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Abstract: This paper presents a trustworthy unit commitment study to schedule both Renewable
Energy Resources (RERs) with conventional power plants to potentially decarbonize the electrical
network. The study has employed a system with three IEEE thermal (coal-fired) power plants
as dispatchable distributed generators, one wind plant, one solar plant as stochastic distributed
generators, and Plug-in Electric Vehicles (PEVs) which can work either loads or generators based
on their charging schedule. This paper investigates the unit commitment scheduling objective
to minimize the Combined Economic Emission Dispatch (CEED). To reduce combined emission
costs, integrating more renewable energy resources (RER) and PEVs, there is an essential need
to decarbonize the existing system. Decarbonizing the system means reducing the percentage of
CO2 emissions. The uncertain behavior of wind and solar energies causes imbalance penalty costs.
PEVs are proposed to overcome the intermittent nature of wind and solar energies. It is important
to optimally integrate and schedule stochastic resources including the wind and solar energies, and
PEVs charge and discharge processes with dispatched resources; the three IEEE thermal (coal-fired)
power plants. The Water Cycle Optimization Algorithm (WCOA) is an efficient and intelligent
meta-heuristic technique employed to solve the economically emission dispatch problem for both
scheduling dispatchable and stochastic resources. The goal of this study is to obtain the solution for
unit commitment to minimize the combined cost function including CO2 emission costs applying
the Water Cycle Optimization Algorithm (WCOA). To validate the WCOA technique, the results
are compared with the results obtained from applying the Dynamic Programming (DP) algorithm,
which is considered as a conventional numerical technique, and with the Genetic Algorithm (GA) as
a meta-heuristic technique.

Keywords: plug-in electric vehicles (PEVs); water cycle optimization algorithm (WCOA); quadratic
programming; combined economic emission dispatch (CEED)

1. Introduction

The unit commitment study integrating stochastic and disputable resources is a rich topic with
different aspects and branches, but all those branches have their scope in the main theme of the work.
The guidelines of the introduction are divided into the following points:

• Unit commitment importance and aim of the study;
• The reasons for selecting the objective function governing the unit commitment study, emission

cost reduction;
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• The advantages and disadvantages of integrating RERs into the study goals;
• The integration of PEVs and their advantages and disadvantages for achieving the quality of the goals
• A state of art in the unit commitment area and the optimization technique applied;
• The contribution and the structure of the paper

Unit commitment is a vital study required to ensure the hourly energy supply requirements.
The unit commitment focuses on minimizing the production cost, which mainly depends on the fuel
cost value. However, with the increase of fuel cost, the CO2 emissions will increase. The goal of the
study is to decarbonize the CO2 limit in electrical power system networks, which means reducing the
amount of CO2 emissions. To reduce CO2 emissions while supplying the required demands, integrating
more Renewable Energy Resources (RER) will cause a conflict problem as a result of increasing the
amount of CO2 emissions, which causes the earth temperature to rise. The unit commitment problem
is a complicated optimization problem, from the objective function point of view or its constraints [1–5].
The unit commitment problem is defined by scheduling the generation power attained from various
power resources. Conventional and intelligent programming techniques are used to solve the unit
commitment problem by achieving priority list combination of the generating units, so that the
combined emission production cost can be minimized. Many conventional techniques have been
applied to solve the unit commitment problem such as the mixed integer optimization [3] and Lagrange
method [2,4]. One of the most effective and robust conventional methods is dynamic programming
(DP), which is based on the available combinations of resources. This method proves that it is simple
and fast and provides autocratic and effective solutions [5]. Due to the large number of resources
integrated into the electric grid and the related number of constraints, the need for fast computational
technique is urgent. The main purpose of this paper is to provide an optimization framework by
scheduling the wind and solar energies and PEVs (load-generator) as stochastic distributed generators
and dispatchable distributed generators. This coordination can handle the imbalances of intermittent
Renewable Energy Resources (RERs) and encourage PEVs passengers to take part in the demand
response while optimal hourly prices are determined.

On the other hand, the international communities seek to prevent temperature rise more than
2 degrees Celsius by generating more energy from domestic resources which can be cost-effective
and replaced or renewed without contributing to climatic change or having environmental impacts.
Burning fossil fuels such as coal, natural gas and oil, which exhaust ash and gaseous pollutants such
as carbon oxides (CO and CO2) nitrogen oxides (NOx)) and sulphur dioxide (SO2) . . . etc. Electricity
production is roughly responsible for half of the greenhouse gas emissions (GHGEs). In fact, it is
expected that the fossil-fuel power plants planned to be built, will emit tens of billion tons of carbon
dioxide over their expected lifetime, compared with the annual emissions of all fossil-fuel power plants
that were operating in the preceding years. Excluding these fossil fuel power plants early is achievable,
but the cost comparison for decision-makers who compare fossil fuels with clean energy resources
remains a critical issue. Long-term planning will lead to stabilizing climatic changes and achieving
zero emissions. Therefore, the goal is decreasing the emissions in the upcoming decades to attain zero
net emissions by the end of this century, which can be achieved by applying the unit commitment study.
Carbon–neutral electricity can be produced by using renewable resources (windmills, photovoltaic
power, concentrated solar power, nuclear power, large dams and small hydropower) and fuel shifting
technologies such as electric and plug-in hybrid vehicles in the transportation sector [6].

Renewable energy resources (RERs) in such systems integrate with conventional power plants
seeking to achieve potential decarbonization of the electrical system. RERs consist of low-carbon base
load generation technologies such as nuclear and fossil fuels with carbon capture and sequestration,
along with more modest contributions (25%) from wind (whether on-shore or off-shore), and solar
(whether photovoltaic or solar thermal cells) [7]. Solar integration can help in improving and reducing
the pollution limits obtained from fossil fuel substations. Encouraging residential customers to use
PV solar microgeneration can save 3.5% of energy consumption in addition to reducing the overall
cost by 75% lower than the models without PV [8–11]. Energy storage devices (ESDs) with PV panels
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can contribute to saving 12% of the energy cost. Hence, this encourages end users with Home Energy
Management Systems (HEMSs) to reduce or shift their electricity consumption patterns in response to
a price or grid condition signal [12]. By contributing to customers’ payment for the cost of generation
as well as for the transmission, distribution and indirect cost of environmental cleanup and health
effects, these renewable resources may become attractive when customers face the actual price of
electricity production [13].

