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Abstract: Short-term load forecasting is an important task for the planning and reliable operation
of power grids. High-accuracy forecasting for individual customers helps to make arrangements
for generation and reduce electricity costs. Artificial intelligent methods have been applied to
short-term load forecasting in past research, but most did not consider electricity use characteristics,
efficiency, and more influential factors. In this paper, a method for short-term load forecasting
with multi-source data using gated recurrent unit neural networks is proposed. The load data of
customers are preprocessed by clustering to reduce the interference of electricity use characteristics.
The environmental factors including date, weather and temperature are quantified to extend the input
of the whole network so that multi-source information is considered. Gated recurrent unit neural
networks are used for extracting temporal features with simpler architecture and less convergence
time in the hidden layers. The detailed results of the real-world experiments are shown by the
forecasting curve and mean absolute percentage error to prove the availability and superiority of the
proposed method compared to the current forecasting methods.

Keywords: short-term load forecasting; artificial intelligence; gated recurrent unit; recurrent neural
network; power grid

1. Introduction

Load forecasting is an essential part for energy management and distribution management in
power grids. With the continuous development of the power grids and the increasing complexity of
grid management, accurate load forecasting is a challenge [1,2]. High-accuracy power load forecasting
for customers can make the reasonable arrangements of power generation to maintain the safety
and stability of power supply and reduce electricity costs so that the economic and social benefit is
improved. Moreover, forecasting at individual customer level can optimize power usage and help
to balance the load and make detailed grid plans. Load forecasting is the process of estimating the
future load value at a certain time with historical related data, which can be divided into long-term
load forecasting, medium-term load forecasting and short-term load forecasting according to the
forecasting time interval. Short-term load forecasting, which this paper focuses on, is the daily or
weekly forecasting [3,4]. It is used for the daily or weekly schedule including generator unit control,
load allocation and hydropower dispatching. With the increasing penetration of renewable energies,
short-term load forecasting is fundamental for the reliability and economy of power systems.

Models of short-term load forecasting can be classified into two categories consisting of tradition
statistic models and artificial intelligent models. Statistic models, such as regression analysis models
and time sequence models, are researched and used frequently were previously limited by computing
capability. Taylor et al. [5] proposed an autoregressive integrated moving average (ARIMA) model
with an extension of Holt–Winters exponential smoothing for short-term load forecasting. Then,
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an power autoregressive conditional heteroskedasticity (PARCH) method was presented for better
performance [6]. These statistic models need fewer historical data and have a small amount of
calculation. However, they require a higher stability of the original time sequences and do not consider
the uncertain factors such as weather and holidays. Therefore, artificial intelligent models about
forecasting, such as neural networks [7,8], fuzzy logic method [9] and support vector regression [10],
were proposed with the development of computer science and smart grids. Recently, neural networks
are becoming an active research topic in the area of artificial intelligence for its self-learning and fault
tolerant ability. Some effective methodologies for load forecasting based on neural networks have been
proposed in recent years. A neural network based method for the construction of prediction intervals
was proposed by Quan et al. [7]. Lower upper bound estimation was applied and extended to develop
prediction intervals using neural network models. The method resulted in higher quality for different
types of prediction tasks. Ding [8] used separate predictive models based on neural networks for the
daily average power and the day power variation forecasting in distribution systems. The prediction
accuracy was improved with respect to naive models and time sequence models. The improvement
of forecasting accuracy cannot be ignored, but, with the increasing complexity and scale of power
grids, high-accuracy load forecasting with advanced network model and multi-source information
is required.

