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Abstract: The demand for sensorless control of surface-mounted permanent magnet synchronous
motor drives has grown rapidly. Among various sensorless control techniques developed, Matsui’s
current model-based approach and the extended Kalman filter approach have gained much attention.
However, the performance of these control methods can be severely worsened or may even become
unstable under strong disturbances or sensing failures. This paper presents a comparative study of the
extended Kalman filter, the resilient extended Kalman filter, and the unscented Kalman filter-based
sensorless direct torque and flux control approaches for the surface-mounted permanent magnet
synchronous motor drives. Computer simulation studies and hardware implementation results
have shown the efficiency and superior performance of the resilient extended Kalman filter and
the unscented Kalman filter over the traditional extended Kalman filter for sensorless direct torque
control applications.

Keywords: permanent magnet synchronous motors; Kalman filtering; sensorless control

1. Introduction

Over the past decades, there has been a rapid increase in the deployment of surface-mounted
permanent magnet synchronous motors (SPMSM) in industrial and commercial applications, such
as wind energy conversion systems, hybrid electric vehicles, robotics, home appliances, etc.
Adjustable speed SPM drives offer many distinct advantages including large torque to weight ratio,
wide constant-power operating range, high efficiency and reliability, etc.

A wide variety of adjustable-speed control techniques have been studied in literature for
permanent magnet AC motors. Among them, field oriented control (FOC) for SPMSM drives has
reached industrial application maturity. FOC requires coordinate transforms and space-vector pulse
width modulation (SVPWM), through which the flux and torque of AC machines are controlled
independently [1–5]. In order to eliminate these requirements, direct torque control (DTC) was
proposed as a powerful alternative [6,7]. The advantages of DTC include fast dynamic responses,
elimination of coordinate transforms and SVPWM. DTC also has minor disadvantages, in comparison
with FOC, including: difficulties to control torque and flux at relatively low speed, variable
switching frequency, larger harmonics, larger noise level and ripples at low speed range. Despite the
aforementioned shortcomings, DTC is also a feasible solution for commercial permanent magnet
AC drives.

DTC is in nature “sensorless”, as rotor position is not required for performing coordinate
transform [6,7]. However, it relies on the information of stator flux vector. Especially, at relatively
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low speed range, due to inaccurate estimation of flux vector, DTC suffers from the performance
degradation. Sensorless estimation of stator flux and rotor speed has to be designed to preserve the
advantages of direct torque control. For traditional DTC, stator flux linkage (λs) is estimated through
integrating stator induced voltage over time.

λs(t) =
∫
(vs − Rsis)dt + λs(0) (1)

Even minor dc offsets in voltage or current signals accumulated by integration will form a
substantial disturbance. Hence, traditional estimation of λs contains large and noisy ripples [8–10].

To improve the estimation of stator flux linkage, various estimators have been developed including
the back-emf integration methods such as low-pass filtering [11–13], and stabilizing the integrator
with a PI-corrector or current offset methods [14–17]. However, these approaches are not designed
for real-time estimation. The sliding mode observer (SMO) is developed for providing real-time state
estimates for permanent magnet synchronous motors in [18–20]. However, higher-order derivatives
presented in SMO are not desirable for hardware implementations. The extended Kalman filter (EKF)
is a popular approach for sensorless control scheme. However, the performance of EKF deteriorates or
may even become unstable under measurement failure conditions [21–27].

To improve EKF performance under external disturbances, noise and measurement failures, this
paper presents a comparative study of the extended Kalman filter (EKF), the resilient extended Kalman
filter (REKF), and the unscented Kalman filter (UKF)-based sensorless direct torque control approaches
for SPMSM drives. Computer simulation studies and hardware implementation results have shown the
efficiency and superior performance of the resilient extended Kalman filter and the unscented Kalman
filter over the traditional extended Kalman filter for sensorless direct torque control applications.

