagnosis.
If EtherCAT were combined with this system, information could be uploaded to the cloud where it
would be available to others users. The cloud data can also be integrated with the system to give
warnings about trouble spots.
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