Because of the uncontrollable behavior of wind speed and solar insolation, the output of wind
and solar power generation is unpredictable. Swings in generation of wind and solar energy between
oversupply and undersupply will lead to estimations of the hourly contributions from wind and PV as
being insufficient to satisfy renewable portfolio standards and overwhelm any conceivable storage
strategy. Consequently, wind and solar energies will compensate a part of the load demand. It is
necessary to handle the uncertain behavior of these renewable resources which may cause operational
risk of power system [14]. Controlling both active and reactive power independently is done to overcome
the stochastic nature of wind energy profile by using voltage source inverters (VSIs) based on FACTS
devices (STATCOM) + battery energy storage systems (BESS) which will promote the transient and
dynamic stability and minimize sub-synchronous oscillations [15]. Battery storage technologies (i.e.,
pumped hydroelectric storage (PSH)) may have a vital role in solving imbalances due to seasonal
swings in the generation output of wind and solar power plants. Furthermore, battery storage will
decrease energy costs and support dependence on renewable energy for the off-grid areas (remote
locations) not connected to the grid and therefore resort to using expensive imported fuels [14,16].

Exchanging the old generation with the new RERs technologies has proved its efficiency in
many cases. For example, in Tasmania, the diesel consumption of King Island has fallen to 50% after
exchanging renewable energy and battery storage for the conventional power plants [17]. Another
example is found in an existing network of Masirah Island, where the hybrid energy system is
composed of fuel-fired, photovoltaic and wind generator units is considered the most economically
feasible combination. Despite the high capital costs of this combination, it provides the cheapest
operating cost, energy cost and hence the lowest net running cost. This combination of units also
enhances the voltage profile of the system [18]. In 2013, as leading global steps in renewable energy,
the German government encouraged utility and smaller-scale battery storage by introducing many
incentives for households, companies, local authorities and community organizations. Households
and businesses could access grants for 30% of the upfront installation costs to install new solar PV and
storage systems [14,16]. The energy storage system (ESS) can provide an alternative by satisfying peak
demand to achieve load levelling and peak reduction of up to 8% by using GA in the UK distribution
network with a peak capacity violation [19].

Plug-in electric vehicles are expected to become widely common in the upcoming decades.
2010 witnessed release of the first plug-in hybrid Chevy Volt made by General Motors and the
all-electric Leaf was released by Nissan. In the first half of 2017, the sales of new vehicles were
50 percent higher than sales in 2016 and it is predicted that new global PEV sales will exceed this
percentage compared with traditional fuel vehicle sales by 2050 [14,16]. Encouraging passengers to
use PEV to shift peak load will help in supplying load in uncertainty situations [20]. Reasons for the
optimistic forestation of plug-in electric vehicles include:

• They are quiet due to reducing the tailpipe emissions and air pollutants produced by gasoline or
diesel-powered engines which harm the heart and lung health for the people living near roads;

• They require less maintenance;
• Recharging is cheaper than refueling with petrol which is a depleted energy resource, leading to

less reliance on fossil fuels if powered by renewable energy;
• The vehicle battery can also be used for household electricity storage [21,22].

Plug-in electric vehicles (PEVs) can be considered as a battery storage based on the concept of
battery energy storage systems in which vehicles operate with an electric motor that can be powered by



Energies 2018, 11, 1140 4 of 21

an external electrical source. From a grid perspective, two basic types of EVs are typically indicated to
BEVs as the battery is considered a primary source of power in EVs, or plug-in hybrid electric vehicles
(PHEVs) are combined with a secondary drive option. Some models feature a gasoline-powered engine
such as the internal combustion engine (ICE). The battery capacity ranges from less than 10 kWh to over
80 kWh. However, the battery charging and discharging process in PEVs may cause sharp, unexpected
spikes in electric power consumption and lead to potential grid issues [23]. PEVs support grid
operation by providing distributed energy storage in the form of vehicle to grid (V2G). After optimally
determining the appropriate size for renewable resources and storage devices [24,25], the optimal
scheduling takes place. By the optimal intelligent scheduling of PEVs, V2G potentially provides grid
generation to reduce the intermittency and uncertainty of renewable resources such as wind and solar
power [26].

Charging of PEVs can be scheduled at night as well as during weekends, when electricity prices
are comparatively low and when vehicles are not used. However, some PEVs charging will be needed
during the daylight and even during peak demand or rush hour intervals when the grid already
provides the maximum electric power capacity [27]. There are two methods of the charging strategy of
the scheduling PEVs, namely, the reactive strategy and the proactive strategy. The reactive strategy:
As soon as the PEVs have been plugged-in, some unnecessary loads like heaters and dryers are
postponed for decreasing the base load. Non-critical but high consuming loads can be turned off by
the center controller until the battery of PEVs is being fully charged. However, the domestic loads
cannot be easily controlled. The proactive strategy estimates the averages charging scenario and the
future capacity to avoid overloading with the day-ahead load profile. During fast charging process,
the proactive method may cause a sudden spike, but may take a shorter charging interval. The reactive
method can handle the deviation risk, but charging process occur in more time [28].

Due to the complexity of the problem, there is a crucial need for a powerful optimization technique
to find the optimal solution which satisfies the objective and the constraints [29–33]. The water
cycle optimization algorithm is applied to solve the economical emission dispatch unit commitment
problem. The algorithm is considered a new meta-heuristic technique where the obtained results will
be compared with another heuristic technique such as the genetic algorithm (GA) and traditional
technique as dynamic programming (DP). The contribution of this paper mainly appears in scheduling
the PEVs as load-generators, the construction of the optimization function including the emission
cost not as a penalty [2], but as a cost that should be paid, and applying the WCOA in a new field to
validate its performance with respect to other conventional and meta-heuristic techniques.