Deep learning, proposed by Hinton [11,12], made a great impact on many research areas including
fault diagnosis [13,14] and load forecasting [15–17] by its strong learning ability. Recurrent neural
network (RNNs), a deep learning framework, are good at dealing with temporal data because of its
interconnected hidden units. It has proven successful in applications for speech recognition [18,19], image
captioning [20,21], and natural language processing [22,23]. Similarly, during the process of load
forecasting, we need to mine and analyse large quantities of temporal data to make a prediction of
time sequences. Therefore, RNNs are an effective method for load forecasting in power grids [24,25].
However, the vanishing gradient problem limits the performance of original RNNs. The later time nodes’
perception of the previous ones decreases when RNNs become deep. To solve this problem, an improved
network architecture called long short-term memory (LSTM) networks [26] were proposed, and have
proven successful in dealing with time sequences for power grids faults [27,28]. Research on short-term
load forecasting based on LSTM networks was put forward. Gensler et al. [29] showed the compared
results for solar power forecasting about physical photovoltaic forecasting model, multi-layer perception,
deep belief networks and auto-LSTM networks. It proved the LSTM networks with autoencoder had
the lowest error. Zheng et al. [30] tackled the challenge of short-term load forecasting with proposing a
novel scheme based on LSTM networks. The results showed that LSTM-based forecasting method can
outperform traditional forecasting methods. Aiming at short-term load forecasting for both individual
and aggregated residential loads, Kong et al. [31] proposed an LSTM recurrent neural network based
framework with the input of day indices and holiday marks. Multiple benchmarks were tested in the
real-world dataset and the proposed LSTM framework achieved the best performance. The research
works mentioned above indicate the successful application of LSTM for load forecasting in power grids.
However, load forecasting needs to be fast and accurate. The principle and structure of LSTM are complex
with input gate, output gate, forget gate and cell, so the calculation is heavy for forecasting in a large
scale grid. Gated recurrent unit (GRU) neural networks was proposed in 2014 [32], which combined the
input gate and forget gate to a single gate called update gate. The model of a GRU is simpler compared
with an LSTM block. It was proved on music datasets and ubisolf datasets that GRU’s performance is
better with less parameters about convergence time and required training epoches [33]. Lu et al. [34]
proposed a multi-layer self-normalizing GRU model for short-term electricity load forecasting to overcome
the exploding and vanishing gradient problem. However, short-term load forecasting for customers is
influenced by factors including date, weather and temperature, which previous research did not consider
seriously. People may need more energy when the day is cold or hot. Enterprises or factories may reduce
their power consumption on holidays.
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In this paper, a method based on GRU neural networks with multi-source input data is proposed
for short-term load forecasting in power grids. Moreover, this paper focuses on the load forecasting
for individual customers, which is an important and tough problem because of the high volatility and
uncertainty [30]. Therefore, before training the networks, we preprocess the customers’ load data with
clustering analysis to reduce the interference of the electricity use characteristics. Then, the customers
are classified into three categories to form the training and test samples by K-means clustering
algorithm. To obtain not only the load measurement data but also the important factors including
date, weather and temperature, the input of the network are set as two parts. The temporal features
of load measurement data are extracted by GRU neural networks. The merge layer is built to fuse
the multi-source features. Then, we can get the forecasting results by training the whole network.
The methodologies are described in detail in Section 2. The main contributions of this paper are
as follows.

1. Trained samples are formed by clustering to reduce the interference of different characteristics
of customers.

2. Multi-source data including date, weather and temperature are quantified for input so that the
networks obtain more information for load forecasting.

3. The GRU units are introduced for more accurate and faster load forecasting of individual customers.

In general, the proposed method uses the clustering algorithm, quantified multi-source
information and GRU neural network for short-term load forecasting, which past research did not
consider comprehensively. The independent experiments in the paper verify the advantages of the
proposed method. The rest of the paper is organized as follows. The methodology based on GRU
Neural Networks for short-term load forecasting is proposed in Section 2. Then, the results and
discussion of the simulation experiments are described to prove the availability and superiority of the
proposed method in Section 3. Finally, the conclusion is made in Section 4.

