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Abstract: Battery energy storage (BES) and demand response (DR) are considered to be promising
technologies to cope with the uncertainty of renewable energy sources (RES) and the load in the
microgrid (MG). Considering the distinct prediction accuracies of the RES and load at different
timescales, it is essential to incorporate the multi-timescale characteristics of BES and DR in MG
energy management. Under this background, a hierarchical energy management framework is put
forward for an MG including multi-timescale BES and DR to optimize operation with the uncertainty
of RES as well as load. This framework comprises three stages of scheduling: day-ahead scheduling
(DAS), hour-ahead scheduling (HAS), and real-time scheduling (RTS). In DAS, a scenario-based
stochastic optimization model is established to minimize the expected operating cost of MG,
while ensuring its safe operation. The HAS is utilized to bridge DAS and RTS. In RTS, a control
strategy is proposed to eliminate the imbalanced power owing to the fluctuations of RES and load.
Then, a decomposition-based algorithm is adopted to settle the models in DAS and HAS. Simulation
results on a seven-bus MG validate the effectiveness of the proposed methodology.

Keywords: battery energy storage; demand response; microgrid; multi-timescale characteristics;
hierarchical energy management; uncertainty

1. Introduction

For the energy crisis and environmental degradation, the evolution of the energy system is
accelerating in the direction of a higher proportion of renewable energy sources (RES). The microgrid
(MG) is widely identified as an effective pattern to integrate RES, which can operate in two modes,
viz. grid-connected mode and stand-alone mode. The technology will be conducive to the increase of
renewable utilization, the improvement of power quality, and the enhancement of supply reliability [1].
However, the penetration of RES poses great challenges to MG energy management, mainly owing to
the intermittency and volatility of RES.

Currently, many research efforts have been carried out on MG energy management, to better
cope with the uncertainty of RES. References [2–4] proposed various stochastic optimization models
to minimize the expected operation cost of MG. Tavakolia et al. [5] presented a CVaR-based energy
management strategy to decide the optimum balance between the operation cost and grid resilience
for commercial building MG, in which the CVaR was solved by a scenario-based method. In [6],
a fuzzy chance constrained unit commitment model was established, in which the uncertainty of
RES was described as fuzzy parameters. Xiang et al. [7] developed a scenario-based robust energy
scheduling method, to maximize the total exchange cost while simultaneously obtaining the minimum
social benefits cost. Wang et al. [8] proposed an economical optimization model based on interval
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linear programming for the day-ahead scheduling (DAS) of MG. In general, the above studies
adopted multiple optimizing methods, such as stochastic programming [2–5], fuzzy programming [6],
robust programming [7], and interval programming [8], to handle the uncertainty, and thus reduce
the operation risks of MG. However, these researches did not employ the intra-day forecast data of
RES with higher precision in MG energy management, which affect the control effects of such energy
management methods. In practice, the multi-timescale scheduling will enable MG to better resolve
the uncertainty of RES, and also provide a more specific power plan that can be employed easily
in real-time operation. In view of this, hierarchical energy management is regarded as a potential
alternative. Wu et al. [9] presented a two-stage scheduling model to reduce the uncertainty of RES,
which can effectively guide the overall schedule to evolve toward a stable and economic one. In [10],
the DAS model and real-time dispatching model were both established for a cooling and electricity
coordinated MG. In [11], a hierarchical scheduling framework was established for multi-sources
multi-product MG, which integrated the transient characteristics of natural gas flow and the dynamics
of energy converters. Xu et al. [12] proposed a hierarchical energy management framework for an
MG with hybrid energy storage systems, which could not only accomplish the economic and secure
operation of MG, but also extend the lifetime of batteries.

Derived from local level, demand response (DR) is also regarded as an effective and promising
approach to facilitating MG energy management, through exploiting the flexibility of the demand
side [13]. Sahin et al. [14] presented a stochastic security-constrained unit commitment model
for DAS, in which DR was considered as a way to mitigate transmission violations. In [15], a
two-stage stochastic model was established to optimize the DAS of MG considering battery energy
storage (BES) and DR. Nguyen et al. [16] developed a risk-constrained scenario-based stochastic
model to decide the optimum hourly bids that the MG aggregator submitted to the day-ahead
market. Nunna et al. [17] presented an agent-based architecture for managing power in multiple
MG with BES and DR. In [18], an optimal generation scheduling was proposed for grid-connected
MG with DR, where the uncertainty of upstream grid price was characterized using the information
gap decision theory. In [19], a multiagent-based hierarchical energy scheduling framework was
developed to optimize the multi-MG operation, in which the DR programs were utilized to shift
the peak load demand. Marzbanda et al. [20] proposed an algorithm in market operator transactive
energy structure to reduce the electricity price, to increase the profit of generators, and to reduce
the cost of consumers, simultaneously. In [21], a multi-stage stochastic programming based on an
artificial bee colony algorithm was applied to decide the coalition formation of multiple home MG
with consideration of responsive load demand in the framework of transactive energy. Moreover,
game theoretical approaches were adopted to study the interactions between the utility company
and individual consumers in DR [22,23]. However, such researches only focused on the usage of
DR in a single timescale, without considering their tight coupling characteristics on the available
time frames. This may discourage DR resources to facilitate system balance and RES integration on
different timescales. In this regard, Pourmousavi et al. [24] proposed a multi-timescale cost-effective
energy scheduling framework for MG in isolated mode. Nevertheless, the dispatching plan of the
components in such an MG was decided only by a rule-based power management algorithm without
using optimization methods. Also, the security constraints, consisting of branch flow and nodal
voltage constraints, were not considered. Wang et al. [25] established a reserve optimization rolling
model, whose focus was on DR reserve resources within different timescales. However, the BES
was excluded from such a model, weakening its applicability. Furthermore, the security constraints
were not taken into account either. In [26], an optimal multi-timescale DR scheduling framework
for industrial customers was proposed, but both the interaction between BES and DR and the nodal
voltage constraints were not accounted for. In summary, the literature on MG energy management
in which the multi-timescale characteristics of the BES and DR as well as the security constraints are
considered simultaneously, is scarce to the authors’ best knowledge. Consequently, it is imperative to
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incorporate such factors in the energy management method of MG to further improve the operation
performance of MG.

The major contributions of this paper are described as follows:

(1) A hierarchical energy management framework incorporating the multi-timescale characteristics of
the BES and DR along with the security constraints is proposed for an MG in grid-connected mode,
which consists of DAS, hour-ahead scheduling (HAS), as well as real-time scheduling (RTS).

(2) A decomposition-based algorithm is adopted to effectively settle the optimization models in the
DAS and HAS.

(3) Impacts of the multi-timescale characteristics of the BES and DR on the energy management of
MG are analyzed.

The remainder of this paper is organized as follows. Section 2 describes the architecture of the
hierarchical energy management. Section 3 presents the model formulation. Section 4 elaborates
the solution algorithm. Section 5 demonstrates the simulation results. The conclusion is drawn in
Section 6.

