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Abstract: In practical electric vehicle applications, the noise of original discharging/charging voltage
(DCV) signals are inevitable, which comes from electromagnetic interference and the measurement
noise of the sensors. To solve such problems, the Discrete Wavelet Transform (DWT) based state
of charge (SOC) estimation method is proposed in this paper. Through a multi-resolution analysis,
the original DCV signals with noise are decomposed into different frequency sub-bands. The desired
de-noised DCV signals are then reconstructed by utilizing the inverse discrete wavelet transform,
based on the sure rule. With the de-noised DCV signal, the SOC and the parameters are obtained
using the adaptive extended Kalman Filter algorithm, and the adaptive forgetting factor recursive
least square method. Simulation and experimental results show that the SOC estimation error is less
than 1%, which indicates an effective improvement in SOC estimation accuracy.

Keywords: discrete wavelet transform; denoising; state of charge (SOC); adaptive extended
Kalman filter

1. Introduction

With the development of electric vehicles, Battery Management Systems (BMS) have been widely
used to monitor information ensuring battery safety and reliability [1–4]. Such information could be
the current, the voltage, the temperature, etc. Defined as the available capacity over the maximum
available capacity, the State of Charge (SOC) is estimated accurately with these signals to improve the
performance of the battery system, to protect the battery from over-charging and over-discharging,
and to prolong the service life of the battery.

However, to obtain accurate SOC is very challenging because the SOC cannot be measured
directly through sensors, and the battery system is strongly non-linear. To solve this problem, a lot of
research has been carried out on SOC estimation methods [5,6]. The ampere-hour counting (Coulomb
counting) method is simple and easy to implement, but the method needs to know the initial SOC,
and suffers from accumulated errors associated with noise and measurement errors. The open-circuit
voltage (OCV) method is very accurate, but this method needs a long rest time to estimate the
SOC, and thus cannot be used in real time. Currently, SOC estimation methods based on the
non-linear Equivalent Circuit Model (ECM), such as Extended Kalman Filter (EKF) [7–10], Proportional
Integral Observer [11–13], and so on [14], are the most popular solutions. As the foundation of the
model-based SOC estimation method, ECM is usually composed of the OCV and the resistance
capacitance (RC) networks, and it makes the electrochemical behavior of a lithium-ion battery easier to
understand. In model-based SOC estimation, this behavior is considered as the estimated terminal
voltage. When discharging/charging pulse currents are applied to the batteries, discharging/charging
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voltage (DCV) signals are measured. The model-based SOC estimation method tracks the error between
the estimated terminal voltage based on the ECM and the actually measured DCV signal to estimate
SOC [15,16]. However, due to harsh electromagnetic environment in electric vehicles, the measured
current and voltage signals can be seriously polluted. It is inevitable, therefore, that an uncorrected
battery voltage is measured and applied to the BMS. Although the model-based SOC estimation
method is used, the accuracy of SOC estimation is still reduced. Therefore, in order to improve the
precision of SOC estimation, noise should be removed from the DCV.

For non-stationary signals, Fourier analysis is not effective since it transforms the signal into
the frequency domain (and the time information is lost). This deficiency of the Fourier analysis can
be mitigated to some extent by analyzing a small section of the signal at a time, called windowing.
This type of analysis, known as the short-time Fourier transform, however, has the drawback that
the size of the time window is the same for all frequencies [17–19]. The discrete wavelet transform
(DWT) has been widely considered as an effective mathematical function to analyze DCV signals
with non-stationary and transient phenomena in accordance with scale and resolution [20,21]. On the
other hand, the wavelet transform involves a varied time-frequency window, and can provide good
localization property in both the frequency and time domain.

In addition, with the SOC, ambient temperature, the number of cycles and other factors,
the parameters of ECM including impedance will change. Currently, model parameters are identified
by fitting a large amount of data collected under laboratory conditions, and the value of model
parameters is fixed, which cannot dynamically reflect the influence of current, SOC, temperature,
self-discharge on the internal characteristics of the battery. Although the model-based SOC estimation
method can compensate for some system errors by feedback, it cannot completely eliminate the SOC
estimation error caused by the factors given above. Therefore, in order to improve the accuracy of SOC
estimation and enhance the adaptability of the system, it is necessary to estimate the battery model
parameters online, and update the battery model in real time.