2. Methodology Based on GRU Neural Networks

In this section, the methodology is proposed for short-term load forecasting with multi-source data
using GRU Neural Networks. First, the basic model of GRU neural networks are introduced [32]. Then,
data description and processing are elaborated. The load data are clustered by K-means clustering
algorithm so that the load samples with similar characteristics in a few categories are obtained. This
helps improve the performance of load forecasting for individual customers. In the last subsection, the
whole proposed model based on GRU neural networks is shown in detail.

2.1. Model of GRU Neural Networks

Gated recurrent unit neural networks are the improvement framework based on RNNs. RNNs are
improved artificial neural networks with the temporal input and output. Original neural networks
only have connections between the units in different layers. However, in RNNs, there are connections
between hidden units forming a directed cycle in the same layer. The network transmits the temporal
information through these connections. Therefore, the RNNs outperform conventional neural networks
in extracting the temporal features by these connections. A simple structure for an RNN is shown in
Figure 1. The input and output are time sequences, which is different from original neural networks.
The process of forward propagation is shown in Figure 1 and given by Equations (1)–(3).
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where w is the weight; a is the sum calculated through weights; f is the activation function; s is the
value after calculation by the activation function; t represents the current time of the network; i is the
number of input vectors; h is the number of hidden vectors in t is time; h′ is the number of hidden
vectors in t− 1 time; and o is the number of output vectors.

Figure 1. A simple RNN structure, where X is the input unit, H is the hidden unit, Y is the output unit,
and W is the weight matrix.

Similar to conventional neural networks, RNNs can be trained by back-propagation through
time [35] with the gradient descent method. As shown in Figure 1, each hidden layer unit receives
not only the data input but also the output of the hidden layer in the last time step. The temporal
information can be recorded and put into the calculation of the current output so that the dynamic
changing process can be learned with this architecture. Therefore, RNNs are reasonable to predict the
customer load curves in power grids. However, when the time sequence is longer, the information will
reduce and disappear gradually through transferring in hidden units. The original RNNs have the
vanishing gradient problem and the performance declines when dealing with long time sequences.

The vanishing gradient problem can be solved by adding control gates for remembering
information in the process of data transfer. In LSTM networks, the hidden units of RNNs are replaced
with LSTM blocks consisting of cell, input gate, output gate and forget gate. Moreover, the forget gate
and input gate are combined into a single update gate in GRU neural network. The structure of GRU
is shown in Figure 2.

The feedforward deduction process for GRU units is shown in Figure 2 and given by
Equations (4)–(10).
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ãt
h′ = st

u

H

∑
h=1

whh′ s
t−1
h +

I

∑
i=1

wih′x
t
i (8)

s̃t
h′ = φ(ãt
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Figure 2. Inner structure of GRU, where all arrows represent the weights between gates and units
and the units of f and φ are the activation functions. The parameters are explained in detail after the
Equations (4)–(10).

where u is the number of update gate vector; r is the number of reset gate vector; h is the number
of hidden vectors at t time step; h′ is the number of hidden vectors at t− 1 time step; f and φ are the
activation functions; f is the sigmoid function and φ is the tanh function generally; and s̃t

h′ means the
new memory of hidden units at t time step.

According to Figure 2, the new memory s̃t
h′ is generated by the input xt

i at the current time step
and the hidden unit state st−1

h at the last time step, which means the new memory can combine the
new information and the historical information. The reset gate determines the importance of st−1

h
to s̃t

h′ . If the historical information st−1
h is not related to new memory, the reset gate can completely

eliminate the information in the past. The update gate determines the degree of transfer from st−1
h to

st
h. If st

u ≈ 1, st−1
h is almost completely passed to st

h. If st
u ≈ 0, s̃t

h′ is passed to st
h. The structure shown

in Figure 2 results in a long memory in GRU neural networks. The memory mechanism solves the
vanishing gradient problem of original RNNs. Moreover, compared to LSTM networks, GRU neural
networks merge the input gate and forget gate, and fuse the cell units and hidden units in LSTM block.
It maintains the performance with simpler architecture, less parameters and less convergence time [33].
Correspondingly, GRU neural networks are trained by back-propagation through time as RNNs [35].