The paper is divided into seven sections. Section 2 presents an overview of the unit commitment
formulation and constraints and outlines the steps and procedures of the Dynamic Programming
technique. Section 3 delivers the main rules and concepts about the Water Cycle Algorithm. Section 4
represents the data of the system under study. Simulation results are illustrated in Section 5. Section 6
summarizes the discussion main points, while Section 7 presents the paper’s conclusions. Also,
a summary of all variables and acronomies is displayed.

2. Unit Commitment Formulation

Unit commitment formulation in this study can be considered as a multi-objective, single function
representation optimization problem which aims to minimize both the operating cost and the emission
cost. Not only the renewable energy resources (RER) such as wind and solar energies will be added to
the electric industry to decrease the emission, but the PEV as well. The PEV will be used to reduce
both the cost and the emission in the electricity and transportation sectors. The operating cost of the
thermal units includes the fuel cost depending on the amount of fuel consumption by the thermal
generating units and the start-up cost depending on the temperature of the boilers:

Fuel thermal cos t =
NG

∑
i=1

Ai + Bi PGi + CiP2
Gi (1)



Energies 2018, 11, 1140 5 of 21

where; PGi is the output power of each thermal unit “i” at each hour. A, B, C are the coefficients of
a quadratic fuel cost function of each thermal generating unit. NG is the number of conventional
thermal units.

A linear model is used to evaluate the fuel cost of wind and solar energy:

Fuel cos t (wind/solar) = (wind/solar) price× Pwind/solar (2)

where; Pwind/solar is the output power from wind or solar plants at each hour. (wind/solar) price is
the coefficient of a linearized fuel cost function of wind or solar plants at each hour:

Emission cos t =
NG

∑
i=1
α× 103 × PGi× β (3)

where α is CO2 emission factor that represents the ratio between the quantity of gas emitted (in ton)
per unit of energy production (in kWh). β is the emission penalty factor in voluntary markets for
planning purposes which is around 10–15 $/ton CO2 by the end of 2017 [27]. β is defined to be the
average of carbon prices, according to the World Bank’s annual Carbon Pricing Watch Report 2017.

The CO2 emission factor (α) is shown in Table 1, together with the emission factor of energy
resources for both burnt fossil fuels (natural gas, fuel oil and coal) and renewable energy resources
(wind, hydropower and solar photovoltaic).

Table 1. CO2 emission factor “α” for different energy resources [34].

Energy Resource CO2 Emission Factor (Ton/kWh)

Wind 21.0 × 10−6

Hydro 15.0 × 10−6

Solar 6.00 × 10−6

Natural Gas 5.99 × 10−4

Fuel oil 8.93 × 10−4

Coal 9.55 × 10−4

PEVs Operating Constraints

Conventional thermal (coal-fired) units, RERs and PEVs which smartly operate as loads, energy
storages or small portable power plants (energy sources) should meet and supply the whole load
demand (hour) and the system losses which are described as follows:

• If PEVs are operated as an energy resource or a small power plant:

N
∑

i=1
PGi (hour) +Pwind(hour) + Psolar(hour) +

NV2G(hour)
∑

j=1
η PPEVj(hour)

[
ΨPres (hour)−Ψdep(hour)

]
= Demand(hour) + Reserve (hour)

(4)

• If PEVs are added to the demand as loads:

N
∑

i=1
PGi (hour) +Pwind(hour) + Psolar(hour) = Demand(hour) + Reserve (hour)

+
NV2G(hour)

∑
j=1

η PPEVj(hour)
[
ΨPres (hour)−Ψdep(hour)

] (5)

where; PGi is the output power of each thermal unit “i” at each hour. PPEVj is the power of each
vehicle j, η is plug in vehicle system efficiency. NV2G is number of vehicles that are connected to
the network at this hour. N is number of units that are on in the unit commitment problem at
each hour. ΨPres & Ψdep are the present and the departure state of charge (SOC) respectively.
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Some Other Constraints

The generating power limit for each generating unit should be within the minimum and
maximum limits:

PGimin ≤ PGi ≤ PGimax (6)

where; PGimin & PGimax are the minimum and maximum output limits of the i-th thermal unit
respectively, considering ramp up/down rate, minimum up/down time and the spinning reserve of
the system at each hour, which will be required to preserve the reliability and the adequacy of the
system. Only the recorded vehicles will contribute to the smart operation according to predetermined
scheduling intervals:

24

∑
hour=1

NV2G(hour) = NV2G max (7)

where; NV2G is the number of vehicles connected to the network at this hour. NV2G max is the total
number of vehicles in the network.

To avoid loss of battery life:

Ψmin(hour)PPEVj ≤ PPEVj (hour) ≤ Ψmax(hour) PPEVj (8)

where; Ψmin is the depletion of storage energy at minimum level. Ψmax is the charging up to maximum
level.

The multi-objective single-representation objective function for Cost Emission Economical
Dispatch (CEED) optimization that is required to be minimized in the smart grid is expressed as follows:

CEED = Minimize total cos t = min{fuel cos t, start− up cos t, emission}

=
N
∑

i=1

24
∑

hour=1
{Fuel thermal cos t(PGi(hour)) + Fuel cos t (wind/solar) (hour)+

start− up cos ti(hour)× (1−Ui (hour− 1)) + Emission cos t (Pi(hour))} × Ui(hour)

(9)

where, Ui(hour) is on/off state of each unit i.

2.1. Unit Commitment Solution Using Dynamic Programming Technique

In 1957, Bellman interpreted the theory of dynamic programming (DP). Combination of the
generating units is considered as the states which need to be determined. Searching for the optimum
solution is achievable for each time interval (hour) in a forward or backward direction.

In forward direction of dynamic programming, the optimistic economic combination of the
minimum accumulated cost starts at the last stage and ends at the initial stage. The stages form
the intervals of the study problem considered as T = 24 h. The combination of each generating unit
forwards one hour, then the arrangement is scheduled and stored for each hour. Eventually, at the final
hour, the best path of the most economical schedule of the generating power for each unit is attained
by backward pedaling. The main advantage of this method is that the dimensionality of the problem
can be significantly ignored, so that dynamic programming can get the best path of the minimum cost
for running NG units [35,36].