This paper is organized as follows: Section 2 presents the dynamics of surface-mounted permanent
magnet synchronous motors. Section 3 provides the overall control scheme of direct torque control.
Section 4 presents the traditional extended Kalman filtering, the resilient extended Kalman filter and
the unscented Kalman filter for nonlinear estimation. Computer simulation results and hardware
implementation results are illustrated in Section 5. Finally, conclusions are summarized in Section 6.

2. Dynamics of Surface-Mounted Permanent Magnet Synchronous Motors

Applying Park’s transform, the surface-mounted permanent magnet synchronous motors
(SPMSM) can be modeled as follows:

vd = Rsid +
dλd
dt
−ωeλq (2)

vq = Rsiq +
dλq

dt
+ ωeλd (3)

λd = Lsid + λm (4)

λq = Lsiq (5)

It should be noted that the direct and quadrature axis stator inductance are the same for SPMSM,
i.e., Ld = Lq = Ls, as no rotor saliency exists.

Equivalently, the current frame of reference model can be reached as follows:

did
dt

= −Rs

Ls
id + ωeiq +

1
Ls

vd (6)

diq

dt
= −Rs

Ls
iq −ωeid −ωe

λm

Ls
+

1
Ls

vq (7)
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The developed electromechanical torque is

τe =
3
2

P
2

λmiq (8)

Note that the mechanical and electrical angular velocities are related by

ωe =
P
2

ωm (9)

The mechanical dynamics can be summarized as

dωm

dt
=

1
J
(τe − τl − Dωm) (10)

Applying (8) and (9), we have

dωe

dt
=

3
2J

(
P
2

)2
λmiq −

P
2J

τl −
D
J

ωe, (11)

and

dθe

dt
= ωe (12)

The external torque load τl is also considered as state variable, which is assumed to be constant
over a brief period of sampling time Ts, i.e., we have

dτl
dt
≈ 0 (13)

The continuous-time SPMSM state space model can be written as follows:

ẋ =
d
dt


id
iq

ωe

θe

τl

 ; x =


id
iq
ωe

θe

τl

 ; u =

[
vd
vq

]
; y =

[
id
iq

]
(14)

ẋ = Ac(x) + Bc(u) = f (x, u) (15)

y = hc(x) = h(x, u), (16)

where we have

Ac =


− Rs

Ls
ωe 0 0 0

−ωe − Rs
Ls
− λm

Ls
0 0

0 βλm −D
J 0 − P

2J
0 0 1 0 0
0 0 0 0 0

 ; Bc =


1
Ls

0
0 1

Ls

0 0
0 0
0 0

 ; hc =

[
1 0 0 0 0
0 1 0 0 0

]
(17)

and

β =
3
2J

(
P
2

)2
(18)

Notice that subscript c represents continuous-time signals.
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Applying Euler’s discretization, the discrete-time system model can be reached as follows:

xk+1 =xk + Ts f (xk, uk)

yk =h(xk, uk) (19)

where Ts is the sampling time.
Based on Jacobian matrices computation, a linear-time-invariant discrete-time state space model

can be reached as follows:

x̂k+1 =


id(x̂k+1)

iq(x̂k+1)

ωe(x̂k+1)

θe(x̂k+1)

τl(x̂k+1)

 = Ak


id(x̂k)

iq(x̂k)

ωe(x̂k)

θe(x̂k)

τl(x̂k)

+ Bk

[
vd(x̂k)

vq(x̂k)

]
, (20)

where we have

Ak = I +
∂ f (xk, uk)

∂x

∣∣∣∣
x=x̂k

· Ts =


1− Rs

Ls
Ts ωeTs iqTs 0 0

−ωeTs 1− Rs
Ls

Ts −(id +
λm
Ls
)Ts 0 0

0 βλmTs 1− D
J Ts 0 − P

2J Ts

0 0 Ts 1 0
0 0 0 0 1

 (21)

Similarly,

Bk =
∂ f (xk, uk)

