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Abstract: The large mining height fully mechanized top-coal caving mining technique has developed
rapidly and become the most extensively used mining method for ultra-thick coal seams. The arching
of coal/gangue and the drawing out of gangue are peculiar phenomena in the process of fully
mechanized top-coal caving mining, which not only affects the recovery of top-coal, but also affects
the quality of the coal. This paper studies the arching phenomenon in top-coal caving mining process
of ultra-thick coal seam. A series of laboratory granular material simulation experiments were
performing and a top-coal arching model in the framework of mechanics was established to explore
the formation characteristic of arches and their effects to top-coal loss. Then the countermeasures
against the arches and technology path of intelligent mining based on improving top-coal recovery
were put forward and performed in practice. The results show that the recovery ratio of top-coal
has increased nearly 6%, and increased the production efficiency at the same time. The research on
arching mechanism and removing strategies of dynamic random arches effectively improves the
efficiency of fully mechanized top-coal caving mining in ultra-thick coal seams, and provides the
foundation for the realization of intelligent top-coal caving mining technology.

Keywords: top-coal caving mining; arching mechanism; dynamic random arch; granular material;
intelligent mining

1. Introduction

In China, fully mechanized top-coal caving mining in ultra-thick coal seams (especially in 14–20 m
ultra-thick coal seams) has developed rapidly in the past 10 years [1–4]. Studies in topics such as
equipment matching, wall stability, strata control technology, safety guarantee technology for low gas
occurrence and high gas emission have made important progress [5–11].

Intelligent mining is the development direction of coal mining. The application of intelligent
working faces has been studied in China, which will greatly promote the development of coal
intelligent mining technology, especially in the research of fully mechanized top-coal caving intelligent
mining [12–17]. At the same time, it is necessary to consider the characteristics of fully mechanized
caving mining process and its influence on the intelligent top-coal caving [18–20].

The caving of top-coal in ultra-thick coal seam is a complicated process, and the drop-flow state
will directly affect the recovery ratio of top-coal [21–23]. Due to the different fragment dimensions
of the top-coal and immediate roof rock, different fragment dimension of top-coal in the direction of
top-coal thickness, combined with the change of coal caving space, it is difficult to master the coal
gangue flow law and the top-coal loss condition in top-coal caving [5,24].
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Field practice shows that the arching of coal/gangue and the drawing out of gangue are peculiar
phenomena in the process of fully mechanized top-coal caving mining, which not only affect the
recovery ratio of the top-coal, but also affect the quality of the coal [6,22]. With the increase of top-coal
thickness, the space of the caving flow field and fragment dimensions of coal and gangue are increased,
which not only increases the mixing process of the top-coal and gangue, but also increases the arching
probability of top-coal [24–26]. Especially, under consideration of top-coal caving mining in 14–20 m
ultra-thick coal seams, many issues need to be further researched. The main issues are the arching law,
arch structure characteristics, the influence of arches to the smoothness of coal/gangue flow and loss
of top-coal. It is of great significance for improving the recovery ratio of top-coal and solving the key
problem in fully mechanized intelligent top-coal caving mining in ultra-thick coal seams [21,23].

Arching is one of the most universal phenomena encountered in the flow and storage of granular
materials in hopers and silos. The form of arch may prevent the flow of materials [27]. Vivanco,
Rica and Melo found that an arch can be built following the principal compression orientation of the
stress tensor [28]. Perry and Handley researched the dynamic arch in free flowing granular material
discharging from a model hopper [29]. Duran et al. analyzed the relationship between the static friction
and arch formation in granular materials [30]. Peralta-Fabi et al. find a qualitative agreement with
Janssen’s phenomenological result of arching [31]. Bai et al. established a discrete element numerical
simulation model for top coal to discuss the top-coal arching mechanism [24]. Yu et al. proposed
a top-coal analytic model formed by arching blocks in face contact [25].

Based on the above research, with the aim of improving the recovery ratio of top-coal caving
in ultra-thick coal seams, this paper studies the type and arching probability of arches through
physical simulation experiment. A top-coal arching mechanical model was established to study the
characteristics of arches and their effect to top-coal loss. Countermeasures against the arches and
technologies of intelligent mining were then performed in practice to test the feasibility.

