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Abstract: For most wave energy technology concepts, large-scale electricity production and
cost-efficiency require that the devices are installed together in parks. The hydrodynamical interactions
between the devices will affect the total performance of the park, and the optimization of the
park layout and other park design parameters is a topic of active research. Most studies have
considered wave energy parks in long-crested, unidirectional waves. However, real ocean waves
can be short-crested, with waves propagating simultaneously in several directions, and some
studies have indicated that the wave energy park performance might change in short-crested waves.
Here, theory for short-crested waves is integrated in an analytical multiple scattering method,
and used to evaluate wave energy park performance in irregular, short-crested waves with different
number of wave directions and directional spreading parameters. The results show that the energy
absorption is comparable to the situation in long-crested waves, but that the power fluctuations are
significantly lower.

Keywords: wave energy; short-crested waves; multidirectional; arrays; parks; multiple scattering;
power fluctuations

1. Introduction

Ocean waves provide a clean, renewable energy source with a large potential to contribute to
the energy demand without negative environmental or climate impact. There is a large number
of different technology approaches for conversion of wave energy to electricity, and very few have
reached a commercial maturity. Common for many of the technologies is that a large-scale electricity
production requires that many wave energy converters (WECs) are deployed together in arrays,
or parks. In particular, this is true for the point-absorber concept considered in this study.

Since the devices in the park will interact hydrodynamically by scattered and radiated waves
spreading throughout the park, it is of importance to determine the optimal park layout that achieves
maximum electricity production with minimum power fluctuations and costs. Since the early works
on wave energy, studying and optimizing wave energy array layouts have been main topics of
interest [1–3], and remains an active area of research today [4–9].

Many parameters affect the performance of the park. The impact of increasing the number of
devices in a park on both the energy absorption and power fluctuations was investigated in [10–14],
and it was seen that increasing the number of WECs by around 30% may reduce the power fluctuations
by roughly 7% and the average power of each device by 3% [14], and, in experiments, it was seen that,
in an array with 24 WECs, up to 26% of the energy yield from an equivalent number of isolated WECs
may be lost due to interference effects [13]. The effect of the individual device dimensions was studied
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in [14–16], and it was seen that the total performance of the park may increase if WECs of different
dimensions are deployed together. The separation distance between devices and the layout of the park
has been studied in a large number of works [11,13,17–21], and separation distances ranging from 4R,
where R is the radius of the float, up to a few hundred metres, have been established, above which
the interaction effects between devices can be neglected. Obviously, the wave climate, the incident
wave directions and the bathymetry are other factors that may affect the performance of the park,
which has been studied in [14,22,23], among others. Most of the work has been based on numerical or
analytical modelling, but a few examples of experimental studies exist, both in wave tank [13,24] and
offshore [12].

Much of the mentioned works on optimal configurations of wave energy parks have considered
only incident regular waves, and even if irregular waves have been considered, almost all have
considered only long-crested, unidirectional waves. However, real ocean waves can be multidirectional,
or short-crested, with irregular waves travelling in different directions simultaneously, and this is likely
to affect the performance of the wave energy parks. An array of 12 oscillating wave surge converters
was studied in short-crested waves in [7] and it was found that the average absorbed energy of the
park was slightly lower than when it was operating in unidirectional waves. A similar conclusion was
found in [25] for attenuator type WECs, and it was also found that the relative pitch motions were
reduced in short-crested waves. Wave run-up on bottom-mounted cylinders was found to increase in
short-crested waves studied with semi-analytical methods in [26], and the presence of near-trapped
modes was reduced. The wake effect behind WEC arrays was studied in [17,27], and both papers found
that the wake was reduced when directional wave spreading was taken into account. This effect and
other wave energy array effects in short-crested waves was also investigated experimentally in [24].

From the abovementioned studies, it is clear that the performance of wave energy parks might
change when operating in short-crested waves as opposed to in unidirectional, long-crested waves.
In [28], a semi-analytical model for computing the hydrodynamical forces and interactions in a wave
energy park of point-absorbing WECs was presented, based on the approximate method in [21].
An interaction distance cut-off was introduced, which enabled accurate and fast modelling of large
parks with over 100 devices. The method was extended to enable point-absorber devices of different
individual dimensions in [16], and has been coupled with a genetic algorithm for multiple parameter
optimization of wave energy parks in [29]. The approach provides a fast and reliable method to
assess and optimize all involved parameters in a park, including park layout and individual WEC
dimensions. In the present paper, the method is extended to also describe short-crested waves, and
used to study the performance of wave energy parks in more realistic seas.