2. Architecture of the Hierarchical Energy Management

For the sake of clear description, the resources of MG in this paper will be stated first, and
then the composition of the architecture elaborated. The sources of MG include the RES and
dispatchable resources. Wind power (WD) is solely chosen to represent RES for its extensive application.
The dispatchable resources comprise controllable distributed generation (CDG), BES, and DR. The CDG
includes diesel engines (DE), the micro turbine (MT), and the fuel cell (FC). In view of the relatively
high energy density, the all-vanadium redox flow battery is chosen as the BES [27]. Furthermore,
DR programs are usually divided into two types: price-based DR and incentive-based DR [28].
The former can refer to customers’ autonomous response toward retail prices, while the latter would
involve the active load change because of contract-based payments. Note that, the price-based DR is
generally taken as non-controllable. The incentive-based DR could be considered as controllable
since penalties would be enforced to customers who do not respond as required. As a result,
the incentive-based DR is chosen as the DR program, and the interruptible power program is selected
to represent the incentive-based DR for its popularization in this paper. In addition, the DRA is
introduced to aggregate MG customers with small available interruptible power, and to make DR
contracts with the MG operator [29]. The MG operator rewards the customers participating in DR
contracts by two forms of payments, viz., capacity payment and energy payment [14]. If a certain
amount of interruptible power is scheduled in DAS, the DRA will receive a capacity payment. If the
interruptible power is further deployed in the operating day, the DRA will be rewarded an additional
energy payment. Generally speaking, the unit energy payment of the deployed interruptible power is
in inverse proportional to the time of advanced notice. Shorter advanced notice time could cause a
larger effect on operation process, and thus lead to a larger unit energy payment [30].

The forecast accuracy of the output power of RES can increase with the reduction of prediction
length. Meanwhile, the output power of RES usually fluctuates severely within an hour. In this
context, the DAS with one-hour interval fails to utilize the intra-day forecast power of RES with higher
precision, and cannot capture such fluctuation characteristics. In addition, the DAS cannot explore
the multi-timescale characteristics of the BES and DR. Therefore, a hierarchical energy management
framework is put forward. The framework comprises three stages of scheduling: DAS, HAS, and RTS.
The relation among such scheduling is shown in Figure 1.



Energies 2018, 11, 1111 4 of 23

Energies 2018, 11, x FOR PEER REVIEW  4 of 24 

 

00:00 06:00 12:00 18:00 24:00

Time horizon 
24 hours

Day-ahead scheduling
(DAS)

Time interval 1 hour

Hour-ahead scheduling
(HAS)

12:00 12:15 12:30 13:0012:45

Time horizon
 1 hour

Time interval 15 minutes

12:15 12:20 12:25 12:30

Real-time scheduling
(RTS) Time horizon

 5 minutes

Time interval
 5 minutes

Time interval
 5 minutes

Time interval
 5 minutes

Time horizon
 5 minutes

Time horizon
 5 minutes
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Figure 1. Relation among the DAS, HAS, and RTS.

The DAS is conducted every 24 h with the temporal resolution of 1 h. The operation status of
CDG, the charging and discharging power of BES, the exchanged power with the upstream grid,
the scheduled interruptible power of DRA, together with the interruptible power deployed in DAS of
DRA can be determined. Such variables will be taken as the input parameters of the HAS. The HAS is
performed every hour with 15-min intervals. In this phase, the power of CDG and the interruptible
power deployed in HAS of DRA can be decided. Meanwhile, the charging and discharging power of
BES and the exchanged power with the upstream grid would be adjusted according to the forecast
data of RES and the load within the next hour. The RTS is executed every 5 min for eliminating the
imbalanced power because of the fluctuations of RES and load, by adjusting the operation of CDG and
BES together with the exchanged power with the upstream grid. Additionally, the interruptible power
deployed in RTS can also be used to realize the power balance.

3. Model Formulation

In this section, the optimization models of DAS and HAS as well as the control strategy of
RTS will be discussed as follows. The notations used in the formulation are described in Table A1
(See Appendix A).

3.1. Day-Ahead Scheduling

To handle the uncertainty of RES and load, a scenario-based stochastic optimization model is
formulated to optimize MG operation. Considering that the time interval of DAS is set to 1 h, the time
interval is omitted to simplify the statement.

3.1.1. Objective Function

The objective in DAS is to minimize the expected operational cost of MG over the next 24 h.
The cost comprises the cost of the exchanged power with the upstream grid, the startup/shutdown
cost of CDG, the operation and maintenance cost (OMC) of BES, the capacity cost and day-ahead
energy cost of DRA, the expected fuel cost and expected OMC of CDG, as well as the expected OMC
of WD. Besides, although the RES in this model only includes WD, the model could be easily extended
to the one with WD, solar power, and other RES.
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min
Tda
∑

t=1
[ctu,tPtie,t +

Ng

∑
i=1

(csu,g,iYg,i,t + csd,g,iZg,i,t) +
Nba
∑

j=1
com,ba,j(Pdis

ba,j,t + Pcha
ba,j,t) +

Ndra
∑

k=1
(cca

dra,k,tSPdra,k,t + cda,en
dra,k,tDPda

dra,k,t)]

+
Nda

s
∑

s=1
ρs

Tda
∑

t=1
[

Ng

∑
i=1

(Cfu
g,i,s,t + Com

g,i,s,t) + com,wdPwd,s,t]

(1)

Cfu
g,i,s,t = Ug,i,t[ag,i(Pg,i,s,t)

2 + bg,iPg,i,s,t + cg,i] (2)

Com
g,i,s,t = com,g,iPg,i,s,t (3)

3.1.2. Decision Variables

The involved decision variables in the DAS model are described as follows. Note that, the
power of WD will be considered as the negative load instead of the decision variable, for the
environment-friendly purpose.

Xda = [Ug,i,t, Yg,i,t, Zg,i,t, Pg,i,s,t, Rg,i,s,t, Udis
ba,j,t, Pdis

ba,j,t, Ucha
ba,j,t, Pcha

ba,j,t, Rba,j,s,t, Udra,k,t, SPdra,k,t, DPda
dra,k,t, Ptie,t] (4)

where i ∈ [1, Ng], j ∈ [1, Nba], k ∈ [1, Ndra], s ∈ [1, Ns], t ∈ [1, Tda].

3.1.3. Constraints

1. System Constraints

For any time interval, the generated power in MG plus the exchanged power with the main
grid should equal the sum of the load and network loss in (5). To reduce the influences of MG on
the upstream grid, the spinning reserve is only provided by CDG, BES, and DRA in (6). Note that,
the spinning reserve of DRA is identified as the scheduled interruptible power that is not deployed
in DAS.