2. Physical Granular Simulation Experiment

2.1. Engineering Background

The 8103 Panel of Tashan Colliery employs the fully mechanized full seam top-coal caving mining
method. The main mined coal seam, 292–339 m deep, is 14.5 m thickness and 4◦ dip angle on average.
The mining height is 4.2 m and the caving height is 10.3 m. Therefore, the mining height to top-coal
caving height ratio is 1:2.45. The immediate roof, about 3.49 m thick, is comprised of magmatic rock,
mudstone and silica. It is overlain by silt sandstone, fine sandstone and coarse sandstone with 22.93 m
in thickness. The advance web of the working cycle is 0.8 m, and the top-coal caving interval is 0.8 m.
In the mining process of Panel 8103, caving-outlet blocking or inadequate flowing often occurred and
caused low recovery and efficacy. In order to find out the reason, holes were drilled to the oblique rear
zone of the gob through the intermediate gap of supports. The infrared drilling camera system and
three-dimensional laser scanner were used to observe the structure of top-coal upper the caving-outlet.
And it was found arches were formed in the top-coal.

2.2. Experiment Design

According to the Fragment Dimension Theory [21,32], the granular simulation experiment was
carried out based on the geological condition of 8103 Panel in Tashan Colliery. The top-coal caving
simulation experiment system was self-developed and carried out for laboratory testing. This system
is mainly composed of control system, simple self-moving hydraulic support, power system and
model frame. The model frame is 300 cm in length, 15 cm in width and 220 cm in height. The height
of the self-moving hydraulic support is 40 cm, and the geometrical similarity ratio of the simulation
experiment is C = 40/420 = 1:10.5. The operations, such as moving hydraulic support and controlling
the caving-outlet, can be carried out automatically by setting the parameters of the caving interval.
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Theoretical analysis and field measurements show that the fragment dimension of top-coal is
decreased along the thickness direction [21,23,32], so different colors and sizes of stones were selected
to simulate each layer of coal and rock. Clay was added to simulate coal/rock powder with a smaller
particle size. In the model, the top-coal seam of Panel 8103 was divided and simulated by the upper,
middle and lower layers along vertical direction. The immediate and main roof were simulated by
granular material in different sizes. The thicknesses and fragment dimensions of different layers in the
simulation experiment model are shown in Table 1 and Figure 1.

Table 1. Parameters of simulation experiment model.

Layer
Parameters

Thickness (mm) Dimension (mm)

Middle main roof 600 90
Lower main roof 400 75
Immediate roof 332 70

Upper top-coal layer 378 55
Middle top-coal layer 300 45
Lower top-coal layer 300 27
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Figure 1. Simulation experiment model of top-coal caving mining.

Because of the balanced structures of overlying strata formed upon the top-coal caving face,
the gravity of the overlying strata above the immediate roof is no longer transferred to the granular top
coal, so it is only necessary to add the granular with the thickness of immediate roof in the granular
model. Therefore, the simulation model does not take into account the stress distribution of the
surrounding rock. At the same time, due to the limitation of the model, only the arching characteristics
of the mining direction can be monitored.

3. Experiment Result and Analysis

3.1. Types of Arches

The top-coal/gangue arches were formed in different spaces (lower, middle and upper) of caving
flow field behind the supports. And the span, arching form and composition of the arches were
different in different spaces. The types of arches are as follows:

(1) Lower arch. The lower arch is located at the bottom of the flow space near the caving-outlet with
a small span, big arching probability and high stability. That’s because the flow space decreases
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along the vertical direction. The smaller the flow space is, the larger arching probability would
be. The lower arch can be formed by coal blocks only (as shown in Figure 2a), or coal and gangue
blocks (as shown in Figure 2b). The front skewback of the arch is generally located at the tail
beam of the support, while the rear skewback of the arch is located on the gangue of gob.

(2) Middle arch. The middle arch is located at the middle of the flow space (behind the shield beam in
horizontal). The span of the middle arch is usually longer than that of the lower arch. The middle
arch can be formed by coal blocks only (as shown in Figure 3a) or coal and gangue blocks (as
shown in Figure 3b). The front skewback of the arch is generally located on the shield beam or
tail beam of the support, the rear skewback of the arch is located on the gangue of gob.

