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Abstract: Detection and analysis of series arcs is significantly meaningful for preventing arc-caused
electrical fires in advance. However, the improvement of arc detection sensitivity and the discrimination
of arc conditions are still challenges when developing an arc fault detector. In this paper, arc signals
in various loads with three major incomplete connection states were detected and further analyzed
using the discrete wavelet transform. It was verified that the db13 was the optimal mother wavelet
to analyze the arc pulses and the decomposed signals in the detail components of D5, D6, D7, and
D8 were related with arc phenomena. Therefore, a band pass filter with a frequency from 2.4 to
39 kHz was designed, which can extract arc signals while eliminating the AC mains current and
noise generated in loads. By investigating the arc signal energy as well as the arc pulse counts that
were important parameters of arc occurrence, an arc diagnosis algorithm was developed based on
LabVIEW program for electrical fire prevention.

Keywords: series arc; electrical fires prevention; discrete waveform transform; arc detection filter;
signal energy; arc diagnosis algorithm

1. Introduction

According to the Korea National Fire Data System, more than 40,000 fire accidents happened every
year from 2010 to 2016, causing enormous financial losses and human injuries and deaths. Electrical
fires, which account for more than 37% of the total fire accidents, are a serious hazard for residential
areas and buildings and should be prevented in advance. Figure 1 shows the causes of electrical
fire. It can be seen that about 42% of the electrical fires are caused by poor connections, degraded or
compressed insulation, and partial connection, which can be attributed to the series arcing [1,2].

Although the existing methods of fuses, leakage current circuit breakers, and molded case circuit
breakers are installed in circuits for over current and electric shock protection, they fail to eliminate
arcing. To be specific, a fuse melts its metal wires when too much current flows through it, whereas it
does not operate when an arc of low amplitude occurs. A leakage current circuit breaker works based
on the unbalanced current between the line and neutral current and is intended to avoid electric shocks.
A molded case circuit breaker can open an over current; however, arcing is not in the operational
range of the time-current characteristics of a circuit breaker [3,4]. The arc fault circuit interrupter
described in the Underwriters Laboratories (UL) 1699 and the arc fault detection devices described in
the International Electrotechnical Commission (IEC) 62606 are introduced to mitigate the effects of
arc [5–7]. They operate to de-energize the circuit when an arc fault is detected. However, discrimination
of the arc condition is still a challenge for development an arc fault detector [8].

Therefore, in this paper, to improve arc detection sensitivity and to prevent arc-caused fires in
advance, an optimal series arc detection filter was designed based on the analysis of arc characteristics
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by discrete wavelet transform (DWT). Further, an arc diagnosis algorithm was developed by analyzing
the filtered arc signal energy and arc pulse count.

Figure 1. Cause of electrical fires in South Korea in 2010–2016. (Data from Korea National Fire Data System.)

2. Series Arc and Its Characteristics

An arc is a luminous discharge of electricity across an insulating medium, usually accompanied
by the partial volatilization of the electrodes [5,6,8]. Owning to the current flowing in the circuit and
the high temperature, arcing is one of the main causes of electrical fires. As shown in Figure 2, there
are three types of arc faults according to the following path of arc current: series arc, parallel arc,
and ground arc, among which the series arc occurs the most frequently [3,9–12]. The series arc is in
series with a load as illustrated in Figure 2. Since the energy level of arc current is too low, owing to
the existence of arc impedance and load impedance, the fault circuit cannot be tripped by the circuit
breaker or fuse.

Figure 2. Types of arc faults. (a) series arc; (b) parallel arc; (c) ground arc.

Figure 3 shows fire accidents investigated by the National Forensic Service, all of which were
caused by series arcs. It was also confirmed that the series arc faults in a circuit occur due to partial
disconnection between cords, loose connection between cord and terminal, and loose connection
between outlet and plug. Most of the existing studies about series arcs use the carbon graphite–copper
electrode specified in UL 1699 and IEC 62606 to generate the arc signal [5,6,8]. It is an ideal condition,
under which the magnitude of arc current is much higher than that of the actual series arc and can
be easily detected. In this paper, the actual series arc faults, including cord-cord, cord-terminal,
and outlet-plug, were used to generate the arc signal and to analyze the characteristics of series arcs
that cause fires.
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Figure 3. Fire accidents caused by series arc. (a) Cord-cord; (b) cord-terminal; (c,d) outlet-plug.

Typical current waveforms of series arcs in a resistive load and a switched-mode power supply
(SMPS) load are shown in Figure 4. Near the zero-crossing point, the arc extinguishes due to the
insufficient voltage to sustain discharge and ignites again after the voltage recovers, resulting in the
appearance of a shoulder in every half cycle. There are also rising edges just after the shoulders.
In addition, high frequency components can be seen on the current waveform. These features are
usually used to distinguish an arc condition or a normal condition of the circuit.