In order to solve the above-mentioned problems, this paper introduces a new approach to the
application of discrete wavelet transform (DWT)—based denoising of DCV signals. The DWT has been
widely considered as an effective mathematical function to analyze DCV signals with non-stationary
and transient phenomena in accordance with scale and resolution [22]. At the same time, the first-order
RC equivalent circuit model is established, and the model parameters are identified in real time by
the Adaptive Forgetting Factor Recursive Least Square (AFFRLS). The Adaptive Extended Kalman
Filter (AEKF) with Busse’s adaptive rule is used to estimate SOC with the de-noised DCV signal.
The results indicate that the proposed method can effectively reduce the impact of noise and improve
the accuracy of SOC estimation. The remainder of the paper is organized as follows: In Section 2,
the basic introduction on the DWT-based MRA is provided. The experimental platform is built
to acquire the original DCV signal of the Li-ion cell. The original DCV signal is processed by the
proposed DWT based MRA and threshold denoising technique to get the denoised signals. In Section 3,
the first-order RC equivalent circuit model is established, and the model parameters are identified by
AFFRLS. In Section 4, the AEKF is utilized to estimate SOC with the de-noised DCV signal. In the final
section, conclusions are drawn, and final remarks are given.

2. DWT-Based Denoising of DCV Signals

2.1. DWT and the Multi-Resolution Analysis

DWT as an ideal tool for time-frequency analysis of non-stationary signal processing has been
extensively studied in new mathematical approaches [22]. The DWT of the signal can be defined as

DWT(j, k) =
1√
2j

∫ ∞

−∞
xtψ ∗ (

t− k2j

2j )dt (1)
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where ψ(t) is called the mother wavelet function, * is the complex conjugate, and j(j ∈ R) is the
scale parameter determining the oscillation frequency and the length of wavelet. k(k ∈ R) is the
translation parameter, which determines the position on the time axis of the wavelet function. The scale
parameter and the translation parameter of DWT provide the basis for Multi-Resolution Analysis
(MRA), which enable MRA to provide high temporal resolution at high frequencies, and high frequency
resolution at low frequencies. DWT-based MRA completely decomposes xt into the low-frequency
approximate signal and the high-frequency detailed signal. The approximate signal is composed of
the scaling function φj,k(t) and the approximate coefficients aj,k. The detailed signal is composed of
the wavelet function ψj,k(t) and the detailed coefficients dj,k. The scaling function φj,k(t) is directly
related to the low-pass filter coefficient and the wavelet function ψj,k(t) is directly associated with the
high-pass filter coefficient. The original signal xt may be expressed by J layer of DWT as:

x(t) =
2N−J−1

∑
k=0

aJ,k2−J/2φ(2−Jt− k) +
J

∑
j=1

2N−J−1

∑
k=0

dj,k2−j/2ψ(2−jt− k) (2)

where N is called the maximum layer of decomposition and J is the current layer of decomposition.

2.2. Experimental Platform and Processing of DCV Signal

In order to obtain the original DCV signal, this paper sets up a battery test platform.
The experiment uses NCR18650 lithium-ion batteries with an actual capacity of 1573 mAh, a nominal
voltage of 3.7 V, and a cut-off voltage of 2.8 V. Figure 1 shows the experimental platform used in
this work. It is comprised of a host computer-monitoring system, battery test equipment, and an
experimental chamber with constant temperature and humidity. The host computer-monitoring
system sets the operating conditions and sends the required load current to the battery test equipment.
According to the received current data, the battery test equipment makes the batteries charge and
discharge. Simultaneously, the voltage sensor collects data to send to the host computer-monitoring
system. The noise of the original DCV signal comes from the electromagnetic interference of the
battery test platform and the measurement error of the sensor. Before the experiment, batteries are fully
charged. The batteries recursively discharge to the cut-off voltage, according to Urban Dynamometer
Driving Schedule (UDDS), to obtain the original DCV signal, as shown in Figure 2.
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Figure 1. Battery test platform.

There is not a theoretical standard at present to select wavelet basis functions. The wavelet basis
function has its own characteristics in signal processing, and no wavelet basis function can obtain
the optimal denoising effect for all kinds of signals. In general, Daubechies wavelet family is one of
the common discrete wavelet families, which is often used to denoise, due to its characteristics of
orthogonality and tight support. The DCV signal is decomposed into the low-frequency approximate
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signal An and the high-frequency detailed signal Dn, using the order 4 Daubechies wavelet (dB4),
with the iterative decomposition of 5 layers [23]. The corresponding wavelet coefficients are the
approximate coefficient cAn and the detailed coefficients cDn, respectively, where is number of layers
(1 ≤ n ≤ 5). The decomposed DCV signal can be reconstructed by the inverse discrete wavelet
transform (IDWT) using the same low and high-pass filter coefficients. The decomposition and
reconstruction process is shown in Figure 3.