Ptie,t +
Ng

∑
i=1

Pg,i,s,t +
Nba

∑
j=1

(Pdis
ba,j,t − Pcha

ba,j,t) +
Ndra

∑
k=1

DPda
dra,k,t + Pwd,s,t = Pld,s,t + Pls,s,t (5)

Ng

∑
i=1

Rg,i,s,t +
Nba

∑
j=1

Rba,j,s,t +
Nla

∑
k=1

(SPdra,k,t − DPda
dra,k,t) ≥ R10

u (6)

2. CDG Constraints

For each CDG, the output power is constrained by the maximum and minimum limits in (7).
Constraint (8) represents the CDG’s ramp limits. The relations among the operation status, startup
status, and shutdown status are described as (9). Constraints (10) and (11) enforce the minimum on
and off time constraints, respectively. Constraint (12) defines the spinning reserve that can be supplied
by CDG.

Pg,i,minUg,i,t ≤ Pg,i,s,t ≤ Pg,i,maxUg,i,t (7)

− rrd,g,i ≤ Pg,i,s,t − Pg,i,s,t−1 ≤ rru,g,i (8){
Yg,i,t − Zg,i,t = Ug,i,t −Ug,i,t−1

Yg,i,t + Zg,i,t ≤ 1
(9)
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

Gg,i

∑
h=1

(1−Ug,i,h) = 0

t+UTg,i−1

∑
h=t

Ug,i,h ≥ UTg,iYg,i,t t = Gg,i + 1, · · · , Tda −UTg,i + 1

Tda
∑

h=t
(Ug,i,h −Yg,i,t) ≥ 0 t = Tda −UTg,i + 2, · · · , Tda

(10)



Hg,i

∑
h=1

Ug,i,h = 0

t+DTg,i−1

∑
h=t

(1−Ug,i,h) ≥ DTg,iZg,i,t t = Hg,i + 1, · · · , Tda − DTg,i + 1

Tda
∑

h=t
(1−Ug,i,h − Zg,i,t) ≥ 0 t = T − DTg,i + 2, · · · , Tda

(11)

0 ≤ Rg,i,s,t ≤ min
{

Ug,i,trru,g,iT10, Pg,i,max − Pg,i,s,t, Pg,i,s,t−1 + rru,g,i − Pg,i,s,t

}
(12)

3. BES Constraints

For each BES, the discharging and charging power are limited by the corresponding maximum
and minimum limits in (13) and (14), respectively. Constraint (15) indicates that the charging and the
discharging status of BES are mutually exclusive. The variation characteristics of the state of charge
(SOC) of BES are defined in (16). Constraint (17) requires the SOC to be within the permissible range.
In order not to affect BES operation in the next day, the SOC of BES at the end of the day is forced to be
not less than a specific SOC limit in (18).

The model assumes that the BES can switch between the charging and discharging statuses in a
short interval. Thus, the reserve supplied by the BES can be twice its rated power, theoretically [31].
Constraint (19) defines the reserve range of BES, which is restricted by both the rated power and the
SOC limit.

0 ≤ Pdis
ba,j,t ≤ Udis

ba,j,tPba,j,max (13)

0 ≤ Pcha
ba,j,t ≤ Ucha

ba,j,tPba,j,max (14)

0 ≤ Udis
ba,j,t + Ucha

ba,j,t ≤ 1 (15)

SOCba,j,t = SOCba,j,t−1 + Pcha
ba,j,tη

cha
ba,j/Eba,j,max − Pdis

ba,j,t/(η
dis
ba,jEba,j,max) (16)

SOCba,j,min ≤ SOCba,j,t ≤ SOCba,j,max (17)

SOCba,j,Tda
≥ SOClim

ba,j (18)

0 ≤ Rba,j,s,t ≤ min
{

Eba,j,max(SOCba,j,t − SOCba,j,min)η
dis
ba,j/T10, Pba,j,max − Pdis

ba,j,t + Pcha
ba,j,t

}
(19)

4. DRA Constraints

For each DRA, the scheduled interruptible power is restricted by the maximum and minimum
limits in (20). Considering customer satisfaction, the total response time of DRA is enforced to be not
larger than a specific response time limit in (21). In the meantime, constraint (22) requires that the
interruptible power is only allowed to be scheduled in the allowable time set. In (23), the interruptible
power deployed in DAS cannot exceed the scheduled interruptible power.

Udra,k,tSPdra,k,t,min ≤ SPdra,k,t ≤ Udra,k,tSPdra,k,t,max (20)

Tda

∑
t=1

Udra,k,t ≤ Tlim
dra,k (21)
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Udra,k,t =

{
0 or 1 t ∈ ψdra,k
0 else

(22)

0 ≤ DPda
dra,k,t ≤ SPdra,k,t (23)

5. Exchanged Power Constraints

The exchanged power is subject to the transmission capacity limit, whose positive or negative
value represents the imported/exported power from/to the main grid.

− Ptie,max ≤ Ptie,t ≤ Ptie,max (24)

6. Security Constraints

Constraint (25) represents the limits of power flow through each branch. Also, Constraint (26)
requires the voltage at each bus should be within the allowable region.

− Sx,max ≤ Sx,s,t ≤ Sx,max (25)

Vy,min ≤ Vy,s,t ≤ Vy,max (26)

where x ∈ [1, Nbr], y ∈ [1, Nbs].

3.2. Hour-Ahead Scheduling

Based on the updated forecast data of RES and load, a deterministic optimization model is
established in HAS to bridge the DAS and RTS. The decision variables of the DAS, stated in Section 3.1.2,
would be regarded as the input parameters of HAS. Taking an example of the t-th HAS, the scheduling
model is illustrated as below. Notice that, (t, m) indicates the m-th 15-min time interval at hour t.

3.2.1. Objective Function

The objective of MG operator in HAS is to minimize the operational cost in the following hour.
The cost comprises the fuel cost and the OMC of CDG, the cost of the exchanged power with the
upstream grid, the OMC of BES, the hour-ahead energy cost of DRA, and the OMC of WD. Besides,
the penalty costs are added to follow the schedules of the DAS.

The fuel cost and the OMC of CDG are expressed as (28) and (29), respectively. Note that, Ug,i,t is
a known parameter which has been determined in the DAS.

min
Nha
∑

m=1

{
Ng

∑
i=1

(Cfu
g,i,t,m + Com

g,i,t,m) + {ctu,tPtie,t,m+
Nba
∑

j=1
com,ba,j(Pdis

ba,j,t,m + Pcha
ba,j,t,m) +

Ndra
∑

k=1
cha,en

dra,k,tP
ha
dra,k,t,m + com,wdPwd,t,m

+cpel,t|Ptie,t − Ptie,t,m|+
Nba
∑

j=1
cpel,t

∣∣∣Pdis
ba,j,t − Pcha

ba,j,t − Pdis
ba,j,t,m + Pcha

ba,j,t,m

∣∣∣}/Nha

} (27)

Cfu
g,i,t,m =

{
[ag,i(Pg,i,t,m)

2 + bg,iPg,i,t,m + cg,i]/Nha (Ug,i,t = 1)
0 (Ug,i,t = 0)

(28)

Com
g,i,t,m = com,g,iPg,i,t,m/Nha (29)

where “|•|” is the absolute value function.