2.2. Step by Step Tracking for Dynamic Programming

The dynamic programming approach is based on the probabilities of generators to supply the
load at a certain hour, satisfying the constraints to achieve the objective function which minimizes the
combined emission costs. The dynamic programming algorithm for unit commitment problem, in its
elemental form, tackles every probable state in every interval. The algorithm is based on the posterior
repeating equation:

Total_ cos t(t, I) = min [prod_ cos t(t, I) + s_ cos t(t− 1, L : t, I) + total_ cos t(t− 1, L)] (10)
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where total_cost(t,I) is the least total cost required to arrive at state (t,I); prod_cost(t,I) is the production
cost at state (t,I); and s_cost(t − 1,L: t,I) is the transition cost from state (t − 1,L) to state (t,I).

Strategy in forward dynamic programming is defined as the transition or path from one state
at a given hour to a state at the next hour. The state (t, 1) is the I-th combination in hour t, where N
is the number of strategies to save at each step and X is the number of states to search each period.
The maximum value of X or N is 2N − 1. The presumption for the step by step procedure and the
flowchart of the dynamic programming method are expressed in Figure 1 and explained as follows:

(a) A state is composed of an arrangement of generating units with only accurate units in service,
operating at a time while the remaining units are off-line.

(b) The start-up cost of each unit is fixed and independent of the time, whether or not the generating
unit is in off state.

(c) No cost is involved for the shutdown of the unit.
(d) At each interval, the order of priority is firm and a small amount of power should be in operation.
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Figure 1. A flowchart for the forward dynamic programming algorithm.

By increasing number of resources in the network, the number of permutations and combinations
will become hectic. So the crucial need to find the optimal solution in an intelligent way is important
to save time and complexity. The water cycle algorithm, genetic algorithm compared to the quad
programming is exposed showing the power and the efficiency of the applied algorithm.

3. The Water Cycle Optimization Algorithm (WCOA)

In 2013, the water cycle algorithm (WCA) is considered as a meta-heuristic technique. The new
technique is used to obtain the optimal solutions for problems. The main concept of constructing the
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water cycle algorithm is inspired by the natural phenomena of the water cycle. The flow of the rivers
and streams into the sea occurs as in real life as illustrated in Figure 2. Water is formed from rain,
other streams or high up in the mountains, when snow and glaciers melt. Water travels downhill and
forms a river or a stream. Rivers and streams flow downhill on their journey towards the sea.
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Figure 2. A simplified diagram of the water cycle (the hydrologic cycle) [37].

3.1. Hydrologic Cycle

The hydrologic cycle consists of:

• Evaporation process: Because of high temperatures, water in lakes and rivers evaporate.
• Transpiration process: During photosynthesis, plants transpire and give off water.
• Condensation process: The water evaporated from rivers and the water transpired by trees

generate clouds when such water is condensed into the colder atmosphere.
• Precipitation process: The water is released back to the earth in the form of rain
• Percolation process: When rain falls and glaciers melt, the water is reserved beneath the ground.

The groundwater, aquifer, flows downward in the same way water flows on the ground surface
completing the hydrologic cycle [37].

3.2. The Proposed WCOA

Similar to other meta-heuristic algorithms, rain or precipitation forms raindrops which are
considered as the initial population in the proposed algorithm. When the best raindrop is found,
the best individual (raindrop) is selected as a sea. Many good raindrops are selected as a river and the
rest are considered as streams which flow into the rivers and the seas. Using the population based
meta-heuristic techniques “Raindrop” is a single solution in an array of 1 × Nvar, where Nvar is a
dimensional optimization problem or number of the design variable [38,39]:

Raindrop = [X1, X2, X3 . . . XN] (11)

A population of raindrops is generated as a matrix of raindrops of size Npop × Nvar, where Npop

is the number of population as per the following Equation (12):

Population of raindrops =



Raindrop1

Raindrop2
...
...

RaindropNpop


=


X1

1 X1
2 X1

3 . . . X1
Nvar

X2
1 X2

2 X2
3 . . . X2

Nvar

...
X

Npop
1

...
X

Npop
2

...
X

Npop
3

...
. . .

...
X

Npop
Nvar

 (12)
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where (X1, X2, X3, . . . , XNar) are the decision variable values which can be defined as floating
point number (real values) for continuous and discrete problems. The cost function of raindrops
is represented in the following Equation (13):

Ci = Costi = f
(

Xi
1, Xi

2, Xi
3, . . . , Xi

N

)
, i = 1, 2, 3, . . . , Npop. (13)

Seas and rivers are chosen as minimum values (the best individuals). Nsr is defined as the
summation of the number of rivers, which is considered as a user parameter and a single sea. The other
raindrops (population) flow either to the rivers or directly to the sea as per the following equations:

Nsr = Number of Rivers + 1, where 1 is for one sea (14)

NRaindrops = Npop −Nsr (15)

The intensity of the flow determines how to assign raindrops to the rivers and the sea as follows:

NSn = round

{∣∣∣∣∣ Costn

∑Nsr
i=1 Costi

∣∣∣∣∣×NRaindrops

}
, n = 1, 2, . . . , Nsr. (16)

where NSn is defined as the number of streams, which travels towards certain rivers or the sea. Figure 3
describes the WCA optimization process in which X is the distance between the stream and the river,
can be randomly chosen as follows:

X ∈ (0, C ≤ d), 1 < C < 2 (17)

where C is between 1 and 2.; and d is defined as the current distance between stream and river.
The value of X in Equation (17) is set according to a randomly distributed number whether (uniformly
or in an appropriate distribution) between 0 and (C × d). Enabling C > 1, streams are permitted to flow
in various directions towards rivers. This concept can explain rivers flowing into the sea. Therefore,
from the point of the exploitation phase in the WCOA, the new position for streams and rivers can be
obtained as follows:

Xi+1
stream = Xi

stream + rand×C×
(

Xi
River − Xi

stream

)
(18)

Xi+1
River = Xi

River + rand×C×
(

Xi
Sea − Xi

River

)
(19)

where rand is a randomly distributed number in a uniform way between 0 and 1. If the solution
obtained by a stream is better than its linking river, the positions of river and stream are swapped (i.e.,
stream becomes river and river becomes stream). The same exchange can occur for rivers and the sea
as shown in Figure 4. In the evaporating process, the assumption of evaporating water as streams or
rivers is to bypass enclosing in local optima. Therefore, the following Pseudo code is to determine
whether or not river flows into the sea.