∂u

∣∣∣∣
x=x̂k

· Ts =


Ts
Ls

0
0 Ts

Ls

0 0
0 0
0 0

 (22)

The measurement equation can be expressed as:

yk = hk(xk) =

[
id
iq

]
= Ck


id
iq

ωe

θe

τl

 , (23)

and

Ck =
∂h(xk)

∂x

∣∣∣∣
x=x̂k

=

[
1 0 0 0 0
0 1 0 0 0

]
(24)

3. Direct Torque Control

Direct Torque control (DTC) was proposed by I. Takahashi for controlling induction motors in the
mid 1980s [6,7]. The main feature of DTC is to apply appropriate voltage space vectors for voltage
source inverter (VSI) from a predefined switching table. Voltage vectors with their position in space is
shown in Figure 1. The six voltage space-vectors (V1−V6) divides the space domain into six equal-area
sectors. Either V0 or V7 can be used to represent a null vector at the origin. As DTC does not rely on
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pulse-width-modulation for generating the inverter voltage vectors, it requires less computational
time with a reduced structure.

Figure 1. Voltage space vectors.

The overall scheme of the sensorless direct torque control with nonlinear Kalman filtering is
shown in Figure 2. The desired stator flux λre f and torque τre f are compared with the estimated stator
flux λest and torque τest in the hysteresis flux and torque controllers, respectively. The flux controller is
a two-level hysteresis comparator, whereas the torque controller is a three-level hysteresis comparator.
The flux and torque hysteresis comparators are illustrated in Figure 3.

Figure 2. The proposed block diagram of DTC with nonlinear estimators.

The digitized output signal of the flux controller are defined based on

dλ = 1 f or λest < λre f − Hλ (25)

dλ = 0 f or λest > λre f + Hλ, (26)

where 2Hλ is the flux tolerance band.
The digitized output signal of the torque controller are defined based on

dτest = 1 f or τest < Hτ (27)

dτest = 0 f or τest = Hτ (28)

dτest = −1 f or τest > Hτ (29)

where 2Hτ is the torque tolerance band.
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Figure 3. The flux and torque hysteresis comparators.

The stator flux sector index N is obtained from the computed angular position

γs = tan−1 λβ

λα
(30)

Together with digitized variables dλ and dτest, a digital address for accessing an EPROM or
EEPROM can be created. Hence, the appropriate voltage space-vector can be selected, which is
governed by the switching rules in Table 1. Hence, the voltage source inverter can produce the desired
three-phase voltages for controlling rotation.

Table 1. Direct Torque Control Switching Table.

dλ dτest
Number of Sectors (N)

1 2 3 4 5 6

dτest = 1 V2 V3 V4 V5 V6 V1

dλ = 1 dτest = 0 V7 V0 V7 V0 V7 V0

dτest = −1 V6 V1 V2 V3 V4 V5

dτest = 1 V3 V4 V5 V6 V1 V2
dλ = 0 dτest = 0 V0 V7 V0 V7 V0 V7

dτest = −1 V5 V6 V1 V2 V3 V4

4. Nonlinear Estimation

First, we revisit the traditional extended Kalman filter [28,29]. Over the past 40 years, EKF has
been the most widely used nonlinear estimation technique for various industrial applications [30–32].
In order to provide a more reliable nonlinear estimation against external disturbances, noise, bad data
and measurement failures, we propose the unscented Kalman filter (UKF) and the resilient extended
Kalman filter (REKF)-based sensorless DTC technique for permanent magnet synchronous motors.
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4.1. Extended Kalman Filter

Consider the discrete-time nonlinear system dynamics and measurement equation given
as follows:

xk+1 = f (xk, uk, vk)

yk = h(xk, uk, wk) (31)

The extended Kalman filter estimation consists two steps: time update and measurement update.
First, define the following Jacobian matrices:

Ak =
∂ f
∂x
|x=x̂k , Fk =

∂ f
∂v
|x=x̂k

Ck =
∂h
∂x
|x=x̂k , Gk =

∂h
∂w
|x=x̂k (32)

For time update, we compute the priori covariance and priori state estimate

P−k = Ak−1P+
k−1 AT

k−1 + Fk−1Vk−1FT
k−1 (33)

x̂−k = fk−1(x̂+k−1, uk−1, 0) (34)

where Vk is the covariance matrix of process noise vk at time step k. x̂− is the priori state estimate and
P−k is the priori covariance matrix.