Figure 2. The measured signals: (a) the current of UDDS; (b) the original DCV signal collected by the
battery test platform according to UDDS.

Figure 3. DWT-based MRA decomposition and reconstruction process of 5 layers.
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2.3. The Denoised DCV Signal Based on the Thresholding-Based Denoising Rule

In general, the original signal is expressed as the low-frequency signal or the smooth signal,
and the noise is expressed as the high-frequency signal [24]. The original DCV signal with noise
is decomposed to the low-frequency approximate signal and the high-frequency detailed signal.
The noise signal is included in the high-frequency detailed wavelet coefficients cDn. The amplitude
and variance of high-frequency detailed component of the noise are decreasing with the increase of
DWT decomposition levels. Therefore, in order to achieve the purpose of denoising, the high-frequency
detailed wavelet coefficients cDn are processed by the threshold denoising rule, and the desired
de-noised signal can be reconstructed by IDWT. The denoising process is shown in Figure 4.

Figure 4. Hard threshold denoising process based on the threshold denoising rule.

A first-order RC ECM in Simulink is built to acquire the simulation DCV signal with the input of
the experimental current signal noted above. The simulation DCV signal is considered as the noise-free
signal. A band-limited white noise signal with noise power of 0.0003 is added into the simulation
DCV signal to obtain the noisy simulation DCV signal with the signal-to-noise ratio (SNR) 25 dB [25].
Using a dB4 wavelet for the iterative decomposition of 5 layers decomposes the noisy simulation DCV
signal, and the noise of the noisy simulation DCV signal is reduced by four hard threshold denoising
rules based on the sqtwolong rule, sure rule, heursure rule and minimaxi rule, respectively [26].
The result of the denoising process is contrasted in Figure 5a. It can be seen from Figure 5a that the
noise reduction effect is better, and the curve-fitting effect with the noise-free simulation DCV signal
curve is more ideal when based on the sure rule.

As shown in Table 1, comparing the SNR of the denoised DCV signal based on four
hard-thresholding-based denoising rules, this paper selects the sure rule to deal with the noisy DCV
signal. As shown in Figure 5b, noise in the noisy simulation DCV signal is better reduced.

Figure 5. Cont.
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Figure 5. (a) The de-noised DCV signal processed by four hard threshold denoising rules; (b) The
denoised DCV signal based on the sure rule.

Table 1. SNR of the denoised DCV signal.

Denoising Rules SNR

noisy simulation DCV signal 25
sqtwolong rule 29.0315

sure rule 36.4833
heursure rule 29.6599
minimaxi rule 32.2239

3. The ECM of the Battery and the Parameter Identification Method

3.1. AFFRLS Algorithm

A first-order RC ECM is adopted to simulate the dynamic characteristics of the lithium-ion battery
in Figure 6. As shown in Figure 6, Rt is the ohm resistance, Rp and Cp are the polarization resistance
and capacitance, respectively, vp is the polarization voltage, vt is the estimated terminal voltage,
E0 is the open circuit voltage. The relationship between SOC and E0 is nonlinear. The battery has
a rest time of an hour after SOC, decreasing by ten percent each time in the Hybrid Pulse Power
Characteristic (HPPC) discharge experiment; at the same time, E0 is measured. E0 = anSOC + bn

is available by piecewise linear interpolation, and an, bn are shown in Table 2. Assuming the state
variables x = [x1, x2]

T = [vp, SOC]T and according to Kirchhoff’s voltage law (KCL), the state equation
is as: { .

x = Ax + Bu
y = Cx + Du

(3)

where A =

[
0 0
0 −1/(RpCp)

]
, B =

[
1/Cn

1/Cp

]
, C =

[
an 1

]
, D = Rt, y = vt − bn, u = i.

Discrete the Equation (3) by z transform [27] to obtain the Equation (4) as:

vt(k) = a1 · vt(k− 1)− a2 · vt(k− 2) + b0 · i(k)− b1 · i(k− 1) + b2 · i(k− 2) (4)

where a1, a2, b0, b1, b2 are the parameters to be estimated.
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Figure 6. The first-order RC equivalent circuit model.

Table 2. Parameter an and bn of E0-SOC piecewise linear interpolation.