2.2. Data Description

The real-world load data of individual customers in Wanjiang area is recorded from Dongguan
Power Supply Bureau of China Southern Power Grid in Guangdong Province, China during 2012–2014.
The topology structure of Wanjiang area is shown in Figure 3. There are 36 feeders connecting to the
load sides in the Wanjiang area, i.e., Feeders 1—36. The active power is extracted for load forecasting
from these feeders. The sampling period is 15 min as the meter record data. The load curve of a
customer, No. 53990001, from Feeder 2 during a month is shown in Figure 4, where the different load
characteristics of the customer on each day can be concluded.
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Figure 3. Primary electrical system in Wanjiang area above 110 kv, including electric power plants,
transmission buses, converting stations, and user loads. The feeders are marked under their
corresponding load sides.
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Figure 4. Load curve of Customer 53990001 from Feeder 2 during a month, where the sampling period is
15 min.

Besides the historical load curves, short-term load forecasting is influenced by the factors of date,
weather and temperature. The real historical data of weather and temperature in the corresponding
area in Dongguan City were obtained online from the weather forecast websites. The categories of
weather include sunny, cloud, overcast, light rain, shower, heavy rain, typhoon and snow. The date
features can be found in calendars.

2.3. Clustering and Quantization

The custom of electricity use and characteristics of load curve are different among the different
categories of customers such as industrial customers, residential customers and institution customers.
The different characteristics would affect the performance of forecasting. Training forecasting networks
with each customer separately would be a huge computation and storage problem. Therefore, in
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the proposed method, the load curve samples are divided into certain categories using K-means
clustering algorithm. Samples with similar characteristics form a certain category, which form the
input of GRU neural networks for the corresponding customers. K-means clustering algorithm is
a simple and available method for clustering through unsupervised learning with fast convergence
and less parameters. The only parameter, K, number of clustering category, can be determined by
Elbow method with the turning point of loss function curve.

Suppose the input sample is S = x1, x2, ..., xm. The algorithm is shown as follows.

1. Randomly initialize K clustering centroids c1, c2, ..., cK.
2. For i = 1, 2, ..., m, label each sample xi with the clustering centroid closest to xi, getting K categories

noted by Gk.
labeli = arg min

1≤k≤K
‖xi − ck‖, i = 1, 2, ..., m (11)

3. For k = 1, 2, ..., K, average the samples assigned to Gk to update ck.

ck =
1
|Gk| ∑

i∈Gk

xi, k = 1, 2, ..., K (12)

4. Repeat Steps 2 and 3 until the change of clustering centroid or the loss function of clustering
less than a set threshold. The loss function is given by Equation (13), where xj is the samples in
categories Gk, j = 1, 2, ..., nk and nk is the number of samples in categories Gk.

J(c1, c2, ..., cK) =
1
2

K

∑
k=1

nk

∑
j=1
‖xj − ck‖ (13)

Moreover, the factors of date, weather and temperature should be added into input with
quantization. First, the power consumption should be different between weekdays and weekends.
The official holidays are also an important factor, so we quantify the date index as shown in Table 1,
where the index of official holidays is 1 no matter what day it is. Similarly, the weather and temperature
are quantified according to their inner relations, as shown in Tables 2 and 3.

Table 1. Quantization for the factors of date.

Date (D) Mon. Tues. Wed. Thur. Fri. Sat. Sun. Official Holidays

Index 0 0.02 0.04 0.06 0.08 0.6 0.8 1

Table 2. Quantization for the factors of weather.

Weather (W) Sunny Cloud Overcast Light Rain Shower Heavy Rain Typhoon Snow

Index 0 0.1 0.2 0.4 0.5 0.6 0.8 1

Table 3. Quantization for the factors of temperature.