3.2.2. Decision Variables

The interruptible power deployed in HAS of DRA indicates the interruptible power which is not
deployed in DAS, but deployed in HAS.
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Xha = [Pg,i,t,m, Rg,i,t,m, Udis
ba,j,t,m, Pdis

ba,j,t,m, Ucha
ba,j,t,m, Pcha

ba,j,t,m, Rba,j,t,m, DPha
dra,k,t,m, Ptie,t,m] (30)

where i ∈ [1, Ng], j ∈ [1, Nba], k ∈ [1, Ndra], t ∈ [1, Nha].

3.2.3. Constraints

1. System Constraints

The power balance constraint and the reserve constraint are described as (31) and (32), respectively.
In (31), the interruptible power provided by DRA contains two parts. One is the interruptible power
deployed in DAS, and the other is the interruptible power deployed in HAS. In (32), the spinning
reserve of DRA corresponds to the interruptible power that has been scheduled, but not deployed in
both the DAS and HAS.

Ptie,t,m +
Ng

∑
i=1

Pg,i,t,m +
Nba
∑

j=1
(Pdis

ba,j,t,m − Pcha
ba,j,t,m) + Pwd,t,m +

Ndra
∑

k=1
(DPda

dra,k,t + DPha
dra,k,t,m) = Pld,t,m + Pls,t,m (31)

Ng

∑
i=1

Rg,i,t,m +
Nba

∑
j=1

Rba,j,t,m +
Ndra

∑
k=1

[SPdra,k,t − (DPda
dra,k,t + DPha

dra,k,t,m)] ≥ R10
u (32)

2. CDG Constraints

Given that the operation states of CDG have been yielded in DAS, the CDG constraints only
comprise the power limit constraint, the ramp constraint, and the reserve constraint, which are similar
to the Constraints (7), (8), and (12), respectively. Note that, such constraints need to be modified by
replacing the subscript (t) with (t, m). Furthermore, additional constraints on the power and the reserve
of CDG in the last 15-min time interval are imposed due to the decided operation state and the ramp
limit, which are as follows.

Pg,i,t,Nha
≤ rrd,g,iZg,i,t+1/Nha + (1− Zg,i,t+1)Pg,i,max (33)

Rg,i,t,Nha
≤ rrd,g,iZg,i,t+1/Nha + (1− Zg,i,t+1)Pg,i,max − Pg,i,t,Nha

(34)

In (33) and (34), the power and the reserve of CDG in the last 15-min time interval would be
restricted by the operation state of CDG at hour (t + 1).

3. BES Constraints

The BES constraints comprise the charging power limit constraint, the discharging power limit
constraint, the mutual exclusion constraint of charging and discharging states, the SOC limit constraint,
and the reserve constraint, which are similar to the constraints (13)–(17), and (20), respectively.
Note that, since the time horizon of HAS is 1 h, the constraint on the SOC of BES at the end of
the day is not involved in this model.

4. DRA Constraints

For each DRA, the interruptible power deployed in HAS is subject to the following limits.

0 ≤ DPha
dra,k,t,m ≤ SPdra,k,t − DPda

dra,k,t (35)

5. Exchanged Power Constraints and Security Constraints

The exchanged power constraints and security constraints are similar to those in the model of the
DAS, which are not elaborated for space saving.
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3.3. Real-Time Scheduling

There exist two steps in the control strategy of RTS. The first step is to calculate the initial power
references of the CDG, BES, DRA, and exchanged power, on the basis of the results from the HAS.
The second step is to adjust the power references to absorb the imbalanced power. Taking the interval
(t, m, n) as the instance, the detailed steps are illustrated as below. Notice that, (t, m, n) represent the
n-th 5-min time interval in the m-th 15-min time interval at hour t.

3.3.1. Calculate the Initial Power References

1. CDG

Considering the ramp limits, it will always consume a lot of time to vary from Pg,i,t,m−1 to Pg,i,t,m.

Referring to [12], Pini
g,i,t,m,n is assumed to change from Pg,i,t,m−1 to Pg,i,t,m at the maximum ramp rate

first, and then stay at Pg,i,t,m. Based on this, the initial power references of CDG are determined as in
(36).

Pini
g,i,t,m,n =

 min
{

Pfna
g,i,t,m,n−1 + rru,g,i/(NhaNrl), Pg,i,t,m

}
(Pfna

g,i,t,m,n−1 ≤ Pg,i,t,m)

max
{

Pfna
g,i,t,m,n−1 − rru,g,i/(NhaNrl), Pg,i,t,m

}
(Pfna

g,i,t,m,n−1 > Pg,i,t,m)
(36)

2. BES

In view of the SOC bounds, the initial power references of BES are decided as below. When
the power reference is positive, it indicates the BES is in discharge state; vice versa, when the power
reference is negative, it represents that BES can charge.

If Pdis
ba,j,t,m − Pcha

ba,j,t,m ≥ 0

Pini
ba,j,t,m,n = min{(SOCba,j,t,m,n−1 − SOCba,j,min)Eba,j,maxηdis

ba,jNhaNrl, Pdis
ba,j,t,m − Pcha

ba,j,t,m} (37)

else

Pini
ba,j,t,m,n = max{(SOCba,j,t,m,n−1 − SOCba,j,max)Eba,j,maxNhaNrl/ηcha

ba,j , Pdis
ba,j,t,m − Pcha

ba,j,t,m} (38)

end

3. DRA and Exchanged Power

Referring to the actual operation experiences, both the power of DRA and the exchanged power
cannot be affected by the ramp constraints. Therefore, their initial power references are expressed
as below.

DPini
dra,k,t,m,n = DPda

dra,k,t + DPha
dra,k,t,m (39)

Pini
tie,t,m,n = Ptie,t,m (40)

3.3.2. Revise the Power References

For the uncertainties from RES and load, it is evitable to yield the imbalanced power. Moreover,
the imbalanced power may also be aroused because of the ramp constraints of CDG and the SOC
limits of BES. Thereby, the imbalanced power is given as follows.

∆Pt,m,n = Pld,t,m,n − Pwd,t,m,n −
Ng

∑
i=1

Pini
g,i,t,m,n −

Nba

∑
j=1

Pini
ba,j,t,m,n −

Ndra

∑
k=1

DPini
dra,k,t,m,n − Pini

tie,t,m,n (41)

To reduce the negative effects of MG on the upstream grid, the imbalanced power should be fully
absorbed by the internal devices of MG if possible [9,10]. Since frequent power changes can jeopardize
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the working life of CDG and the comfort level DRA, CDG and DRA should avoid the frequent power
response. Hence, the BES should accommodate the imbalanced power as far as possible. That is to say,
the imbalanced power should be absorbed by the BES first, and then by CDG and DRA. The detailed
instructions are presented as below.