SOC 0.0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

an 0.323 0.387 0.468 0.552 0.62 0.465 0.478 0.586 0.604 0.534
bn 3.565 3.558 3.542 3.517 3.49 3.567 3.559 3.484 3.469 3.532

The basic idea of the recursive least squares algorithm is that the new estimate is equal to the
sum of the old estimate and the correction value. The forgetting factor has a significant effect on the
convergence rate and tracking performance. When λ is equal to 1, the errors at all times are considered
without any forgetting function and the tracking capability is weak. It is insensitive to noise, and the
parameter estimation error in steady state is small. When λ is equal to 0, only the errors of the current
moment are considered and the tracking capability of time-varying parameters is strong, but it is more
sensitive to noise. In a non-stationary environment, λ should be small enough that the algorithm can
quickly track the local trend of non-stationary signals. In a steady environment, it is hoped that λ can
be gradually increased to a suitable value to reduce the parameter estimation error [28]. Therefore,
the AFFRLS is proposed to identify the parameters of the battery model and update the battery model
in real time. The formula is as follows:

y(k) = ϕT(k) · θ (5)

e(k) = y(k)−ϕT(k) · θ̂(k− 1) (6)

θ̂(k) = θ̂(k− 1) + K(k)e(k) (7)

K(k) =
P(k− 1)ϕ(k)

λ(k) +ϕT(k)P(k− 1)ϕ(k)
(8)

P(k) = (I−K(k)ϕT(k))P(k− 1)/λ (9)

λ(k) = λmin + (1− λmin)2L(k) (10)

L(k) = −r(µe2) (11)

where e(k) is y(k) the estimated error, K(k) is the algorithm gain, ϕT(k) = [vt(k− 1),−vt(k− 2),
i(k),−i(k− 1), i(k− 2)], θ = [a1, a2, b0, b1, b2]

T , P(k) is the covariance matrix, λ(k) is the forgetting
factor, λmin is the minimum value of the forgetting factor, taken as 0.57, θ̂(0) and P(0) need to be
pre-assigned based on experience and r is a rounding function. According to the proposed algorithm,
we can see that when e(k) tends to infinity, the minimum value of the forgetting factor λ(k) is obtained;
λ(k) is equal to 1 when e(k) tends to zero.
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3.2. Parameter Identification

The simulation result is shown in Figure 7. The actual value of the battery parameter for
comparison is obtained by the Hybrid Pulse Power Characteristic (HPPC) discharge experiment.
As shown in Figure 7, the estimated value of Rt, Rp and Cp quickly converge to the actual value
0.041 Ω, 0.011 Ω, and 2000 F, and the fluctuation is small after stability.

Figure 7. Parameter estimation and actual value: (a) ohm resistance; (b) polarization resistance;
(c) polarization capacitance.

4. The SOC Estimation Based on the AEKF Method

4.1. The AEKF Algorithm

The Equation (3) is discretized to obtain a discrete battery model as follows:{
xk+1 = (Ai + E)xk + Biuk + ωk

y = Cxk + Diuk + vk
(12)
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where E is unit matrix. Matrix Ai, Bi and Di are updated by Rt(i), Rp(i) and Cp(i) obtained by AFFRLS.

Ai =

[
0 0
0 −1/(Rp(i)Cp(i))

]
, Bi =

[
1/Cn

1/Cp(i)

]
, Di = Rt(i). ωk and vk are independent zero-mean

white Gaussian noise, ωk is the process noise with the covariance matrix Qk, vk is the measurement
noise with the covariance matrix Rk.

When using the EKF to implement SOC estimation, uncertain system noise may degrade the filter
performance, and even cause divergence. Therefore, this paper utilizes EKF with Busse’s adaptive
rule [29] to adaptively update; the adaptive rule for the noise covariance update is defined as:

Qk = Qk−1 + 1/LQ(Q∗ −Qk−1) (13)

Q∗ = Kkekek
TKk

T − Pk + (A + E)Pk−1(A + E)T (14)

Rk = Rk−1 + 1/LR(R∗ − Rk−1) (15)

R∗ = eeT − CkPk−1Ck
T (16)

where ek = yk − ŷk. LQ, LR are the window size for process and measurement noise covariance
respectively. Kk is the Kalman gain, Pk is the error covariance of the state xk. In order to overcome the
shortcomings of the poor real-time performance, this paper introduces a filter divergence judgment
condition [30]. If the filter results are beyond the pre-set divergence conditions, we can only use the
adaptive rule to start adaptive filtering projections, which can avoid divergence, effectively improving
the stability and the real-time performance of the filter calculation. The divergence judgment condition
is defined as

ek
Tek ≤ rTr(E(ek

Tek)) (17)

where r is the adjustable coefficient, and r ≥ 1. Tr is the trace of the matrix. The remaining recursion
process is as follows:

Time update:
x̂k/k−1 = (A + E)x̂k−1 + Buk−1 (18)