Temperature (T/◦C) T ≤ 0 0 < T ≤ 10 10 < T ≤ 20 20 < T ≤ 30 30 < T ≤ 40 T ≥ 40

Index 0 0.2 0.4 0.6 0.8 1

2.4. The Proposed Framework Based on GRU Neural Networks

The schematic diagram of proposed framework based on GRU neural networks for short-term
load forecasting is shown in Figure 5. The individual customers are clustered into a few categories
for more accurate forecasting. The samples are recorded from the categories where the customer to
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be predicted locates in. The load measurement data of individual customers in one day is extracted
as a sample for short-term load forecasting, noted by P. The dimension of P is 96 with the 15 min
sampling period. Then, the samples are reshaped into two-dimension for the input of GRU neural
networks. Considering the influencing factors date D, weather W and temperature T, date Dp, weather
Wp and temperature Tp on the forecasting day are added to the another input of the GRU neural
networks. Considering the general factor of date, the prediction interval is set to seven days. Therefore,
the load measurement data Pl on the day in the last week from the forecasting day, Dp, Wp and Tp,
are recorded as the overall input. The load measurement data Pp on the forecasting day are recorded
as the output, whose dimension is 96. Therefore, the input X and output Y of samples are given by
Equations (14) and (15).

X = {Pl; Dp, Wp, Tp} (14)

Y = {Pp} (15)

Figure 5. Schematic diagram of proposed framework based on GRU Neural Networks for short-term
load forecasting, where k is the number of hidden units and t is the time step. The parameters of GRU
units are clarified in Section 2.1. The input and output parameters are explained in the next subsection.

The features from GRU neural networks and fully connected neural network are merged with the
concatenating mode and passes through batch normalization and dropout layer to avoid overfitting
and increase the learning efficiency. The principle is that batch normalization can avoid the gradient
vanishing of falling into the saturated zone, and that the better performance in fixed combination
is avoided when random neurons do not work in a dropout layer. Then, two-layer fully connected
neural network are added before the output for learning and generalization ability. With training
by back-propagation through time, the whole network implements the short-term load forecasting
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for individual customers. The structure can be extended if there is more information in the practical
situation. The basic theory is also acceptable for medium-term load forecasting and long-term load
forecasting, but different influence factors should be considered and the model should be changed
with different input, output, and inner structure for good performance.

3. Experiments and Results

In this section, the experiments are described in detail and the results are shown in figures and
tables. The specific discussion for results is elaborated after the results and prove the improved
performance compared to other methods. The data for experiments are recorded in Section 2.2.

3.1. Clustering Analysis for Load Curve of Individual Customers

Before the short-term load forecasting using GRU neural networks, the load curves of individual
customers are clustered to different categories for samples with K-means clustering algorithm.
The parameter K is selected as 3 by Elbow method. There are 746 customers in the Wanjiang area in
Dongguan city. The load measurement data should be processed with 0–1 standardization to the same
scale for clustering to reduce the impact of different magnitudes and dimensions. The clustering is
done for 10 times with load curves in 10 days for the individual customers. The clustering results are
obtained with the average results in 10 days and the number of each clustering category is shown in
Table 4. The standardized curves for 30 selected customers in three categories on a weekday are shown
in Figures 6–8.

Table 4. Number of each clustering category.

Categories Category 1 Category 2 Category 3

Number of Customers 221 308 217
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Figure 6. Load curves of 30 customers in Category 1.

As can be seen in Figures 6–8, different customers have different characteristics of electricity use.
According to Figure 6, there are two electric peaks in a day. The evening peak is higher than the noon
peak. The classic representation of this characteristic in Figure 6 is residential customers. Different
from Figure 6, Figure 7 maintains the peak from 9 a.m. to late at night except noon. They are the
general load curves of industry and business customers. In Figure 8, there are two electric peaks in
the morning and afternoon. It should belong to the government and institutional customers. Even
though a few customers have differences with the overall curve, this is the best clustering for them and
it does not influence the overall performance greatly. With the clustering of individual customers, the
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networks can be trained with samples in the same category according to the customer to be predicted,
so that the interference of electricity use characteristics can be reduced.
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Figure 7. Load curves of 30 customers in Category 2.
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Figure 8. Load curves of 30 customers in Category 3.