1. Revise the Power References of BES

The imbalanced power could be distributed to the BES according to the proportion of the
upward/downward regulation capacity in the total regulation capacity [32].

The upward/downward regulation capacities of a BES can indicate the maximal increment values
of the discharging/charging power of the BES, respectively. The detailed formulations are given
as follows. Puc

ba, j,t,m,n = min
{
(SOCba,j,t,m,n−1 − SOCba,j,min)Eba,j,maxηdis

ba,jNhaNrl, Pba,j,max

}
− Pini

ba,j,t,m,n

Pdc
ba,j,t,m,n = Pini

ba,j,t,m,n − max
{
(SOCba,j,t,m,n−1 − SOCba,j,max)Eba,j,maxNhaNrl/ηcha

ba,j , −Pba,j,max}
(42)

Taking an example of the downward regulation capacity, it would equal the initial power reference
minus the maximal charging power. The maximum charging power is limited by both the SOC limit
and the rated power.

The upward and downward total regulation capacities are described as below.
Putc

ba,t,m,n =
Nba
∑

j=1
Puc

ba,j,t,m,n

Pdtc
ba,t,m,n =

Nba
∑

j=1
Pdc

ba,j,t,m,n

(43)

The final power references of BES are expressed as below.
If ∆Pt,m,n ≥ 0

Pfna
ba,j,t,m,n = min{1, ∆Pt,m,n/Putc

ba,t,m,n}P
uc
ba,j,t,m,n + Pini

ba,j,t,m,n (44)

else
Pfna

ba,j,t,m,n = max{−1, ∆Pt,m,n/Pdtc
ba,t,m,n}P

dc
ba,j,t,m,n + Pini

ba,j,t,m,n (45)

end
Therefore, the updated imbalanced power is described as follows.

∆Pt,m,n ⇐ ∆Pt,m,n −
Nba

∑
j=1

(Pfna
ba,j,t,m,n − Pini

ba,j,t,m,n) (46)

where “⇐ ” is the assigning operator.

2. Revise the Power References of CDG and DRA

When the imbalanced power is nonzero, the CDG and DRA will be utilized to further absorb the
remaining imbalanced power successively. The detailed calling sequence depends on the CDG’s and
DRA’s unit costs per kWh [33]. The CDG can accommodate the imbalanced power by increasing or
decreasing their output power. However, to minimize the disturbance to the production and life of
customers in the DRA, the DRA is only used to accommodate the imbalanced power through deploying
the new interruptible power within the range of the scheduled interruptible power. Note that the unit
energy cost of the interruptible power deployed in RTS is larger than that of the interruptible power
deployed in DAS and HAS, owing to the shorter advanced notice time. Then, the residual imbalanced
power will be totally accommodated by the main grid.
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After the operation simulation during the whole day, the operation simulation cost of MG could
be evaluated as follows.

Cos =
Tda
∑

t=1
[

Ng

∑
i=1

(csu,g,iYg,i,t + csd,g,iZg,i,t) +
Ndra
∑

k=1
cca

dra,k,tSPdra,k,t]

+
Tda
∑

t=1

Nha
∑

m=1

Nrl
∑

n=1

{
Ng

∑
i=1

(Cfu
g,i,t,m,n + Com

g,i,t,m,n) +

{
ctu,tPfna

tie,t,m,n +
Nba
∑

j=1
com,ba,j

∣∣∣Pfna
ba,j,t,m,n

∣∣∣
+

Ndra
∑

k=1
[cda,en

dra,k,tDPda
dra,k,t + cha,en

dra,k,tDPha
dra,k,t,m + crl,en

dra,k,t(DPfna
dra,k,t,m,n − DPda

dra,k,t − DPha
dra,k,t,m)

+com,wdPwd,t,m,n}/(NhaNrl)}

(47)

4. Solution Algorithm

In the hierarchical management framework, the optimization models of the DAS and HAS are both
mixed-integer nonlinear programming (MINLP) problems, which are solved by a decomposition-based
algorithm. The control strategy of the RTS can be implemented by a heuristic algorithm.

The MINLP problems are broken down into a master problem and an auxiliary problem.
Taking the DAS as an example, the master problem is to settle the energy management problem (1)–(24),
excluding the security Constraints (25) and (26). The auxiliary problem is to calculate the power flow
based on the scheduling results from the master problem. Then in each time interval, both the power
flow through each branch and the voltage of each bus will be checked to see whether they exceed the
limits. The master problem and the auxiliary problem are implemented iteratively until the change
of the total expected network loss is not larger than the tolerance limit e. The decomposition-based
algorithm contains two critical steps. The first is to transform the master problem into a mixed integer
linear programming (MILP) problem. The second is to solve the master problem and the auxiliary
problem iteratively.

In the optimization model of the DAS, the nonlinearity of the master problem is derived from the
quadratic cost function of CDG. Therefore, piecewise linear approximation is introduced to linearize
the quadratic cost function [34]. With regard to the optimization model of the HAS, besides the fuel
cost of CDG, the penalty cost is another factor leading to the nonlinearity of the master problem.
Here, the auxiliary variables and additional constraints can be employed to linearize such a penalty
cost [12]. Based on these, the master energy scheduling problems of the DAS and HAS are both
converted to MILP problems.

The iterative solution is the core of the decomposition-based algorithm. Taking the DAS as an
example, the flowchart of the iterative solution is depicted in Figure 2. Notice that, Niter1 and Niter2 are
both the counters of the algorithm.

(1) The linearized master energy management problem is solved by the optimizer of CPLEX, and then
the scheduling results Xda will be obtained.

(2) The power flow calculation is implemented in each time interval of scenarios, and the security
constraints would be checked to see whether they are met.

(3) When there exists a violation of security constraints, a tiny random vector ∆Xda will be added to
the last feasible solution Xda,last to calculate the power losses again. Then, the master problem
will be rerun using the updated power balance constraints (5). [2]. If there is no violation of
the constraints, the power loss will be calculated in each time interval of the scenarios, and the
total expected network loss EPloss would be decided. The newly calculated power losses will be
returned to the master problem for updating the power balance constraints (5), until the variation
of the total expected network loss ∆EPloss is less than the tolerance limit e.

(4) After finite iterations, a new steady-state condition can be determined.