(3) Upper arch. The upper arch is located over the support with a large span, small arching probability
and low stability. The front skewback of the arch is generally located on the top beam of the
support, the rear skewback of the arch is located on the gangue of gob. The upper arch can
be formed by coal blocks only (as shown in Figure 4a) or coal and gangue blocks (as shown in
Figure 4b), too.
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According to the arching position and characteristics, the flow space of the arch structure formed
can be divided into the lower arch area, middle arch area and upper arch area. The formation
probability, arching medium, arch span size, stability and their impact on top-coal caving flow, and
recovery of different arches are also different. The different arch areas are shown in Figure 5.
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3.2. Arching Probability and Effect on the Top-Coal Recovery of DRA

In the process of the experiment, the arching times and arching probabilities of different types of
arch and their effects on the top-coal recovery ratio in 20 caving cycles were analyzed, and the results
are shown in Table 2.

Table 2. The arching times and arching probability of different types of arch structures.

Type of Arches Times Arching Probability
(%)

Arch Ratio
(%)

Recovery Ratio
(%)

Upper arch Coal only arch 1 5 1.04 60.30
Coal-gangue arch 2 10 2.08 78.80

Middle arch
Coal only arch 9 45 9.38 51.34

Coal-gangue arch 7 35 7.29 63.23

Lower arch
Coal only arch 56 280 58.33 24.14

Coal-gangue arch 21 105 21.88 82.23

From Table 2, the arching probability of lower, middle and upper arch structure are 3.12%, 6.67%
and 80.21%, respectively. The arching probability of the lower arch is the highest. In the same arching
area, the effect of the coal only arch on recovery ratio is greater than that of the coal-gangue arch.
The recovery ratio of top-coal is only 24% when the coal only arch is first formed in the lower arch area,
so removing of the coal only arch structure in the lower top-coal is an effective way to improve the
recovery ratio of top-coal. However, the recovery ratio has a high value (82.23%) when the coal-gangue
arch is first formed in the lower arch area. If the coal-gangue arch is mainly made up of gangue,
more gangue will reach the caving-outlet once the arch structure is destroyed, resulting in high refuse
content. The middle arch structure has a great influence on the recovery ratio, removing means need
to be applied. The arching probability of upper arch structures is low and have little effect on the
recovery ratio, so nothing needs to be done to them.

3.3. Characteristics of Arches

According to the conditions of the arches formed in different arching areas, the characteristics of
arches can be obtained as followings:
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(1) Arching positions. The arch can be formed in any position in the caving flow space. And the
shape and position of the arch may change with the flow of coal and gangue in the flow field.
In other words, the arching position is dynamic.

(2) Arching probability. The arching probability of arches in different positions is different. With the
contraction of the coal flow field, the probability of arching increases. In other words, the arching
probability is random.

(3) Arching materials. The arching materials are not only just coal blocks but also coal and
gangue blocks.

To sum up, the formation time, position and shape of the arch structure have dynamic and random
characteristics, so they can be called dynamic random arched (DRA) which are formed by different
fragment dimension of the coal and gangue in top-coal caving process. According the characteristics
and types of DRA, the arching conditions are as follows.

(1) Uneven or relative displacement needs to occur.
(2) The support points or constraints should exist to act as the skewback.

3.4. Arching Mechanism of DRA and Its Effect on Top-Coal Caving Process

3.4.1. Arching Mechanism

In a stationary state, the trajectories of the major principal stress of the loose coal and gangue
behind the support are almost perpendicular and bends slightly toward both sides, as shown in
Figure 6a. When the caving-outlet is opened, the static loose coal and gangue loses the support force,
and the coal and gangue near the caving-outlet begins to flow and discharge out. The shape and size
of broken coal/gangue are irregular and uneven, causing large friction between particles. During the
discharge phase, the flow of the coal gangue is blocked, so the movement of the coal and gangue in
higher position will lag than lower ones. In addition, the coal caving space is gradually shrinking from
top to bottom, the trajectories of the major principal stress of coal/gangue near the coal-caving port
will become horizontal, while the one of the coal/gangue in the higher position is gradually reduced,
but still vertical, as shown in Figure 6b.
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The support tail beam and the gangue in the gob form a sloping boundary, providing horizontal
extrusion force for the top coal flowing. Because of the horizontal extrusion force between the
particles, the particles will produce vertical shear stress. When the vertical shear force surrounding the
entire coal-caving outlet is sufficient to withstand the weight of loosed coal and gangue at top of the
coal-caving outlet, the top coal will be arched. At the same time, the contour of the arch will coincide
with the maximum major principal stress trace. The arching model is shown in Figure 7a. The shape of
the top-coal caving-outlet is rectangular, assuming the area of the hole is A, the circumference of the
orifice is L, and the edges of the orifice are a and b, respectively, as shown in Figure 7b.
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Under the condition of arching, an arbitrary height of ∆H is taken, according to the balance of
force:

A∆hρg = L∆hτ, (1)

because the critical radius of the arch hole is:

R =
A
L

, (2)

so:
R =

τ

ρg
, (3)

in which:
τ =

h0ρgcosϕ

2
, (4)

therefore:
R =

h0cosϕ

2
, (5)

in which h0 is the vertical wall height of coal, which is affected by factors such as the broken degree,
shape and water content of the top coal, and its range is 0.3–3 m. The range of internal friction angle is
determined as ϕ = 15–45◦. Therefore, it can be calculated that the critical arch radius is 0.106–1.448 m.
The width of the caving outlet is 0.6–0.8 m. In the case of high broken degree of top coal or even
powder, the phenomenon of arching in the process of coal caving will not occur. For the ultra-thick coal
seam with high strength, low broken degree, barge internal friction angle and large straight wall height,
the critical arch radius is larger than the width of the caving-outlet, so it is inevitable to be arching.

3.4.2. Affecting Factors

The arch is considered as a whole, and the front skewback on the tail is recorded as A, the angle
between the tail beam and the horizontal plane is β, the vertex of the angle is set to E, the rear skewback
on the gangue in the Gob is recorded as B, the resting angle of the gangue is α, the vertex of the rest
angle is F, the uniform pressure from coal gangue above the arch is q, the skewback is supported and
the frictional force respectively, The support force is decomposed into two forces in horizontal and
vertical directions, and the force analysis is shown in Figure 8.

A plane coordinate system is established with origin at the center point of the coal seam, and
the width of the caving-outlet is 2a. The vertex of the arch is C, the vertical distance of point C and
point A is h, the vertical distance of point C and point B is (h +4h), the ordinate of point A is set to h1,
the ordinate of point B is set to h2, then the coordinates of point A, B, C, D, E and F are (−( h1

tanβ + a), h1),

(−( h2
tanα + a), h2), (0, h1 + h), (0, h1 + h), (−a, 0) and (a, 0), respectively.
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The force of the arch is analyzed, and the force of the arch in the x direction is zero:

∑ Fx = 0, F1x = F2x = Fx, (6)

the force of the arch in the y direction is zero:

∑ Fy = 0, F1y + F2y − q
(

h1

tanβ
+

h2

tanα
+ 2a

)
= 0, (7)

the torque of the arch AC segment of arch is zero:

∑ MC = 0, F1y

(
h1

tanβ
+ a

)
− F1xh− q

2

(
h1

tanβ
+ a

)2
= 0, (8)

the torque of the arch BC segment of arch is zero:

∑ MC = 0, F2y

(
h2

tanα
+ a

)
− F2x(h + ∆h)− q

2

(
h2

tanα
+ a

)2
= 0, (9)

any section D in the AV segment of arch:

∑ MD = 0, F1y

(
h1

tanβ
+ a + x

)
− Fx(y− h1)−

q
2

(
h1

tanβ
+ a + x

)2
= 0, (10)

and take the extreme value at the C point of the arch, that is y′x = 0 = 0.
So:

Fx =
q

2h

(
h1

tanβ
+ a

)2
, (11)

F1y = q
(

h1

tanβ
+ a

)
, (12)

F2y = q
(

h2

tanα
+ a

)
, (13)

y =

h
[(

h1
tanβ + a

)2
− x2

]
(

h1
tanβ + a

)2 + h1 (14)
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According to the Theory of Blandarakov [33], there is a relationship among the height h, width D
of dynamic drop arch and the internal friction coefficient f of the material:

f = D/2h, (15)

in this paper:
D
2

=
h1

tanβ
+ a, (16)

so:

h =

h1
tanβ + a

f
(17)