3.2. The Detailed Network Structure and Parameters

The detailed structure of whole network are shown in Table 5. The parameters of the network
are set as shown in Table 6. The structure and parameters are set for better performance according
to the multiple experiments for customers in Wanjiang area. The “RMSprop” optimizer is chosen for
its better performance in recurrent neural networks. The parameters can be adjusted for the different
practical situations. In this paper, the number of epoch is set to 200 for the proposed method and can be
adjusted for the compared methods. The training is stopped when the error decreases to a steady state.
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Table 5. Number of units in the proposed network.

Layer Number of Units Layer Number of Units

INPUT: Pl (6, 16) INPUT: Dp Wp Tp 3
BATCH NORMALIZATION (6, 16) DENSE1 100

GRU 300 DENSE2 100
MERGE 400

DROPOUT 400
DENSE3 100
DENSE4 100

OUTPUT:Pp 96

Table 6. Parameter setting in the proposed network.

Parameters Value

Input Time Steps 6
Input Dimension 16

Batch Size 30
Epoch 200

Optimizer RMSprop
Learning Rate 0.001

Decay 0.9
Dropout Rate 0.6

3.3. Comparison of Results of Proposed Method

The results of the proposed method are shown as follows. In the experiments, the training samples
are recorded from the load data in the period from October 2012 to September 2013 while the test
samples are recorded from load data in the period from October to December of 2013. The number
of recorded training samples and test samples of each categories is 36,000 and 9000, respectively,
with 100 customers in a category. The ratio of sample number is 4:1. Mean absolute percentage error
(MAPE) is the classic evaluation index for load forecasting. The computational formula is given by
Equations (16) and (17), where n = 96 represents the dimension of samples and m represents the
number of test samples.

MAPE =
∑m

j=1
∣∣Ej
∣∣

m
× 100% (16)

Ej =
∑n

i=1

∣∣∣Pp,ij − Pl,ij

∣∣∣
n

(17)

Customer 53990001 is selected from Category 2 for the forecasting customer. The MAPEs during
a training period for Category 2 are shown in Figure 9 when the parameters are set as shown in Table 6.
The compared curves of actual load and forecasting load using the proposed method on 18 November
for Customer 53990001 are shown in Figure 10. The MAPE for Customer 53990001 on 18 November
is 10.23%. The compared curves of actual load and forecasting load from 18 to 24 November for
Customer 53990001 are shown in Figure 11. The MAPE for Customer 53990001 in this week is 10.97%.
In Figures 10 and 11, the error in sample points of one day is basically average and becomes larger
when the curve comes to a peak. It is reasonable because the high or low peak is not reachable in
most cases. The network should balance the prediction results for most situations during the training
process. According to Figure 9, the MAPE decreases to a steady state as the epoch increases to 200.
According to Figures 10 and 11, the forecasting curve is close to the actual curve, which proves the
availability of the proposed method.
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Figure 9. MAPEs during a training period for the Category 2.
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Figure 10. Compared curves of actual load and forecasting load in a day for Customer 53990001.
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Figure 11. Compared curves of actual load and forecasting load in a week for Customer 53990001.

The samples are preprocessed by K-means clustering algorithm to form three categories for
training. We performed a comparative experiment with variable-controlling approach about clustering.
The compared results of Customer 53990001 on four different days of November 2013 are shown in
Figure 12. The compared MAPEs of prediction on 18 November for nine customers in three categories
from different feeders are shown in Table 7. It can be concluded that the forecasting curve without
clustering deviates from the actual curve and that its MAPE is larger. The reason is that different
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characteristics of electricity use create a bad effect for short-term load forecasting. The effect reduces
when we use corresponding trained networks for different customers. Therefore, the performance is
generally improved by clustering.