If |X iSea − X iRiver| < dmax; i = 1, 2, 3, . . . , (Nsr, the evaporation and raining process will
be ended.

Where dmax is considered as a small number and its value is near to zero. Therefore, the distance
between a river and sea should be less than dmax. It indicates that the river is linked to the sea, the
evaporation process occurs; and the precipitation process (raining) is applied after some adequate
evaporation. To get the optimum solution, dmax will control the search intensity close to the sea.

di+1
max = di

max −
dimax

max− iteration
(20)

where if di
max is large, the search is decreased while a small value will be helpful to search close to the

sea. In the precipitation process, the new position of the new streams formed by the new raindrops is
expressed as follows:

Xnew
Stream = LB + rand× (UB− LB) (21)
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where LB and UB are represented as lower and upper boundaries of the designed problem in the
proposed algorithm and from the point of the exploration phase. Equation (22) is applied only for the
constrained problems to enhance the streams which directly travel toward the sea:

Xnew
Stream = XSea+

√
µ× randn (1, Nvar) (22)

where µ is considered as a coefficient to get the range of searching area close to the sea and the value
should be smaller to improve the search in a smaller area. From the mathematical point of view

√
µ is

described as the standard deviation and µ is the variance. The best value of µ is 0.1 to get the optimum
solution (sea) [32]. For terminating the algorithm, the best solution is obtained at the maximum number
of iteration, “ε” (CPU time) is a small and non-negative number which is the allowable tolerance
between two successive solutions.
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3.3. Step by Step Tracking and the Water Cycle Optimization Algorithm Flowchart

• Step 1: initialize the parameters of WCOA: Nsr, dmax, Npop, max_iteration.
• Step 2: create a random generation of initial population and generate the initial raindrops, rivers

and sea by using Equations (12), (14) and (15).
• Step 3: determine the cost of each stream (raindrops) by using Equation (13).
• Step 4: evaluate the intensity of flow for rivers and sea by using Equation (16).
• Step 5: evaluate the flow of streams into the rivers by using Equation (18).
• Step 6: evaluate the flow of rivers into the sea which has the most downhill place by using

Equation (19).
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• Step 7: replace the positions of river and stream which achieves the best solution as described in
Figure 4.

• Step 8: the same as in step 7, replace the position of river with the sea which achieves the best
solution. The river may provide a better solution than the sea as described in Figure 4.

• Step 9: review the evaporation condition which can be obtained from the pseudo code.
• Step 10: after the evaporation condition is attained, the precipitation process will start by using

Equations (21) and (22).
• Step 11: decrease dmax by using Equation (20).
• Step 12: if the termination criteria are satisfied, the algorithm will be ended. Otherwise, return

back to step 5.

The previous procedures are summarized in the flowchart of the water cycle optimization
algorithm illustrated in Figure 5.
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GA is a well-known meta-heuristic technique. GA has been applied to different engineering
technical problems. GA simulates the Darwin theory based on mating, crossover, and mutations.
To keep the best chromosome or generation, the elite criteria must be taken into consideration to keep
the best qualities. The WCOA results will be compared to GA results. Figure 6 shows the flowchart of
the Genatic Algorithm Technique.
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4. System Data under Study and Discussion

A flowchart for minimizing the objective function using thermal (coal-fired) generating units,
PEVs and RERs to achieve reduction in both operating cost and support the decarbonization in smart
grid through T = 24 h is shown in Figure 7.
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An independent system operator “ISO is designed of a single bus test system” which consists
of three thermal units designed for simulation with 5000 PEVs and RERs. Thermal generating units
are coal-fired due to their low operational costs; and the heat rates of (coal-fired) thermal units are
typically in the range of 9000 Btu/kWh to 11,000 with (fuel price = 1 $/MBtu). The thermal power
plant data is described and collected from [40] in Tables 2 and 3. Wind and solar power plants in this
model are described in Table 4 and data is collected from [41].

Table 2. Generator data.

Unit Pmin (MW) Pmax (MW) Ramp up (MW/h) Ramp down (MW/h) Intial State at Time

G1 30 600 200 50 On
G2 30 600 200 20 Off
G3 20 400 200 50 On

Table 3. Generator energy data.

Unit
Fuel Consumption Function Startup Cost

($)
Shut down Cost

($)A (MBtu) B (MBtu/MWh) C (MBtu/MWh2)

G1 176.9 13.5 0.04 1200 800
G2 129.9 40.6 0.001 1000 500
G3 137.4 17.6 0.005 1500 800

Table 4. Wind–solar energy.

Hour Wind
(MW)

Solar
(MW) Hour Wind

(MW)
Solar
(MW) Hour Wind

(MW)
Solar
(MW) Hour Wind

(MW)
Solar
(MW)

1 8.2 0 7 4.6 5 13 59.0 65.0 19 72.2 0
2 11.4 0 8 49.3 22.04 14 78.1 58.27 20 73.3 0
3 66.9 0 9 45.6 53.95 15 44.9 53.79 21 65.3 0
4 69.8 0 10 10.1 67.4 16 19.5 47.06 22 24.5 0
5 55.4 0 11 24.8 67.32 17 3.7 27.11 23 49.9 0
6 50.9 0 12 37.3 69.64 18 16.5 11 24 40.3 0

The parameters of a random model of PEVs are: Expected total number of PEVs in the smart
grid = 5000; Maximum capacity of the battery = 25 kWh; Minimum capacity of the battery = 10 kWh;
Average capacity of the battery “Pavg” = 15 kWh; Frequency of charging/discharging =1 per day;
Departure state of charge (SOC) “Ψdep” = 50%; Efficiency “η” = 85%. A typical PEV needs about
8.22 kWh/day (41.1 MWh/day) for 5000 vehicles, 2.6 $/gallon (fuel price = 1 $/MBtu) for gasoline
price taking into consideration the emission factor for fuel oil from Table 1, assuming the scenario for
simulation of PEVs according to the demand which is relatively low during hours 1–7, 16–19 and 23–24
(a total of 12 h). PEVs can be charged during the off-peak load. Therefore, an additional 41.1 MWh
load for 5000 vehicles assuming the number of vehicles will be charged for each hour in Figure 8 [41].