The measurement update can be summarized as follows

Kk = P−k CT
k (CkP−k CT

k + GkWkGT
k )
−1 (35)

x̂+k = x̂−k + Kk[yk − hk(x̂−, 0)] (36)

P+
k = (I − KkCk)P−k (37)

where x̂+k is the posteriori state estimate; P+
k is the posteriori covariance matrix.

4.2. Resilient Extended Kalman Filter

Consider the discrete-time nonlinear stochastic system model and measurement equations as
follows [33]:

xk+1 = f (xk) + vk

yk =


y1

k
y2

k
...

yp
k

 =


γ1

k h1(xk) + w1
k

γ2
k h2(xk) + w2

k
...

γ
p
k hp(xk) + wp

k

 , (38)

where

xk ∈ Rn state vector
vk ∈ Rn system noise
yk ∈ Rp measurement vector
wi

k ∈ R measurement noise in each phasor
measurement unit and wk = [w1

k , w2
k , ..., wp

k ]
T

f , h differentiable non-linear vector functions



Energies 2018, 11, 969 8 of 19

The mean of initial state xo is E[xo] = x̄o and covariance of initial state x0 is Xo = E[(xo − x̄o)(xo −
x̄o)T ]. The process and measurement noises, vk and wk, are white, zero mean, uncorrelated with each
other and with xo, and have covariance Vk and Wk, respectively.

vk ∼ (0, Vk), wk ∼ (0, Wk),

E[vkvT
j ] = Vkδk−j, E[wkwT

j ] = Wkδk−j,

E[vkwT
j ] = 0, E[vkxT

o ] = 0, E[wkxT
o ] = 0 (39)

The scalar binary Bernoulli distributed random variables γi
k are with mean πi and variance

πi(1− πi) whose possible outcomes 0,1 are defined as Prob(γi
k = 1) = πi and Prob(γi

k = 0) = 1− πi.
The formulation involves hard measurement failures, where the sensor either works properly or fails
to provide reliable estimation.

By denoting

Γk = diag[γ1
k , γ2

k , ..., γ
p
k ] (40)

h(xk) = diag[h1(xk), h2(xk), ..., hp(xk)] (41)

the measurement equation can be written as

yk = Γkh(xk) + wk (42)

Our goal is to estimate the state vector xk based on our knowledge of system dynamics and the
availability of the noisy measurement yk under the effect of sensor failures. The following discrete
time nonlinear Luenberger observer is considered in this work.

x̂k+1 = f (x̂k) + (Kk + ∆k)(yk − Γ̄kh(x̂k)) (43)

Although the filter gain should be Kk, due to computational or tuning uncertainties, it is
erroneously implemented as Kk + ∆k. The term Γ̄k is defined as

Γ̄k = E[Γk] = diag[π1, π2, ..., πp] (44)

Kk is the feedback gain with additive uncertainty ∆k. The uncertainty ∆k, is assumed to have
zero mean, bounded second moment and be uncorrelated with initial state, process and measurement
noises, i.e.,

E[∆k∆T
k ] ≤ δI, E[∆T

k xo] = 0, E[∆T
k vk] = 0, E[∆kwk] = 0

(45)

The resilient extended Kalman filter is defined as follows:

1. Initialization

x̂o = E[xo]

Po = E[(xo − x̂o)(xo − x̂o)
T ] (46)

2. Computation of Jacobian matrices

Ak =
∂ f
∂x
|x=x̂k , Ck =

∂h
∂x
|x=x̂k (47)