Figure 4. Typical current waveforms of a series arc. (a) Resistive load; (b) switched-mode power supply
(SMPS) load.
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3. Experiment and Analysis

3.1. Experimental Setup

Figure 5 shows the experimental setup. An arc generator and a load are connected in series with
the 220 V AC mains. The arc generator is designed according to UL 6199. Electrodes as cord-cord,
cord-terminal, and outlet-plug are used to simulate the actual incomplete connections that cause
electrical fires in an indoor wiring system. A resistive load, a SMPS load, and a motor load were
used for experiments. The series arc current is detected using a high frequency current transformer
(HFCT, Pearson Electronics Inc., Palo Alto, CA, USA) with a frequency range of 1 Hz–20 MHz. Signals
are acquired using a digital storage oscilloscope (DSO, YOKOGAWA, DL9140, Tokyo, Japan) with
a sampling rate of 5 GS/s and a bandwidth of 1 GHz, and using a data acquisition (DAQ, National
Instrument, USB-5133, Austin, TX, USA) unit with a sampling rate of 100 MS/s and a bandwidth of
50 MHz. DWT analysis and arc diagnosis algorithm are developed based on LabVIEW program.

Figure 5. Experimental setup.

3.2. Analysis of Series Arcs Using Discrete Wavelet Transform

Wavelet transform (WT) is an advanced signal processing technique that is able to analyze a signal
in the time and frequency domains simultaneously. There are two types of WT, the continuous wavelet
transform (CWT) with excessive computation and the discrete wavelet transform (DWT) based on the
multi-resolution analysis (MRA) [13–17]. In this study, the DWT is used to analyze the arc current
signal. In the MRA, a mother wavelet is used to decompose the input signal into a specific level (N) by
corresponding low and high pass filters, generating the detail (D) and approximation (A) components.
The results of MRA are the detail coefficients at each level (D1, D2, ···, Dn) and the approximation
coefficients at the highest level (An) [18–20].

3.2.1. Optimal Mother Wavelet Selection

To select the optimal mother wavelet, the correlation coefficient was used to calculate the similarity
between various wavelets and arc current pulses in resistive, SMPS, and motor loads with cord-cord,
cord-terminal, and outlet-plug faults. The value of the correlation coefficient is between 0 and 1.
A higher correlation coefficient value indicates the greater similarity between the mother wavelet and
the pulse.

An arc current pulse in the resistive load with a cord-cord fault is shown in Figure 6a, and its
correlation coefficients with Daubechies (db), Biorthogonal (bior), Coiflet (coit), and Symlet (sym)
wavelet is shown in Figure 6b. It can be seen that the db13 shows the highest similarity with the
arc current pulse. Further analysis of arc current pulses in other loads with different faults is shown
in Table 1. Except for the pulses in the SMPS load with cord-cord fault and the motor load with
outlet-plug fault, whose optimal selections are db12 and db14, respectively, the wavelet db13 shows
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the highest similarity with arc current pulses. Therefore, the db13 was selected as the optimal mother
wavelet for universal analysis.

Figure 6. Correlation coefficient between arc current pulse in the resistive load with cord-cord fault and
various wavelets. (a) An example of arc current pulse; (b) result of correlation coefficient calculation.

Table 1. Results of optimal mother wavelet selection.

Load Series Arc Fault Optimal Mother Wavelet Correlation Valve

Resistive load
Cord-cord db13 0.204

Cord-terminal db13 0.291
Outlet-plug db13 0.227

SMPS
Cord-cord db12 0.181

Cord-terminal db13 0.232
Outlet-plug db13 0.236

Motor
Cord-cord db13 0.247

Cord-terminal db13 0.258
Outlet-plug db14 0.204

3.2.2. Multi-Resolution Analysis

After selecting the optimal mother wavelet, the arc current signals in 6 sinusoidal cycles were
decomposed using the MRA method to analyze the signal frequency range. As illustrated in Figure 7,
the input signal is down-sampled by a low pass filter and a high pass filter at level 1 and is decomposed
into the approximation component A1 and the detail component D1. The approximate component is
then down-sampled by filters at the next level until reaching the highest level. Finally, the arc current
signal is decomposed into D1, D2, ···, D8, and A8. As the current signal was detected with a sampling
rate (fs) of 1.25 MS/s, the highest frequency of input signal is 625 kHz. The frequency range of the
down-sampled approximation (FA,n) and detail (FD,n) component can be given by
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FA,n =

[
0,

fs

2n+1

]
(1)

FD,n =

[
fs

2n+1 ,
fs

2n

]
(2)

where n is a level variable and is from 1 to decomposition level (N) [21,22]. From Figure 7, most of the
arc-related signals corresponding to the shoulder are distributed in detail components D6, D7, and D8,
whereas D1–D5 reflect the noise and the approximation component A8 presents the mains current.
A summary of arc signal distribution in the decomposed components using the same sampling rate
and decomposition method is shown in Table 2. Depending on the load type, arc-related signals are
distributed in D6–D8 in the resistive and motor load and are distributed in D5–D7 in the SMPS load. A
typical example of decomposition of an arc current signal in SMPS load with cord-cord fault is shown
in Figure 8. Therefore, a proper arc detection filter should have a frequency range from 2.4 to 39 kHz.