Costs for wind and solar energy are estimated by the International Renewable Energy Agency
(IRENA). The levelized cost of electricity (LCOE) from solar photovoltaics (PV) fell by 69% between
2010 and 2017 reaching the cost range of fossil fuels. Wind costs fell by 15% in the same period.
For solar energy (14.597 $/MW) and wind energy (10 $/MW) [42].
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5. Simulation Results

The parameters for the proposed algorithm (WCOA): Npop = 70, Nsr = 3 (2 rivers + 1 sea),
dmax = 10−5, max_iteration = 700, assuming the spinning reserve is a minimum of 10% of the load
demand condition. Four cases are being considered and the results from the proposed algorithm
(WCOA) are compared with Genetic Algorithm (GA) and Dynamic Programming (DP). Tables 5–8
below explain applying the WCOA. The whole comparison of the three applied techniques DP, GA,
and WCOA is shown in Table 9.

5.1. Case 1 (Base Case)

Case 1 illustrates the distribution of the unit commitment scheduling for the three thermal units
only as shown in Table 5.

Table 5. Base case of 3 thermal Generating units’ applying the WCOA.

Time
(Hour) ThermUnit-1 (MW) ThermUnit-2 (MW) ThermUnit-3

(MW) Emission (ton) Demand
(MW)

1 67.735 0 132.265 191 200
2 67.778 0 132.222 191 200
3 73.334 0 176.666 238.75 250
4 73.333 0 176.667 238.75 250
5 73.332 0 176.668 238.75 250
6 67.633 0 132.367 191 200
7 84.444 0 265.556 334.25 350
8 101.109 0 398.891 477.5 500
9 92.734 158.375 348.891 573 600
10 97.089 329.012 373.899 764 800
11 96.688 339.075 364.237 764 800
12 66.688 319.075 314.237 668.5 700
13 95.658 299.075 355.267 716.25 750
14 95.126 296.051 358.823 716.25 750
15 92.654 276.051 331.295 668.5 700
16 89.327 256.051 304.622 620.75 650
17 101.11 0 398.89 477.5 500
18 92.677 158.433 348.89 573 600
19 93.117 173.822 333.061 573 600
20 95.146 254.079 350.775 668.5 700
21 91.782 234.08 324.138 620.75 650
22 150 0 400 525.25 550
23 100 0 350 429.75 450
24 50 0 300 334.25 350

Start-up cost Fuel cost Total cost Emissions

3000.000 $/day 247,284.867 $/day 368,227.367 $/day 11,794.250 ton/day

The total production and emission cost for the base three generator units is 368,227.367 $/day.
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5.2. Case 2 (PEVs and Three Thermal Units)

PEVs represent one of the newly added techniques to gain energy to support the network.
Many strategies were investigated, and most of them agreed on applying PEVs to reduce small
fluctuations and improve quality [41]. Case 2 represents the unit commitment after integrating 5000
PEV (V2G/G2V) with the three thermal units, as shown in Table 6.

Table 6. Integration PEVs (V2G/G2V) with base 3 thermal generating units’ applying the WCOA.

Time
(Hour)

ThermUnit-1
(MW)

ThermUnit-2
(MW)

ThermUnit-3
(MW)

PEV Unit-4
(V2G/G2V) Emission (Ton) Demand

(MW)

1 68.173 0 135.381 −3.554 194.394 203.554
2 68.174 0 135.342 −3.516 194.358 203.516
3 73.677 0 179.391 −3.068 241.68 253.068
4 73.659 0 179.554 −3.213 241.818 253.213
5 73.531 0 179.481 −3.012 241.626 253.012
6 68.852 0 135.454 −3.624 194.461 203.624
7 84.852 0 268.82 −3.672 337.757 353.672
8 100.221 0 391.791 7.988 477.005 500
9 192.733 0 400 7.268 572.549 600

10 339.856 44.207 400 15.938 763.012 800
11 339.777 41.098 400 19.125 762.814 800
12 289.777 30 364.285 15.938 667.512 700
13 311.075 30 400 8.925 715.697 750
14 306.945 30 400 13.055 715.441 750
15 264.993 30 400 5.007 668.19 700
16 222.242 30 400 −2.242 622.891 652.242
17 0 102.363 400 −2.363 479.756 502.363
18 120.136 82.363 400 −2.499 575.386 602.499
19 202.808 0 400 −2.808 575.681 602.808
20 291.596 0 400 8.404 667.979 700
21 241.596 0 396.849 11.555 620.034 650
22 191.596 0 351.682 6.721 524.833 550
23 141.596 0 312.563 −4.159 433.722 454.159
24 0 0 353.322 −3.322 337.422 353.322

Start-up cost Fuel cost Total cost Emissions

4300.000 $/day 269,843.179 $/day 392,403.355 $/day 11,826.018 ton/day

Note: load is leveled when the load of PEVs (G2V) is added to demand, Positive and negative values indicate
V2G/G2V (discharging/charging) respectively.

By comparing both Tables 6 and 7, start-up, production cost, and emission increase when
integrating PEVs with the base case three thermal units by 1300 $/day; 22,558.31 $/day and exceeding
the emission by 31.768 ton/day from the coal-fired generators to supply energy to PEVs and emissions
from PEVS 90.7441 ton/day (33,121.597 ton/year for 5000 vehicles) in the transportation sector [34].