Equation (12) is introduced into Equation (9) to get the curve equation of the arch

y =

(
h1

tanβ + a
)2
− x2(

h1
tanβ + a

)
× f

+ h1 (18)

For the granular arch, the steeper of the arch is, the more difficult it is to destroy, and the steeper
arch can be obtained by the slope of the arch curve. Derivation of equation of parabola for the
tangent equation:

y′ =
−2x(

h1
tanβ + a

)
f

(19)

Take 2a = 0.8 m, h1 = 1, tail beam angle range is 30–60◦, then therange of horizontal coordinate of
front arch skewback is (1/tan30 + 0.4, 1/tan60 + 0.4), namely (−2.13, −0.98) in the first half of the arch
to take a point G, and ordered xG = −0.8, then he slope at the point G is:

y′x = 0.8 =
−1.6(

1
tanβ + 0.4

)
f

(20)

It is concluded that the slope of point G is related to the inclination angle of the tail beam and the
internal friction coefficient of the top coal, and the relationship among them is shown in Figure 9.
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Figure 9. The relationship among slope of arch, internal friction confficient and angle of tail beam.

From Figure 9, the steep degree of arch is influenced by the internal friction coefficient of the
coal/gangue and the angle of tail beam. For the top-coal caving mining, the smaller the top coal
fragmentation, the smaller the inner friction coefficient and the smaller the slope of the arch. Therefore,
reducing the crushing block size of the top coal and increasing the angle of tail beam can reduce the
chance of arching. From the above, although the formation of the dynamic arch has randomness,
the factors which affect the formation of DRA are as follows.
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(1) Fragment dimension. Mutual contact and extrusion would have had to occur between the
top-coal and gangue in the process of top-coal caving mining. The larger the top-coal/gangue
is, the easier it is to squeeze to form a more stable hinge structure, thus forming a stable arch
structure. So the coal/gangue fragment dimension and distribution have great influence on the
formation of arch structure.

(2) Arch span. The span of the arch structure determines the number of coal/gangue blocks in the
arch structure. Usually, the arch structure is relatively stable, once one block in the arch structure
is unstable, the whole arch structure is damaged and unstable, so the larger the span of arch
structure, the lower stability and higher position of the arch would be.

(3) Horizontal binding force. Because the arch structure usually belongs to the parabolic curve.
The constraint of the horizontal force is an important factor to stabilize the arch structure. Usually,
the horizontal force can provide the constraint for the skewbacks. And the horizontal binding
force can also increase the extrusion between blocks in the arch structure, thus increase of the
stability of the whole arch structure.

Therefore, in the process of fully mechanized top-coal caving mining, the lower arch structure
span is small. Because the flow field range decreases from top to bottom, the binding force in horizontal
direction increases, the arching probability of the lower arch structure is the highest, and the arching
probability of the upper arch structure is the lowest.

3.5. Removing Strategies of DRA and Technology Path of Intelligent Top-Coal Caving Mining

3.5.1. Removing Strategies of DRA

The concrete measures taken in the top-coal caving working face are as follows.

(1) Top-coal water softening

Dynamic pressure combined with static pressure water injection was used in long boreholes to
softening the top-coal of the Panel 8103, that is, the boreholes were bored in both gateways in opposite
directions along the coal seam. The water injection boreholes move with the recovery schedule
and keep a 30 m distance from the working face. Fragment dimension of the top-coal in non-water
injection and water injection zone were observed, and the observation result as shown in Figure 10a,
the fragment dimension as shown in Figure 10b,c.

Water was infused into the top-coal seam of Panel 8103 for softening. Then, the fragment
dimension of the top-coal decreased in the top-coal caving process, and the arching probability
reduced synchronously.

(2) Improve the working resistance of the supports and oscillate the caving beam

The zf-15000/28/52 low top-coal caving supports were laid in the Panel 8103 whose shield beam
had two jacks installed (the max working force is 2000 KN). So the large resistance supports were used
to block the top-coal through the support in the mining process to decrease the fragment dimension
of the top-coal repeatedly. The shield beam can swing up 19.5◦ and down 41◦. In the process of coal
caving, the lower arch structure near the caving outlet would be removed by the telescopic motion of
the tail beam, and the middle arch structure would be removed by the swinging of the shield beam.
The strong oscillation of the jacks decrease the fragment dimension of the top-coal and increase the
fluidity of the caving flow.