Pk/k−1 = (A + E)Pk−1(A + E)T + Qk (19)

Measurement update:

Kk = Pk/k−1CT [(CPk/k−1CT + Rk)]
−1

(20)

x̂k/k = x̂k/k−1 + Kkek (21)

Pk = [I − KkC]Pk/k−1[I − KkC]T + KkRkKk
T (22)

4.2. Simulation and Experimental Validation

Using dB4 wavelet by the iterative decomposition of 5 layers decomposes the original DCV signal
and the noise of the original DCV signal collected by the battery test platform; according to UDDS is
reduced by sure rule. The result of the denoising process is contrasted in Figure 8. Obviously, it can be
seen that when the current is zero, the voltage fluctuates abnormally for a long time. After using DWT
based denoising, the noise can be filtered out. The new approach to the application of DWT based
denoising of DCV signals has a good noise reduction effect.
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Figure 8. The measured and denoised signals: (a) the current of UDDS; (b) the original DCV signal
collected by the battery test platform according to UDDS.

The noisy DCV signal and denoised DCV signal based on the sure rule are respectively used as a
terminal voltage of the AEKF algorithm to estimate SOC. The SOC initial value is 0.8. The simulation
results are shown in Figure 9. It can be seen from Figure 9a when the SOC initialization error is
20%, the AEKF-based SOC estimation of the denoised DCV signal rises to converge more rapidly to
reference, based on the ampere-hour counting, than the DCV signal with noise. The AEKF-based
SOC estimation of the denoised DCV signal has a smaller overshoot, and shows better robustness.
Moreover, comparing with SOC estimation of the DCV signal with noise, it is closer to reference and
has smaller fluctuation and higher precision. It can be seen from Figure 9b that the AEKF-based SOC
estimation error between the DCV signal with noise and the DCV without noise has larger fluctuations
and exceeds 3%. The AEKF-based SOC estimation of the denoised DCV signal substantially coincides
with the DCV without noise, the SOC estimation error curve between them does not exceed 1%,
and fluctuation is smaller. Therefore, the DWT based denoising method proposed has a significant
noise reduction effect and improves the accuracy of SOC estimation.
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Figure 9. SOC estimation and error curve: (a) SOC estimation curve (initial value set to 0.8); (b) SOC
estimation error curve.

5. Conclusions

The model-based SOC estimation method tracks the error between the estimated terminal voltage
based on the ECM and the actually measured DCV signal to estimate SOC. An accurate and reliable
DCV signal is absolutely necessary to improve the accuracy of SOC estimation. However, the actual
measuring DCV signal will inevitably be mixed with noise. In addition, with the SOC, ambient
temperature, the number of cycles and other factors changing, parameters of ECM including impedance
will change a lot. Fixed parameters of ECM will reduce the accuracy of the model-based SOC estimation,
and the model-based SOC estimation error will be huge and inevitable. In order to solve the above
problems, this paper has proposed a new approach to taking advantage of the DWT-based denoising
of DCV signals to obtain more accurate SOC estimation. By MRA, the original DCV signal obtained
from the experiment was decomposed into different frequency sub-bands. By comparing the SNR of
the de-noised DCV signal obtained by four threshold denoising rules, the hard threshold denoising
rule based on the sure rule was selected to adjust the wavelet coefficients of the DWT, and realize the
clear separation between the signal and the noise. The desired denoised DCV signal was reconstructed
by taking the IDWT of the filtered detailed coefficients. On the other hand, a first-order RC equivalent
circuit model was established, and the model parameters are identified in real time to update the
battery model by the AFFRLS. Lastly, AEKF is used to estimate SOC with the denoised DCV signal,
the DCV signal with noise and the DCV signal without noise. In order to verify the effectiveness of
the proposed method, the SOC estimation based on AEKF has been compared with the ampere-hour
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counting method. The result shows that the SOC estimation error between the DCV signal with noise
and the DCV without noise has larger fluctuations and exceeds 3%. Whlie the SOC estimation of the
denoised DCV signal substantially coincides with the DCV without noise, and the SOC estimation
error between them does not exceed 1%. In addition, the SOC estimation of the denoised DCV signal
converges quickly to the reference based on the ampere-hour counting, and the fluctuation and error
are smaller than the SOC estimation of the DCV signal with noise. In summary, the proposed method
has a significant noise reduction effect of the measured DCV signal to increase the accuracy and
reliability of the DCV signal, and the model parameters can be identified in real time to obtain more
precise ECM, which improves the accuracy of SOC estimation.
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