5.3. Case3 (RERs, and Three Thermal Units)

Integrating RERs, both wind and solar energy to partially replace thermal (coal-fired) generation
units will contribute to reduction in both the production and the emission cost. However, production
costs of wind and solar energy resources are relatively high; and the operation and maintenance prices
are significantly decreasing. This encourages the usage of these energy resources that also support
decarbonizing in the smart grid. Case 3 signifies the unit commitment after integrating RERs (wind &
solar), with the three thermal units, as shown in Table 7.
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Table 7. Integration of RESs (Wind-Solar) with base three thermal generating units’ simulation results
by using the WCOA.

Time
(Hour)

ThermUnit-1
(MW)

ThermUnit-2
(MW)

ThermUnit-3
(MW)

Wind
(MW)

Solar
(MW)

Emission
(ton)

Demand
(MW)

1 66.867 0 124.933 8.2 0 183.341 200
2 66.511 0 122.089 11.4 0 180.352 200
3 65.901 0 117.119 66.9 0 176.265 250
4 65.578 0 114.622 69.8 0 173.557 250
5 67.178 0 127.422 55.4 0 187.006 250
6 62.122 0 86.978 50.9 0 143.459 200
7 83.378 0 257.022 4.6 5 325.209 350
8 93.132 0 335.528 49.3 22.04 410.538 500
9 101.16 0 399.29 45.6 53.95 479.211 600

10 292.5 30 400 10.1 67.4 690.604 800
11 277.88 30 400 24.8 67.32 676.95 800
12 0 193.06 400 37.3 69.64 567.573 700
13 0 226 400 59 65 599.459 750
14 0 213.63 400 78.1 58.27 588.006 750
15 57.68 193.63 350 44.9 53.79 575.517 700
16 183.44 0 400 19.5 47.06 557.877 650
17 133.44 0 362.86 3.7 0 474.044 500
18 172.8 0 400 16.5 11 547.15 600
19 127.8 0 400 72.2 0 505.565 600
20 226.7 0 400 73.3 0 600.038 700
21 184.7 0 400 65.3 0 559.76 650
22 134.7 0 390.8 24.5 0 502.367 550
23 95.556 0 354.444 0 0 429.75 450
24 45.556 0 304.444 0 0 334.25 350

Start-up cost Fuel cost Total cost Emissions

4800.000 $/day 257,120.030 $/day 366,598.528 $/day 10,467.850 ton/day

Integrating both RERs and PEVs into the smart grid showed a significant decrease in fuel
cost, emissions and total cost which fell to 5,315.365 $/day, 40.567 ton/day; 3,420.759 $/day as
compared to integrating RESs with the three thermal units which led to decrease to 18,038.244 $/day,
1,398.735 ton/day, 29,225.586 $/day and compared to integrating PEVs into the three thermal units.

5.4. Case 4 (RERs, PEVs, and the Three Thermal Units)

RERs are accumulated to reduce emissions from both conventional units and PEVs. On the other
hand, PEVs are integrated to solve the uncertainty behavior of RERs. Therefore, further enhancement
for the reliability and stability of the grid can be covered up against any unexpected uncertainty
behavior for RESs by including the grid for both the integration of RES and PEVs. Case 4 implies the
unit commitment after integrating RERs (wind & solar), 5000 PEV (V2G/G2V) with the 3 thermal
units, as shown in Table 8.

Comparing the results obtained from the proposed algorithm (WCOA) with the results obtained
from the forward dynamic programming (DP) and genetic algorithm (GA) as shown in Table 9
including the emission and emission cost.

Table 9 sums up the whole comparison between the results obtained from the proposed algorithm
(WCOA) with the results obtained from (DP) and (GA). Table 9 provides three main outcomes. First,
the power of the WCOA in solving the unit commitment problem indicated in the yellow boxes.
Second, the green box shows that the emission cost slightly increased integrating combined PEVs but
with the existence of PEVs to support wind and solar units. So the need to pay more attention and
facilities to invest in the PEVs (electrically based) will lead to more reduction in the emission costs.
Third, focusing on the production cost in any case aims to lower the price to 2/3 of its price, but this
will increase cost on the long term operation.
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Table 8. Integration PEVs with RESs (wind-solar) with base three thermal generating units’ simulation
results by the WCOA.

Time
(Hour)

Therm
Unit-1
(MW)

Therm Unit-2
(MW)

Therm
Unit-3
(MW)

PEV Unit-4
(V2G/G2V)(MW)

Wind
(MW)

Solar
(MW)

Emission
(Ton)

Demand
(MW)

1 67.262 0 128.092 −3.554 8.2 0 186.735 203.554
2 66.902 0 125.214 −3.516 11.4 0 183.71 203.516
3 66.283 0 119.885 −3.068 66.9 0 179.195 253.068
4 65.855 0 117.558 −3.213 69.8 0 176.625 253.213
5 67.511 0 130.1 −3.012 55.4 0 189.882 253.012
6 62.524 0 90.2 −3.624 50.9 0 146.92 203.624
7 83.785 0 260.287 −3.672 4.6 5 328.715 353.672
8 92.344 0 328.328 7.988 49.3 22.04 410.043 500
9 100.351 0 392.831 7.268 45.6 53.95 478.76 600

10 276.563 30 400 15.938 10.1 67.4 689.616 800
11 258.755 30 400 19.125 24.8 67.32 675.764 800
12 0 177.123 400 15.938 37.3 69.64 566.585 700
13 96.516 157.123 363.437 8.925 59 65 598.906 750
14 97.064 137.123 366.389 13.055 78.1 58.27 587.197 750
15 196.303 0 400 5.007 44.9 53.79 575.206 700
16 185.682 0 400 −2.242 19.5 47.06 560.018 652.242
17 0 71.553 400 −2.363 3.7 27.11 450.573 502.363
18 123.446 51.553 400 −2.499 16.5 11 549.536 602.499
19 101.006 31.553 398.049 −2.808 72.2 0 508.246 602.808
20 188.296 30 400 8.404 73.3 0 599.517 700
21 143.145 30 400 11.555 65.3 0 559.043 650
22 99.866 30 388.913 6.721 24.5 0 501.95 550
23 65.346 0 338.913 −4.159 49.9 0 387.115 454.159
24 64.409 0 288.913 −3.322 0 0 337.422 353.322

Start-up cost Fuel cost Emissions Total cost

7100.000 $/day 251,804.935 $/day 10,427.283 ton/day 363,177.769 $/day

Note: load is leveled when the load of PEVs (G2V) is added to demand, Positive and negative values indicate
V2G/G2V (discharging/charging) respectively.