Table 7. Compared MAPEs for nine customers in three categories with or without clustering.

Customer Category Feeder MAPE with Clustering MAPE without Clustering

37148000 1 2 10.80% 22.98%
51690000 1 7 9.25% 21.17%
37165000 1 7 11.12% 20.12%
53990001 2 2 10.07% 27.31%
54265001 2 3 11.91% 22.72%
54265002 2 3 10.76% 28.45%
31624001 3 35 13.56% 21.12%
41661001 3 34 12.23% 24.85%
76242001 3 33 9.98% 28.38%
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Figure 12. Compared curves of actual load and forecasting load of Customer 53990001 with or without
clustering: (a–d) the results for four different days in November 2013.

The input of proposed network includes Dp, Wp, Tp and Pl, which means that the network obtains
and fuses the previous load changing process and other environmental information. In this case,
we removed the input layer and the following fully connected layers in the network. The comparison
results of Customer 53990001 with multi-source or only load data input are shown in Figure 13.
The compared MAPEs for nine customers in three categories from different feeders are shown in
Table 8. The experimental condition is the same as the one above. It can be concluded that the
performance of only using load data is obviously poorer. Although the change shape is similar
to actual, the curves deviate from the actual curves. Correspondingly, the MAPEs are larger. The
reason is that date, weather and temperature are necessary factors to consider during short-term load
forecasting processing. People would raise their load on a hot or cold day, even a rainy or snowy day.
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Resident customers may increase electricity consumption on weekends but business customers may
not. These are some obvious reasons why we should consider the environment factors.

Table 8. Compared MAPEs for nine customers in three categories with multi-source data or only
load data.

Customer Category Feeder MAPE with Multi-Source Data MAPE with only Load Data

37148000 1 2 10.80% 15.09%
51690000 1 7 9.25% 15.06%
37165000 1 7 11.12% 16.50%
53990001 2 2 10.07% 18.56%
54265001 2 3 11.91% 17.36%
54265002 2 3 10.76% 15.99%
31624001 3 35 13.56% 15.89%
41661001 3 34 12.23% 16.46%
76242001 3 33 9.98% 17.33%
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Figure 13. Comparison curve of actual load and forecasting load of Customer 53990001 with or without
multi-source data: (a–d) the results for the same four days in November 2013 as the experiment in
Figure 12.

It can be concluded from the two experiments that the MAPEs are floating in a certain degree.
The maximal MAPEs of all samples in the conditions of the two experiments are shown in Table 9.
The maximal MAPE without clustering and with only load data is significantly larger than the proposed
method with clustering and multi-source data. The maximal MAPE of proposed method is 15.12%,
which is acceptable for load forecasting of individual customers.

Table 9. Maximal MAPEs in different conditions.

Conditions Forecast without Clustering Forecast with only Load Data Proposed Method

Maximal MAPE 30.25% 21.87% 15.12%
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The performances are good with LSTM networks in dealing with time sequence but there are
more parameters to train compared with GRU neural networks. In the proposed network, the GRU
layers have 285,300 parameters to train while the LSTM layers have 380,400 parameters with the same
architecture. The cost time for training with LSTM network is about 20% longer than training with
GRU neural networks in the experiments in this paper. The MAPEs of network with LSTM and GRU
layer in the same architecture with the same samples in Category 2 during the training process are
shown in Figure 14. We can conclude that GRU neural networks do better in both convergence speed
and training time, which depends on the improved single structure of GRU units.
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Figure 14. The MAPEs of network with LSTM and GRU layers in the same architecture with same
samples during the training process.