Energies 2018, 11, 969 9 of 19

3. For time steps k = 1, 2, 3, ..., the estimator propagates by calculating the feedback gain

Ko
k =(AkPkCT

k Γ̄T
k )[Γ̄kCkPkCT

k Γ̄T
k +

Υ⊗ (h(x̂k)hT(x̂k) + CkPkCT
k ) + Wk]

−1 (48)

from an upper bound on the local estimation error covariance

Pk+1 = AkPk AT
k + Vk + λmax{Γ̄kCkPkCT

k Γ̄T
k + Wk+

Υ⊗ (h(x̂k)hT(x̂k) + CkPkCT
k )}δI

− (AkPkCT
k Γ̄T

k )[Γ̄kCkPkCT
k Γ̄T

k +

Υ⊗ (h(x̂k)hT(x̂k) + CkPkCT
k ) + Wk]

−1(Γ̄kCkPk AT
k )

(49)

to be used in updating the state estimate as

x̂k+1 = f (x̂k) + (Ko
k + ∆k)(yk − Γ̄kh(x̂k)) (50)

where

Υ = diag[π1(1− π1), π2(1− π2), ..., πp(1− πp)]

=


π1(1− π1) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 πp(1− πp)

 (51)

4.3. Unscented Kalman Filter

Consider the following system and measurement equations [34–38].

xk+1 = f (xk, uk) + vk

yk = h(xk) + wk, (52)

where

f (xk, uk) process model
xk state vectors
uk input state vectors
h(xk) output model
yk output state vectors
vk process WGN
wk measurement WGN

The initial state xo has a mean µo = E[xo] = x̄o and a covariance Po = E[(xo − µo)(xo − µo)T ].
The process and measurement noise are white Gaussian noise (WGN), which can be expressed as
vk ∼ (0, Vk), wk ∼ (0, Wk). The initial state variables obey normal distribution with x̄o and Po. The size
of the sigma points is xk = 2n + 1, from which the UKF can be implemented using the following steps:

1. Initialization

x̂o = E[xo]

Po = E[(xo − x̄o)(xo − x̄o)
T ] (53)
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2. Define sigma points χ
(s)
k and weights vs for s = 1, · · · , 2n as follows:

χ
(0)
k = x̂k (54)

χ
(s)
k = x̂k + x̃(s)k s = 1, · · · , 2n (55)

x̃(s)k = (
√

nPk)s
T s = 1, · · · , n (56)

x̃(n+s)
k = −(

√
nPk)s

T s = 1, · · · , n (57)

The weighing coefficients are determined by

vs =
1−vo

2n
s = 1, · · · , 2n (58)

where the weight must agree
2n

∑
s=0

vs = 1.

and (
√

nPk)s is sth row or column of the matrix square root of nPk.

3. Process Update
The priori mean and covariance of the estimated value x̂−k+1 can be obtained using the transformed
sigma points as follows:

x̂k+1 =
2n

∑
s=0

vs · f (χ(s)
k , uk) (59)

P−k+1 =
2n

∑
s=0

vs · ( f (χ(s)
k , uk)− x̂−k+1)( f (χ(s)

k , uk)− x̂−k+1)
T + Vk (60)

4. Output Covariance Update
The predicted measurement is

ŷk+1 =
2n

∑
s=0

vs · h(χ(s)
k ) (61)

Py =
2n

∑
s=0

vs · (h(χ(s)
k )− ŷk+1)(h(χ

(s)
k )− ŷk+1)

T + Wk+1

(62)

5. Cross-correlation Update
The cross-correlation Pxy is determined by

Pxy =
2n

∑
s=0

vs · ( f (χ(s)
k )− x̂k+1)(h(χ

(s)
k )− ŷk+1)

T (63)

6. Measurement Update
The final measurement update can be performed using normal Kalman filter equations as: The
Kalman gain Kk can be written as follows:

Kk+1 = PxyPy
−1 (64)
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The posteriori covariance matrix Pk+1 and the estimated state variable x̂k+1 can be expressed as
follows:

x̂k+1 = x̂−k+1 + Kk+1(yk+1 − ŷk+1) (65)

Pk+1 = P−k+1 − Kk+1PyKT
k+1 (66)

5. Computer Simulation Studies and Hardware Implementations

Computer simulation studies and Texas Instrument TMS320F28335 DSP processor
implementations have been developed to show the efficiency of proposed sensorless direct
torque control approach. The testing SPMSM parameters are summarized in Table 2. The hardware
implementation is shown in Figure 4.

Table 2. The parameters of SPMSM.

Rated Power 400 W

Rated Torque 180 oz.in

Rated Voltage 220 V

Rated Current 2.7 A

Stator resistance, Rs 4.7 Ω

Stator inductance, Ls 13.3 mH

Rotor magnetic flux, λm 0.0785 Wb

Number of rotor poles, P 8

Moment of inertia, J 0.00439 oz.in.s2

Figure 4. Hardware Implementation with TMS320F28335 DSP.

The final reference speed of SPMSM motor is set to be 400 mechanical rad/s. An external load of
1.5 Nm is applied at 0.5 s. Figures 5–8 show rotor speed, developed torque, stator flux, quadrature-axis
stator current estimation comparisons, respectively. Figures in the first, second and third row show
EKF, REKF and UKF estimation results, respectively. The first column figures are nonlinear estimation
results under sensing failure condition. The second column figures are nonlinear estimation results
without sensing failures. Note that EKF, UKF and REKF all converge to the real-state values. However,
since the EKF uses first-order linearization to update the covariance of the state, it shows more
estimation error compared with REKF and UKF.

Without measurement failures, the estimation error comparisons of EKF, UKF and REKF are
summarized in Tables 3–5. In comparison with EKF and REKF, UKF shows superior accuracy in torque,
speed, and current estimation, under the condition that all sensors work properly. Under no sensing
failure condition, UKF tracks the real state variables more closely with less ripples, since it relies on
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the unscented transformation to characterize the probability density function, without linearization
involved. EKF truncates Taylor series of the mean at the first term, its prediction error of the mean
value is in the second and higher order terms. EKF truncates at the first term of the covariance matrix,
therefore, it is correct up to the second order with errors in fourth order term and above. UKF does not
truncate any terms of the Taylor series, but uses sigma points through nonlinear transformation to
decide the mean and covariance.

(a) The speed responses of EKF with fault

(b) The speed responses of REKF with fault

(c) The speed responses of UKF with fault

(d) The speed responses of EKF without fault

(e) The speed responses of REKF without fault

(f) The speed responses of UKF without fault

Figure 5. The speed comparison of DTC with EKF, REKF, and UKF.
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Under the sensing failure condition, computer simulations are conducted based on the assumption
that each sensor has 5% failure rate. Scalar binary random variables following Bernoulli distribution
are generated for the measurements in order to produce random sensing failures. In another word,
the sensor either works properly or fail to provide true measurements with a probability of 5%.
In this case, the resilient extended Kalman filter provides more reliable state estimation with greater
accuracy compared to EKF and UKF, since the resilient extended Kalman filter is designed to handle
measurement failures. Hence, REKF is a more robust nonlinear estimation approach.