Table 9. Results summary for WCOA, GA and DP (including emission cost).

Algorithm Modes
Start-Up

Cost
($/Day)

Production
Cost

($/Day)

Total Cost
(Including Emission

Cost) ($/Day)

Emissions
(Ton/Day)

WCOA

Base 3 thermal units 3000 247,284.867 368,227.367 11,794.250

PEVs(V2G/G2V) with
3 thermal units 4300 269,843.179 392,403.355 11,826.018

RESs with 3-thermal units 4800 257,120.30 366,598.528 10,467.850

PEVs(V2G/G2V), RESs
with 3-thermal units 7100 251,804.935 363,177.769 10,427.283

GA

Base 3 thermal units 3000 247,284.949 368,227.222 11,794.227

PEVs(V2G/G2V) with
3 thermal units 4300 272,676.166 395,270.780 11,829.461

RESs with 3-thermal units 4800 264,149.704 376,118.886 10,716.918

PEVs(V2G/G2V), RESs
with 3 thermal units 4400 258,840.379 367,602.876 10,436.250

DP

Base 3-thermal units 3000 247,281.115 368,223.615 11,794.250

PEVs(V2G/G2V) with
3 thermal units 4300 270,155.998 392,716.173 11,826.018

RESs with 3-thermal units 4800 257,120.030 366,598.528 10,467.850

PEVs(V2G/G2V), RESs
with 3 thermal units 7100 251,804.939 363,177.773 10,427.283
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6. Discussion

The above mentioned tables can be summed up as follows:

• The total cost and emissions for the base 3-generator units increase when integrating PEVs with
the base 3 thermal units, and exceed the emission limit more than the base case.

• Integrating RERs, both wind and solar energy to partially replace thermal (coal-fired) generation
units contributes to reducting both the fuel cost and the emissions. Significant reduction in
emission occurs when integrating only RERs with the base three thermal units. However,
the uncertainty of wind and solar energy is based on several factors such as geographical area,
the forecasting models used and period-ahead forecasting. These variables affect the uncertainty
percentage and the overall accuracy.

• Integrating both RERs and PEVs into the smart grid showed a significant decrease in fuel cost,
emissions and total cost. RERs is accumulated to reduce emissions from both conventional units
and PEVs. PEVs is integrated to solve the uncertainty behavior of RERs.

• The results extracted from the proposed algorithm (WCOA) proved its efficiency with respect to
the results of both dynamic programing (DP) and genetic algorithm (GA).

7. Conclusions

In this paper, the unit commitment problem has been solved in four different modes with three
algorithms, provided with results and analysis to achieve;

(i) Reduction in total cost including the emission cost.
(ii) Decarbonizing the emissions from the conventional generators and the transportation sector.
(iii) Presenting new types of storage energy in the electricity sector by replacing conventional vehicles

with electrical vehicles with environment-friendly batteries and encouraging the consumers to
supply electrical power to the grid during the on-peak periods.

The four modes are;

(1) The base 3-thermal (coal-fired) units.
(2) PEVs (V2G/G2V) with the conventional units.
(3) RERs (wind/Solar) with the conventional units.
(4) Integrating PEVs (V2G/G2V), RERs (wind/solar) with the conventional units.

The four modes are executed applying three algorithms which are;

(1) Water cycle optimization algorithm (WCOA).
(2) Genetic algorithm (GA).
(3) Dynamic programing (DP).

Based on the comparison of the proposed technique with other optimization algorithms, WCOA
has shown promising performance and better solutions than GA and DP techniques. In the four
modes of study, the WCOA offers competitive results with respect to other meta-heuristic optimization
techniques with acceptable degree of accuracy for the solutions.

From this study, it is concluded that, integrating both PEVs and RERs with the conventional
generating units achieved many purposes;

(i) Increasing the reliability and stability of the electricity grid.
(ii) Decarbonizing the emissions from the electricity sector and transportation sector.
(iii) Introducing new types of unit commitment sourses with different distributions, for environment-

friendly electrical energy storage such as PEVs (V2G) to encourage the consumers to supply
electrical power to the grid during the on-peak periods of the electrical network operation.
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Nomenclature

PGi the output power of each thermal unit “i” at each hour
A, B, C the coefficients of a quadratic fuel cost function of each thermal generating unit
NG the number of conventional thermal units
Pwind the output power from a wind plant at each hour
Psolar the output power from a solar plant at each hour
α CO2 emission factor
β the emission penalty factor
PPEVj the power of each vehicle j
η the system efficiency
NV2G number of vehicles that are connected to the network at this hour
NV2G max the total vehicles in the network
N number of units that are on in the unit commitment problem at each hour
ΨPres the present state of charge (SOC)
Ψdep the departure state of charge (SOC)
Ψmin the depletion of storage energy at minimum level
Ψmax the charging up to maximum level
Ui(hour) on/off state of each unit “i”
X the number of states to search each period in DP algorithm
N the number of strategies to save at each step in DP algorithm
2N − 1 maximum value of X or N in DP algorithm
Nvar a dimensional optimization problem or number of design variables in the WCO algorithm
Raindrop a single solution in an array of 1 × Nvar in the WCO algorithm
(X1, X2, X3, . . . , XNar) the decision variable values in WCO algorithm
NSn the number of streams that travel towards certain rivers or the sea in the WCO algorithm
Npop the number of population in the WCO algorithm
Nsr the summation of the number of rivers in the WCO algorithm
X the distance between the stream and the river in the WCO algorithm
LB and UB lower and upper boundaries of the designed problem in the WCO algorithm
dmax a small number and its value is near to zero in the WCO algorithm
µ a coefficient to get the range of searching area close to the sea in the WCO algorithm
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