Figure 7. Decomposition of arc current signal in the resistive load with cord-cord fault.
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Table 2. Distribution of arc signal in the decomposed components.

Load Series Arc Fault Arc Signal Distribution Frequency Range (kHz)

Resistive load
Cord-cord D6, D7, D8

2.4–19.5Cord-terminal D6, D7, D8
Outlet-plug D6, D7, D8

SMPS
Cord-cord D5, D6, D7

4.8–39Cord-terminal D5, D6, D7
Outlet-plug D5, D6, D7

Motor
Cord-cord D6, D7, D8

2.4–19.5Cord-terminal D6, D7, D8
Outlet-plug D6, D7, D8

Figure 8. Decomposition of arc current signal in the SMPS load with cord-cord fault.

3.3. Design of a Series Arc Detection Filter

Based on the decomposition of arc current signals using the MRA method, a band pass filter (BPF)
with frequency of 2.4–39 kHz was designed. Figure 9 shows the circuit diagram and frequency response



Energies 2018, 11, 992 8 of 13

of arc detection filter, which passes through the arc signal and attenuates the mains current by −38 dB.
The BPF was connected with HFCT and its output was transmitted to the DAQ for further analysis.

Figure 9. Arc detection filter. (a) Circuit diagram; (b) frequency response.

3.4. Analysis of Signal Energy

To distinguish the arc condition and normal condition and to attenuate the mains current and
noise, the output signals of BPF were compared. As shown in Figures 10–12, the sinusoidal mains
current is totally attenuated by the BPF, whereas the arc signal is well detected. There is also a
great increase in the power frequency, which means that the signal energy can be an indicator of
arc occurrence.

The signal energy of a given signal s(t) is defined as

Signal energy =
K

∑
i=1

s(t)2
i (3)

where K is the signal record length and i is a length variable. The signal energy of normal and
arc condition in the resistive load are 8.41 and 284.41, and are 42.11 and 3861.02 in the SMPS load,
respectively. In the motor load, the signal energy of normal condition is 0.07 and that of arc condition
is 6.80. Therefore, the signal energy can be used for distinguishing the normal and arc condition.
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Figure 10. Output signal of the band pass filter (BPF) in the resistive load. (a) Time domain signal;
(b) power spectrum.

Figure 11. Output signal of the BPF in the SMPS load. (a) Time domain signal; (b) power spectrum.
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Figure 12. Output signal of the BPF in the motor load. (a) Time domain signal; (b) power spectrum.

4. Arc Diagnosis Algorithm

4.1. Development of the Algorithm

The AC mains current and noise of load can be well eliminated by the BPF and the signal energy
can be used for distinguishing the normal and arc condition. However, transient overvoltage and
switching may be mistaken as an arc signal as they cause an increase in signal energy. Such disturbances
can be solved by observing the signal pulse count. To be specific, transient overvoltage or switching
sure occurs only once, whereas the arc signal appears intermittently with pulse count more than 2.

Based on the analysis of arc pulse count and arc signal energy, an arc diagnosis algorithm was
developed. Figure 13 shows the flowchart and block diagram of the proposed algorithm. The algorithm
operated as follows:

1. Detection of an arc signal in a 100 ms period using the HFCT and the BPF.
2. Count the pulse number Ni.
3. Calculate the signal energy Ei.
4. If the pulse number is >2, and the signal energy is 30 times the initial period (E0), an arc alarm

operates.
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Figure 13. Development of an arc diagnosis algorithm. (a) Flowchart; (b) block diagram.

4.2. Case Studies

To verify the validity of the proposed algorithm, case studies were carried out to detect arc signal
in different loads with faults. Examples of its application in the resistive and SMPS load are shown
in Figure 14. As shown in Figure 14a, the initial signal energy in the resistive load is 1.57, as the
detected signal has energy over 47.1 and the pulse count is over 2, the alarm warns. In the SMPS load
in Figure 14b, initial energy of normal signal is 1.75, the alarm operates only when the energy of the
detected signal is higher 52.5 and the arc pulse count is more than 2. It was also confirmed that the
proposed algorithm identified arcs accurately in other situations.

Figure 14. Application of the proposed algorithm. (a) In the resistive load; (b) in the SMPS load.

5. Conclusions

In this paper, series arc signals in resistive, SMPS, and motor loads with cord-cord, cord-terminal,
and outlet-plug faults were detected and analyzed by DWT. After calculating the correlation coefficients
between the single arc pulses and wavelets, the optimal mother wavelet used for decomposing arc
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signals was selected as db13. The arc signals were then decomposed using MRA. From the results, arc
signals were distributed in the detail components D5, D6, D7, and D8, corresponding to the frequency
range of 2.4–39 kHz, based on which the optimal arc detection filter was designed and fabricated.
By investigating the filtered signal, it was confirmed that the signal energy of an arc condition was
more than 30 times of that of normal condition and that arcing occurred at least twice in 6 sinusoidal
cycles. Therefore, the arc diagnosis algorithm was developed by analyzing the arc signal energy and
the pulse count, and has potential for preventing electrical fires.
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