(3) Multi-cycles/multi-outlets top-coal caving

In view of the occurrence of different DRA in the process of top-coal caving, group multi-cycles
and multiple-outlet caving method were adopted. If the upper arch structure is formed behind No. 1
support during the top-coal caving process, the collapse of the arch structure would be caused by the
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top-coal caving behind adjacent support because of the large span of the upper arch. So, when the
upper arch is formed in the flow space behind No. 1 support, the caving outlet of No. 1 support would
be closed and caving the top-coal behind the adjacent support subsequently, the caving outlet should
be re-opened when the top-coal caving behind the No. 2 support was finished to draw out all top-coal
behind the No. 1—multi-cycles method. Or, adjacent 2 caving outlets of supports, i.e., Nos. 1 and 2
are one group and Nos. 3 and 4 is another group, would be opened synchronously for one group to
increase the flow space and decrease the arching probability of top-coal–multi-outlet method.

According to the measured results, through the above measures, the recovery of top coal in the
fully mechanized top coal caving mining of ultra-thick coal seam has increased nearly 6%, from the
original 80.77% to 86.67%, and increased the production efficiency at the same time.
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dimension after water injection.

3.5.2. Technology Path of Intelligent Top-Coal Caving Based on the Removal Strategies of DRA

DRA in top-coal caving mining not only affects the caving smoothness and recovery ratio of the
top-coal but also affects the coal caving time. Therefore, these factors must be taken into account in the
research of fully-mechanized intelligent top-coal caving mining, especially the function of intelligent
analysis to judge the exiting of arches and removal of them. Meanwhile, the top-coal caving mining
technology, support controlling technology, smoothness of top-coal and the coordination of all mining
processes should be done to realize the intelligent control of the top-coal caving mining. To this end,
the technical path is presented as shown in Figure 11.
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4. Discussion

In this paper, the types, arching probability, and effect on top coal caving mining of arch formed in
top coal caving process in fully mechanized top-coal caving mining is studied by means of laboratory
physical simulation test. Three different arch structures were recognized according to the arching
stratum characteristics. And the arch medium was determined. The DRA characteristics were described
and their effects are found. The mechanism of arching and factors influencing arching are analyzed
through mechanical analysis, and combined with the above research, the related measures are put
forward through field practice. The above measures can effectively improve the recovery rate of
top coal.

In terms of on-site operation, the top-coal water softening project is a huge and complex
construction, which also effects the production efficiency of the working face. In the later stage,
water injection equipment and hydraulic support can be integrated together to make water injection as
a function of the hydraulic support, which will increase the convenience of the operation and improve
the efficiency. And the production efficiency of the working face has a greater impact on equipment
arrangement in advance. Water injection equipment and hydraulic support integration can increase
the convenience of operation.

Besides the arches in top coal caving mining, there are many other factors affect the recovery
ratio of top-coal, the calculations for the ellipsoid of relaxation zones would be taken into account in
future studies.

5. Conclusions

(1) According to the layer characteristics and medium composition, the arches are divided into lower,
middle and upper arch layers in fully mechanized top coal caving mining of ultra-thick coal seam.
The coal and gangue are the medium composition of arches. And there are different arching
probability and stability in different layers.

(2) The arch has dynamic and random characteristics. The stability of DRA was influenced by the
fragment dimension, arch span and the horizon binding force. The arching probability of the
lower arch is higher than others. The arches can be damaged by destabilizing the skewback and
adopting the composing sequence.

(3) In the process of top coal caving, the arching probability is reduced and the recovery ratio is
improved by means of top coal water softening, improving the working resistance of the supports,
oscillating the caving beam, and multi-cycles/multi-openings top coal caving.
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(4) The intelligent fully mechanized top coal caving should consider the influences of the arch
structure during the caving process. To ensure the maximum recovery of top-coal, the caving
technology and support action should be combined to realize the intelligent detecting and
removing arches.
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