The flowchart of the iterative solution for the HAS is similar to that for the DAS, which is not
expressed for space saving.
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5. Case Study

An MG system is shown in Figure 3, whose network parameters can be obtained from [12].
The MG consists of a DE, an MT, an FC, a wind turbine, a BES, and a DRA. The technical and economic
parameters of CDG and RES are summarized in Table 1. For BES, its rated power and capacity are
50 kW and 200 kWh, respectively. The charging efficiency and discharging efficiency are both set
to 0.922. The maximum allowable SOC, initial SOC, minimum allowable SOC, and the SOC limit
at the end of the day are set as 1, 0.5, 0.2, and 0.5, respectively. The unit OMC is 0.008 $/kWh.
For DRA, the upper and lower limits of scheduled interruptible power are chosen as 80 kW and 30 kW,
respectively. The response time limit is set as 12 h. The time set of allowing the interruptible power
to be scheduled is [7:00, 22:00]. Furthermore, the maximum exchanged power with the main grid
is 500 kW. The time-of-use price of a province in China is depicted in Figure 4. Referring to [25],
the unit capacity cost of scheduled interruptible power for DRA is also depicted in Figure 4. To follow
the operation results of DAS, it is assumed that the penalty cost is 1.5 times the time-of-use price.
Also, the unit energy cost of the interruptible power deployed in DAS, HAS, and RTS are assumed to
be five times, eight times, and 10 times the unit capacity cost of the scheduled interruptible power.
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Table 1. Technical and economic parameters of CDG and RES.

Types DE MT FC WD

Upper limit (kW) 200 150 100 100
Lower limit (kW) 20 15 10 -

Ramp-up/ramp-down limit (kW/min) 8 7 6 -
Quadratic coefficient ($/(kW)2 h) 0.00004 0.00002 0.00003 -

Monomial coefficient ($/kWh) 0.004 0.006 0.006 -
Constant coefficient ($/h) 6.908 4.922 2.590 -

Minimum up/down time (h) 2 2 2 -
Required up/down time at the start time of the day (h) 0 0 0 -

Startup/shutdown cost ($) 0.317 0.476 0.317 -
Unit OMC ($/kWh) 0.006 0.006 0.005 0.011
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The scenarios in DAS can be generated according to the following procedure. First, we assume
that the MG operator could acquire forecast data of RES and the load from a local forecast center.
Moreover, considering that any forecast technique can suffer from forecast errors, we also assume that
the MG operator can fit the forecast error data into suitable distributions. For simplicity, it is assumed
that the forecast errors of WD and load follow normal distributions with zero-mean. Their standard
deviations are set as 5% and 2% of their forecast values, respectively [35]. Based on this information,
10,000 scenarios with equal probability (1/10,000) are generated. To balance the computational burden
and modeling accuracy, the fast-forward scenario reduction technique is used to reduce the original
10,000 scenarios to 10 scenarios [36]. Furthermore, since the power of WD and load for the next hour
can be forecasted quite accurately [37,38], their forecast values will be directly regarded as the input
data of WD and load for the deterministic model of HAS, to satisfy the requirement on solution speed.
The imbalanced power mainly from the difference between the power of WD and load in HAS and
that in RTS, would be absorbed by the components within the MG.

Figure 5 depicts the predicted values of WD and load in 24 h with 15-min interval. To test the
effectiveness of the proposed hierarchical framework, the actual data with 5-min intervals are also
shown in Figure 5. The simulation platform is Matlab 2013(a) on a PC with Intel Core dual i5-4220M
(2.5 GHz) and 16 GB RAM.
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5.1. Simulation of the Hierarchichal Energy Management

To analyze the convergence characteristic of the decomposition-based algorithm, taking the DAS
as an example, the total expected network loss of the MG at each iteration is shown in Figure 6.
The number of iterations is four with the tolerance of this algorithm e being 10−4 kWh. Meanwhile,
the calculation time is only 6.806 s. Specifically, it takes 2.148 s to solve the master problem, whereas
it takes 4.658 s to implement the power flow subproblem. Since the calling cycle of DAS is 24 h,
this computation speed is fast enough to meet the online operation demand of the DAS.

First, it is assumed that the total expected network loss is 0 kWh. Subsequently, the total expected
network loss turns into 84.9965 kWh. The newly calculated power losses will be return to the master
problem for updating the power balance constraints (5), if only the variation of the total expected
network loss is not less than the tolerance limit. After four iterations, the system converges to a steady
status where the optimum solutions can be determined.

The convergence procedure of solving the HAS is similar to that of solving the DAS. Among all
the calling of HAS, the maximum iterations is five, and the largest solution time is 0.222 s. Since the
calling cycle of HAS is 1 h, the computation speed can fully meet the online operation demand of HAS.

The algorithm can also be effective with larger test systems. Taking a revised IEEE 33-bus system
as an example, the system consists of two DE, two MT, two FC, a wind turbine, a BES, and a DRA.
For the DAS, the number of iterations is nine with e being 10−4 kWh. Meanwhile, the computation time
is only 15.479 s. Similar results can be obtained for the HAS, which are not described for space saving.

The DAS is conducted first, and then part of the decision variables will be input to the HAS as
known parameters. The decision variables that are passed to the HAS are depicted in Figure 7.

According to Figure 7, the MG inclines to import power from the upstream grid in low-price
periods, and export power in high-price periods. Similarly, the BES would charge within low-price
periods and discharge within high-price periods. Meanwhile, due to the cheap operation cost, the FC
firstly starts up at hour 1, and then stays online for the remaining periods. On the contrary, both the DE
and MT only start up at hour 7, then shut down at hour 23. For DRA, the interruptible power is often
scheduled during high-price periods, but the interruptible power is only deployed at hours 7 and 8.
Moreover, the deployed interruptible power is relatively low. This indicates that the scheduled
interruptible power is mainly utilized to supply the reserve of MG instead of participating in the
power balance, mostly because of the low unit capacity cost and the high unit energy cost.
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Figure 7. Decision variables of the DAS that are passed to the HAS: (a) Exchanged power with main
grid as well as the power of BES and DRA; (b) Operation variable of CDG.
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Based on such decision variables, the HAS is then performed. After calling the HAS, the RTS
would be implemented on a 5-min interval to accommodate the imbalanced power. Both the power of
the CDG and the exchanged power in HAS and RTS are shown in Figure 8.
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Figure 8. Operation results of the CDG and exchanged power in HAS and RTS.

From Figure 8, the exchanged power in HAS can effectively follow the DAS plan. Since the
energy efficiency of FC is the largest among all CDG, it is generally given the highest priority in daily
operation. Meanwhile, after the startup of the DE and MT, the MT will operate almost at its rated
power, whereas the power fluctuation of the DE is significant. This is because the DE is with the lowest
energy efficiency, and is always arranged in the lowest priority. In addition, the deviations between the
power in HAS and RTS for the CDG and exchanged power are extremely tiny. This can help increase
the operation stability of CDG and improve the power quality of the upstream grid.

The power of the BES and DRA in HAS and RTS are both given in Figure 9a. Besides, the SOC of
the BES in RTS is exhibited in Figure 9b.
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Figure 9. Operation results of the BES and DRA in HAS and RTS: (a) Power of the BES and DRA in
HAS and RTS; (b) SOC of the BES in RTS.