(a) The torque responses of EKF with fault

(b) The torque responses of REKF with fault

(c) The torque responses of UKF with fault

(d) The torque responses of EKF without fault

(e) The torque responses of REKF without fault

(f) The torque responses of UKF without fault

Figure 6. The torque comparison of DTC with EKF, REKF, and UKF.
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(a) The flux trajectory of EKF with fault

(b) The flux trajectory of REKF with fault

(c) The flux trajectory of UKF with fault

(d) The flux trajectory of EKF without fault

(e) The flux trajectory of REKF without fault

(f) The flux trajectory of UKF without fault

Figure 7. The stator flux trajectory comparison of DTC with EKF, REKF, and UKF.
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(a) The current iq responses of EKF with fault

(b) The current iq responses of REKF with fault

(c) The current iq responses of UKF with fault

(d) The current iq responses of EKF without fault

(e) The current iq responses of REKF without fault

(f) The current iq responses of UKF without fault

Figure 8. The current iq comparison of DTC with EKF, REKF, and UKF.
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Table 3. The torque estimation error comparison of EKF, REKF, and UKF without sensor failure.

Time Period (s) EKF Estimation Error (N/m) REKF Estimation Error (N/m) UKF Estimation Error (N/m)

0 s–0.5 s 0.6089 0.6692 0.6675

0.5 s–1.0 s 0.2188 0.1987 0.1348

1.0 s–1.5 s 0.2180 0.1951 0.1653

1.5 s–2.0 s 0.2197 0.1938 0.1067

Table 4. The iq estimation error comparison of EKF, REKF, and UKF without sensor failure.

Time Period (s) EKF Estimation Error (A) REKF Estimation Error (A) UKF Estimation Error (A)

0 s–0.5 s 22.3889 22.4353 13.775

0.5 s–1.0 s 0.3985 0.3629 0.1491

1.0 s–1.5 s 0.3917 0.3718 0.2004

1.5 s–2.0 s 0.3971 0.3619 0.1842

Table 5. The speed estimation error comparison of EKF, REKF, and UKF without sensor failure.

Time Period (s) EKF Estimation Error (rad/s) REKF Estimation Error (rad/s) UKF Estimation Error (rad/s)

0 s–0.5 s 10.7434 11.2876 1.7615

0.5 s–1.0 s 4.3493 3.0354 0.5825

1.0 s–1.5 s 4.3622 2.9833 0.7320

1.5 s–2.0 s 4.3790 3.0036 0.7345

6. Conclusions

Direct torque control combines the benefits of direct flux and torque control into an adjustable
speed drive, which does not require pulse-width-modulation or coordinate transforms. The paper
presented a comparative study of sensorless direct torque control approaches of surface-mounted
permanent magnet synchronous motors with the unscented Kalman filter (UKF), the resilient
extended Kalman filter (REKF), and the extended Kalman filter (EKF). As demonstrated by
simulation and implementation results, EKF, REKF, and UKF all track the state variables effectively.
However, REKF is a preferred estimation method when sensors randomly fail to provide accurate
measurements; whereas UKF is a superior method in state variables estimation when all sensors
provide accurate measurements.
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Nomenclature

ia, ib, ic and va, vb, vc 3-phase currents and voltages
Rs, Ls, is, vs stator resistance, inductance, current and voltage
vd, vq direct and quadrature axis voltages
id, iq direct and quadrature axis currents
λs, λm stator and rotor magnetic flux linkages
λd, λq direct and quadrature axis flux linkages
λα, λβ α and β axis flux linkages
Ld, Lq direct and quadrature axis inductances
ωe, ωm electrical and mechanical angular speed
P, J, D number of pole, moment of inertia, and viscous friction coefficient



Energies 2018, 11, 969 17 of 19

θe electrical angular position
τe, τl , τest, τre f electrical, load, estimated, and reference torques
γs computed angular position
dλest, dτest digitized variables for flux and torque controller
Hλ, Hτ flux and torque tolerance bands
P−k , x−k priori covariance and priori state estimate
Pk+1 posteriori covariance matrix
x̂k+1 estimated state variable
Kk Kalman gain
vk, wk process and measurement noise
Vk, Wk covariance matrix of process and measurement noise v, w at the kth time step
γi

k scalar binary random variables following the Bernoulli-distribution
∆k additive uncertainty in Kalman gain
Pxy cross-correlation matrix

χ
(s)
k sigma points

vs weighing coefficients
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