The paper is organized as follows. The theory of multiple scattering with short-crested waves is
described in Sections 2.1 and 2.2, with the notation and equations of motion for wave energy parks
established in Section 2.1 and the multiple scattering method in Section 2.2. The resulting method is
used to study short-crested waves and wave energy park performance and discussed in Sections 3.1–3.3.
Conclusions from the study are presented in Section 4.

2. Method

2.1. Wave Energy Park Model

Consider an array of N point-absorbing wave energy converters, each consisting of a surface
buoy with radius Ri and draft di connected to a linear generator at the seabed. The generator consists
of a translator moving vertically within a stator, and is characterized by a generator damping Γi.
The WEC model is based on the wave energy technology developed at Uppsala University, Sweden.
The approach for the wave energy concept is based on simplicity to improve the life-expectancy of the
device and reduce capital and maintenance costs—the generator consists of as few moving parts as
possible, and is situated at the seabed to be protected from storms or other extreme wave conditions.
By changing the buoy and generator dimensions, as well as the connection line length, the WEC can
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be adapted to different wave climates and deployment site conditions. Simulated and experimentally
measured performance in different wave conditions was presented for earlier prototypes of the device
in [30,31], and more information about the device can be found in [10,12].

The water depth is h and the density of the water is ρ. The coordinate system is chosen such that
z = 0 at the still water surface and z = −h at the seabed. Local cylindrical coordinate systems (r, θ, z)
are defined at the origin (xi, yi, z) of each buoy. An illustration of the wave energy park is shown in
Figure 1.

Figure 1. Illustration of the fluid domain of the wave energy park. Each wave energy converter is
characterized by an individual radius Ri and draft di for the float and a power take-off damping Γi of
the generator. The fluid domain is divided into interior domains I for each float and exterior domain II.

The motion of the buoys and the translator are given by the coupled equations of motion

mi
b ¨̄xi

b(t) = −
∫∫

Si
p(t)n̄dS− F̄i

line(t)−mi
bgẑ, (1)

mi
t z̈

i
t(t) = F̄i

line(t) + F̄i
PTO(t)−mi

tgẑ, (2)

where mi
b and mi

t are the mass of the buoy and translator, respectively, p contains both the dynamical
and hydrostatical pressure, F̄i

line is the line in the force connecting the buoy and the translator,
and F̄i

PTO is the damping force of the generator. The normal vector n̄ is defined to point away from
the body surface, into the fluid. The hydrodynamical forces will be solved using linear potential flow
theory, described in more detail in Section 2.2.1. Under the constraints that the connection between the
buoy and translator is stiff, and that the buoy is moving in heave only, a single equation of motion
describes the dynamics of the system

mi z̈i(t) = Fi
exc(t) + Fi

rad(t) + Fi
stat(t) + Fi

PTO(t), (3)

where mi = mi
b + mi

t is the total masses of the buoy and the translator, Fi
exc is the excitation force

due to the incident and scattered waves, Fi
rad the radiation force due to the oscillations of the buoy,

Fi
stat = −ρgπRizi the hydrostatic restoring force and Fi

PTO = −Γi żi(t) the power take-off damping of
the generator.

The hydrodynamical forces will be computed in the frequency domain, where the equivalent
equation of motion (3) reads[

−ω2(m + madd)− iω(Γ + B) + ρgπR
]i

j
zj(ω) = Fi

exc(ω), (4)
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where the radiation force was divided into an added mass term proportional to the acceleration and
a radiation damping term proportional to the velocity, Fi

rad(ω) = [−iωmadd + B]ijiωzj(ω) and the
excitation force can be divided into an excitation force coefficient vector and the incident waves,
Fi

exc(ω) = f i
exc(ω)Ai(ω). The incident waves will be irregular, short-crested waves, described in more

detail in Section 2.2.2.
When the equations of motion have been solved in the frequency domain, the result is obtained

in the time domain by the inverse Fourier transform, and the absorbed power of each WEC at each
point in time is computed as