We also performed the experiments to compare with current methods such as back-propagation
neural networks (BPNNs) [7,8], stacked autoencoders (SAEs) [17], RNNs [24,25], and LSTM [29–31].
Their parameters and structures are set as described in Section 3.2. The compared average MAPEs
of these methods, trained and tested with all samples described at the beginning of this subsection,
are shown in Figure 15. The specific values of average and maximal MAPEs are shown in Table 10.
Moreover, the results of nine customers are shown to validate the better performance of the proposed
methods. The MAPEs for 30 November 2013 are shown in Table 11. It can be concluded that the
proposed method results in smaller error in both average and maximal MAPEs. The proposed method
performs better compared to the other current methods in most cases for short-term load forecasting
in Wanjiang area.
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Figure 15. Compared average MAPEs trained and tested with all samples in three categories.
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Table 10. Average and maximal MAPEs of the proposed and current methods for short-term load forecasting.

Method BPNNs SAEs RNNs LSTM Proposed Method

Average MAPE 26.12% 23.23% 16.85% 13.26% 10.98%
Maximal MAPE 32.42% 28.51% 20.97% 17.45% 15.12%

Table 11. MAPEs of compared methods for nine customers’ short-term load forecasting on
30 November 2013.

Customer Category Feeder BPNNs SAEs RNNs LSTM Proposed Method

37148000 1 2 26.96% 23.28% 16.56% 13.09% 10.80%
51690000 1 7 27.56% 25.61% 15.56% 10.77% 9.25%
37165000 1 7 28.55% 24.81% 13.35% 14.55% 11.12%
53990001 2 2 24.23% 22.23% 17.87% 11.27% 10.07%
54265001 2 3 26.33% 27.56% 17.23% 12.22% 11.91%
54265002 2 3 29.23% 24.89% 15.63% 14.63% 10.76%
31624001 3 35 30.45% 22.56% 19.93% 12.29% 13.56%
41661001 3 34 32.23% 25.65% 16.72% 14.65% 12.23%
76242001 3 33 25.36% 23.22% 14.66% 13.27% 9.98%

In detail, the forecasting load curves of Customers 37148000 and 53990001 on 30 November 2013
based on these methods are shown in Figures 16 and 17. We can observe the closest curve to the actual
curve is the proposed method in the results of these experiments. Time information is important in
short-term load forecasting which the BPNNs and SAEs cannot extract. Therefore, they get poorer
performance in the experiments. The vanishing gradient problem limits the performance of RNNs
because of the decreasing perception of nodes. The architecture is simpler and the parameters are
fewer in GRU neural network compared to LSTM networks (Section 2.1). Therefore, the performances
of GRU neural networks are better than the other current methods. In general, the availability and
improvement of the proposed method are proven by the real-world experiments.
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Figure 16. The load curves of Customer 37148000 based on the proposed method and the other current methods.
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Figure 17. The load curves of Customer 53990001 based on the proposed method and the other current methods.

4. Conclusions

To increase the stability and economy of power grids, a method for short-term load forecasting with
multi-source data using GRU neural networks is proposed in this paper, which focuses on individual
customers. The proposed structure of the whole network is shown in Figure 5. The real-world load data
of individual customers is recorded from Dongguan Power Supply Bureau of China Southern Power
Grid in Guangdong Province, China. Before training, the customers with load data are clustered into
three categories by K-means clustering algorithm to reduce the interference of different electricity use
characteristics. Then, the environment factors are quantified and put into the input of the proposed
networks for more information. The GRU units are introduced into the network for its simpler structure
and faster convergence compared to LSTM blocks. The results in Figures 12 and 13 show that clustering
and multi-source input can help to improve the performance of load forecasting. The average MAPE can
be low as 10.98% for the proposed method, which outperforms the other current methods such as BPNNs,
SAEs, RNNs and LSTM. The improvement is notable (Figures 15–17). In general, the availability and
superiority of the proposed method are verified in this paper. In the future, combining with the technique
of peak prediction could be a subject worth studying for load forecasting. Moreover, since the load
forecasting for the customers in all power grid areas is a large-scale task, transfer learning and continuous
learning will be considered based on the proposed framework for high-efficiency load forecasting.
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