As shown in Figure 9a, similar to the exchanged power, the power of BES in HAS can effectively
follow the DAS plan due to the high penalty cost. Since the BES is first used to accommodate the
imbalanced power in RTS, the power of BES in RTS would fluctuate around the referenced power
determined by the HAS. Moreover, the interruptible power of DRA is not deployed in HAS, mainly due
to the high unit energy cost in the HAS. Note that, although the unit energy cost in RTS is larger than
that in HAS, the interruptible power is still deployed in RTS at the startup of the DE and MT. This can
be explained by the fact that the CDG cannot fully follow the drastic variation of the exchanged power
owing to its ramp limits, which thereby leads to a large imbalanced power. For the power limit of BES,
the imbalanced power cannot be fully accommodated by the BES. In this context, the interruptible
power of DRA has to be deployed to eliminate the remaining imbalanced power for decreasing the
disturbance to the exchanged power.

According to Figure 9b, it can be observed that the SOC of BES can stay within the allowable
range during the whole day, which ensures the secure operation of BES. Furthermore, we can also see
that the SOC of BES at the end of the day is slightly larger than the initial SOC. This is mainly because,
in this day, the actual power of WD in RTS is generally larger than the predicted power in HAS at the
end of the day such as hours 23 and 24, shown in Figure 5. In this case, the charging power of BES
at such hours has to be increased to accommodate the imbalanced power, further leading to the rise
of SOC.

In addition, the load flow of all branches and the voltage of all buses across the whole time
horizon are within the safe region. Figure 10 depicts the voltage variations of three typical buses (bus
2, bus 3, and bus 5) in the day.

It can be discovered from Figure 10 that the voltage of bus 2 stays around 1.025 p.u. due to the
domination of the upstream grid. Bus 3 locates at the middle of the topology. As the DE starts up at
hour 7, there exists a marked rise for the voltage of bus 3, whereas the voltage would decrease with
the shutdown of the DE. Bus 5 locates at the terminal of the topology and is also linked with the FC.
Although the voltage of bus 5 is a little high, it is still within the safe region, viz. 0.95–1.05 p.u. As a
result, the produced operation resulting from the hierarchical energy management framework is safe.
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5.2. Impacts of the Multi-Timescale Characteristics of the BES and DR on the Energy Management of MG

In order to analyze the impacts of the multi-timescale characteristics of BES and DR on the energy
management of MG, four cases are described in Table 2. Each case represents an energy management
method of MG. In case 1, the energy management method is exactly the proposed hierarchical energy
scheduling framework in this paper. In case 2, the energy management method is similar to that in case
1. The only difference is that the multi-timescale characteristic of DR is not considered. The DRA is
only involved in DAS, but is not involved in HAS and RTS. In other words, the scheduled interruptible
power along with the interruptible power deployed in DAS of DRA will be decided according to the
model in DAS. However, the interruptible power deployed in HAS and RTS are both zero. The method
in case 3 is also similar to that in case 1. Nevertheless, the charging/discharging power of BES
is determined in DAS, and will remain unchanged in HAS and RTS. The method in case 4 can be
considered as a combination of the methods in cases 2 and 3, which is not described for space saving.

Table 2. Description of different cases.

Case Number Multi-Timescale Characteristic of BES Multi-Timescale Characteristic of DR

1
√ √

2
√

×
3 ×

√

4 × ×

The operation simulation results of such cases are shown in Table 3. There are two comparison
indexes: one is the frequency of power adjustment in RTS (FPAR), and the other is the accumulated
adjusted power in RTS (AAPR). The former is the number of the time intervals of RTS, when the
output power of a source in RTS is different from that in HAS. Meanwhile, the latter means the sum
of the absolute value of the difference between the output power of a source in RTS and that in HAS.
The operation stability of CDG would increase with the decline of the FPAR and AAPR, and the power
quality of the main grid can be improved as the FPAR and AAPR decrease.
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Table 3. Operation simulation results of the generated cases.

Case Number
CDG Exchanged Power

FPAR AAPR (kW) FPAR AAPR (kW)

1 51 315.76 3 210.90
2 51 315.76 5 319.72
3 282 1707.61 11 310.57
4 282 1707.61 20 588.95

It can be observed from Table 3 that the involvement of the multi-timescale characteristics of BES
and DR would contribute to the reduction of the FPAR and AAPR for the CDG and exchanged power.
Besides, based on the results of cases 2, 3, and 4, the involvement of the multi-timescale characteristic
of BES can be more effective to reduce the FPAR and AAPR, compared with that of DR. This is mainly
because the capability of BES to accommodate the imbalanced power in RTS is significantly greater
than that of DRA. Specifically, the BES can accommodate the imbalanced power by adjusting the
charging/discharging power flexibility. However, to reduce the disturbance to the production and life
of customers, the DRA is only utilized to accommodate the imbalanced power by deploying the new
interruptible power. Moreover, for the high unit energy cost of the interruptible power deployed in
RTS, the DRA is often the last component in MG to be adopted for absorbing the imbalanced power.

5.3. Impacts of the Cost and the Time Limit of DRA on the Energy Management of MG

Figure 11 illustrates the impacts of the cost and the time limit of DRA on the energy management
of MG. For the convenience of analyzing, the ratios of the unit energy costs of the interruptible power
deployed in DAS, HAS, and RTS to the unit capacity cost of the scheduled interruptible power are
assumed to remain at 5, 8, and 10, respectively. Given this, the variation trends of such unit energy
costs are determined by those of the unit capacity cost.
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6. Conclusions 

A three-stage hierarchical energy management framework has been put forward to optimize 
MG operation under the uncertainty of RES and load, which takes account simultaneously of the 
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method can settle the models of DAS and HAS after several iterations. Meanwhile, the computation 
speed is fast enough to meet online operational requirements. In addition, the involvement of the 
multi-timescale characteristics of BES and DR in MG energy management would contribute to the 
improvement of the operation stability of CDG and the enhancement of the power quality of the 
upstream grid. Meanwhile, the involvement of the multi-timescale characteristic of BES can be more 
effective to reduce the FPAR and AAPR, compared with that of DR. Furthermore, the decreasing of 
the cost of DRA and the increasing of the time limit of DRA can both help reduce the operation 
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Figure 11. Operation simulation cost of the MG under different combinations of the unit capacity cost
of scheduled interruptible power and the time limit of DRA.

In this paper, the way of changing the unit capacity cost is as follows.

cca
dra,k,t = Kcoecca,ini

dra,k,t (48)

where cca,ini
dra,k,t is the initial unit capacity cost of scheduled interruptible power; Kcoe is the

changing coefficient.
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As seen from Figure 11, the operation simulation cost of MG can decrease with the reduction of
the unit capacity cost of scheduled interruptible power under a certain time limit of DRA. Meanwhile,
the operation simulation cost of MG will reduce with the increase of the time limit of DRA for a given
unit capacity cost. This is because as the time limit rises, the interruptible power can be scheduled at
more hours. In this context, the reserve burden of CDG can drop, and then the generation efficiency
of CDG would increase. Therefore, the operation simulation cost of MG could show a decreasing
tendency with the increase of the time limit.

6. Conclusions

A three-stage hierarchical energy management framework has been put forward to optimize
MG operation under the uncertainty of RES and load, which takes account simultaneously of the
multi-timescale characteristics of BES and DR together with the security constraints. The framework
consists of DAS, HAS, and RTS. In DAS, a scenario-based stochastic optimization model is established
to minimize the expected operational cost of MG, while ensuring its safe operation. In HAS,
a deterministic model is presented to bridge DAS and RTS. In terms of the model characteristic,
a decomposition-based algorithm is adopted to settle such models. In RTS, a control strategy is
presented to eliminate the imbalanced power owing to the fluctuations of RES and load, under the
premise of the minimal effects of the MG on the upstream grid.

Simulation results on a seven-bus MG demonstrate that the presented management framework
can effectively yield an economic and safe scheduling plan. The adopted decomposition-based method
can settle the models of DAS and HAS after several iterations. Meanwhile, the computation speed is fast
enough to meet online operational requirements. In addition, the involvement of the multi-timescale
characteristics of BES and DR in MG energy management would contribute to the improvement
of the operation stability of CDG and the enhancement of the power quality of the upstream grid.
Meanwhile, the involvement of the multi-timescale characteristic of BES can be more effective to reduce
the FPAR and AAPR, compared with that of DR. Furthermore, the decreasing of the cost of DRA and
the increasing of the time limit of DRA can both help reduce the operation simulation cost of MG.

Author Contributions: S.F. and Q.A. conceived and designed the research method; S.F. implemented the main
research work and wrote the manuscript; and L.P. double-checked the proposed algorithm, the results, and the
whole manuscript.

Funding: This research was funded by National Natural Science Foundation of China under Grant No. 51577115
and U1766207, and also by fund of China Scholarship Council (CSC).

Acknowledgments: This work is supported by National Natural Science Foundation of China (No. 51577115 and
No. U1766207), and by fund of China Scholarship Council (CSC).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Notations for the Model Formulation

Table A1. Notations for the model formulation.

Acronyms

MG Microgrid
WD Wind power
BES Battery energy storage
DRA Demand response aggregator
CDG Controllable distributed generators
SOC State of charging

Parameters

Ng, Nba, Ndra Number of CDG, BES, and DRA
Nbs, Nbr Number of buses and branches
Tda Number of hours in a day
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Table A1. Cont.

Parameters

Nda
s Number of scenarios

ρs Probability of scenario s
com,g,i, com,ba,j, com,wd Unit OMC of CDG i, BES j, and WD
ctu,t Time-of-use price at hour t
cpel,t, Penalty price at hour t
R10

u Required spinning reserve
Sx,max Maximum thermal limit of branch x
Vy,max, Vy,min Maximum and minimum bounds of the voltage of bus y
csu,g,i, csd,g,i Startup and shutdown costs
ag,i, bg,i, cg,i Coefficients of the quadratic cost function of CDG i
Pg,i,max, Pg,i,min Maximum and minimum operation limits of CDG i
rru,g,i, rrd,g,i Ramp up and ramp down rates of CDG i
UTg,i, DTg,i Minimum on and off time of CDG i
Gg,i, Hg,i Required on and off time at the start time of the day of CDG i
T10 Response time of the spinning reserve (e.g., 10 min)
Pba,j,max, Eba,j,max Maximum power and capacity of BES j
ηcha

ba,j, ηdis
ba,j Charging and discharging efficiency factors of BES j

SOCba,j,max, SOCba,j,min Maximum and minimum permissible SOC of BES j
SOClim

ba,j SOC limit at the end of the day of BES j

cca
dra,k,t

Unit capacity cost of the scheduled interruptible power of DRA k at
hour t

cda,en
dra,k,t, cha,en

dra,k,t, crl,en
dra,k,t

Unit energy cost of the interruptible power deployed in DAS, HAS, and
RTS of DRA k at hour t

SPdra,k,t,max, SPdra,k,t,min
Maximum and minimum bounds of the scheduled interruptible power
of DRA k at hour t

Tlim
dra,k Response time limit of DRA k

ψdra,k Allowable time set of the scheduling interruptible power of DRA k
Ptie,max Transmission capacity limit of the exchanged power

Variables

Ug,i,t, Yg,i,t, Zg,i,t Operation status, startup status, and shutdown status of CDG i at hour t
Pg,i,s,t, Rg,i,s,t Power and spinning reserve of CDG i at hour t in scenario s
Udis

ba,j,t, Ucha
ba,j,t Discharging and charging statuses of BES j at hour t

Pdis
ba,j,t, Pcha

ba,j,t Discharging and charging power of BES j at hour t
Rba,j,s,t Spinning reserve of BES j at hour t in scenario s
Udra,k,t Operation status of DRA k at hour t
SPdra,k,t Scheduled interruptible power of DRA k at hour t
DPda

dra,k,t Interruptible power deployed in DAS of DRA k at hour t
Ptie,t Exchanged power with the main grid at hour t
Sx,s,t, Vy,s,t Load flow of branch x and voltage of bus y at hour t in scenario s
Pld,s,t, Pls,s,t Load and network loss at hour t in scenario s
Pwd,s,t Power of WD at hour t in scenario s
(t, m) The m-th 15-min time interval at hour t
Pg,i,t,m, Rg,i,t,m Power and spinning reserve of CDG i
Udis

ba,j,t,m, Ucha
ba,j,t,m Discharging and charging statuses of BES j

Pdis
ba,j,t,m, Pcha

ba,j,t,m Discharging and charging power of BES j
Rba,j,t,m Spinning reserve of BES j
DPha

dra,k,t,m Interruptible power deployed in HAS of DRA k
Ptie,t,m Exchanged power with the main grid
Pld,t,m, Pls,t,m Load and network loss
(t, m, n) The n-th 5-min time interval in the m-th 15-min time interval at hour t
∆Pt,m,n Imbalanced power of MG at real time
Pini

g,i,t,m,n Initial power reference of CDG i
DPini

dra,k,t,m,n, DPfna
dra,k,t,m,n Initial and final power references of DRA k

Pini
ba,j,t,m,n, Pfna

ba,j,t,m,n Initial and final power references of BES j
Puc

ba, j,t,m,n, Pdc
ba,j,t,m,n Upward and downward regulation capacities of BES j

Putc
ba,t,m,n, Pdtc

ba,t,m,n Upward and downward total regulation capacities of BES j
Pini

tie,t,m,n, Pfna
tie,t,m,n Initial and final power references of the exchanged power
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