Pi(t) = Γi[ż(t)]2, (5)

and the total power of the park is the sum of the absorbed power of all devices in the park. The absorbed
power will vary over time with the incident waves, and the resulting total power of the park will display
power fluctuations. To connect the power from a park to the electrical grid, low power fluctuations
are required. Large power peaks will require over-dimensional, expensive power electronics system,
and instants with no power will create unwanted power outages. The power fluctuations can be
quantified by the normalized variance, defined in terms of the standard deviation σ as

v =
σ2(Ptot(t))

P̄tot
. (6)

A common way to represent the interaction in a park is with the interaction factor, or q-factor [1],
defined as the ratio between the time averaged power absorbed by the park, and the sum of all devices’
individual power absorption if they were isolated,

q =
P̄tot

∑N
i=1 P̄i

isolated

. (7)

An individual q-factor for each WEC in the park can also be defined as the ratio between its
averaged absorbed power and the average it would absorb in isolation,

qi =
P̄i

P̄i
isolated

. (8)

Although cases can be found where the interaction factor is larger than one, in realistic cases,
the interaction effects will be destructive with q < 1, and optimization of the park interactions
will aim to minimize destructive interactions and achieve an interaction factor as close to 1 as
possible [3,22]. To allow for direct comparisons, in this paper, the individual q-factor is computed with
the same isolated power absorption, i.e., the denominator P̄i

isolated in Equation (8) is computed with
the same irregular waves and corresponds to an isolated WEC situated at the origin (x, y) = (0, 0).
To avoid confusion, the computed values in Equations (7) and (8) will therefore be denoted normalized
energy absorption.

2.2. Multiple Scattering Theory with Short-Crested Waves

2.2.1. Linear Potential Flow Theory

Consider a fluid that is incompressible and irrotational, implying that it can be described by
potential flow theory using a fluid velocity potential satisfying the Laplace equation, ∇2Φ = 0,
where ū = ∇Φ is the fluid velocity. Further assume that the viscosity of the fluid can be neglected and
that the wave height is small compared to the wave length, so that the boundary constraints at the sea
surface can be linearized. The fluid is then described by linear potential flow theory, and the details
can be found in many text books such as [32].
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The surface elevation of a wave with potential Φ(t) is given by

η(x, y, t) = − 1
g

∂Φ
∂t

∣∣∣
z=0

, (9)

where g is the gravitational acceleration constant. The surface elevation in the frequency domain is
obtained by Fourier transform,

η̂(x, y, ω) =
∫ ∞

−∞
η(x, y, t)e−iωt dt. (10)

Due to the linearity of the problem, the fluid potential can be decomposed into incident,
scattered and radiated waves, and from the linear Bernoulli equation the dynamical pressure can be
obtained from the fluid potential as p = −ρ ∂Φ

∂t , so that the hydrodynamical forces are obtained in the
frequency domain as

F̄exc(ω) = iωρ
∫∫

S
φDn̄dS, (11)

F̄rad(ω) = iωρ
∫∫

S
φRn̄dS, (12)

where φD = φI + φS is the diffraction and φR the radiation potentials and the integration is taken over
the wetted surface of the buoy. By solving the multiple scattering problem as described in Section 2.2.3,
the fluid potentials can be solved for and the hydrodynamical forces computed according to (11)
and (12). With the hydrodynamical forces obtained, the equations of motion in Equation (4) can be
solved and the performance of the park evaluated.

2.2.2. Multidirectional Waves

Open ocean waves are assumed, i.e., no reflective structures exist so that there are no phase-locked
waves—all the phases are randomly distributed, implying that the wave components are independent
of each other. Thus, we can treat the irregular short-crested waves as a superposition of harmonic
waves travelling in different directions.

A single harmonic wave travelling in direction χ away from the x-axis can be described by the
surface elevation η(x, y, t) = a cos

(
ωt− k̄ · x̄ + ϕ

)
, where ϕ the phase, and ω is the angular frequency

related to the wave number vector k̄ = (k cos χ, k sin χ, 0) by the dispersion relation for ocean waves.
When the waves are composed of many waves travelling in independent directions, the surface
elevation can be written as the superposition

η(x, y, t) =
∞

∑
n=−∞

M

∑
m=1

amnei(ωnt−k̄mn ·x̄) = 2
∞

∑
n=0

M

∑
m=1

∣∣amn
∣∣ cos(ωnt− k̄mn · x̄ + ϕmn), (13)

where amn is hermitian, i.e., a∗mn = am−n, the phase is ϕmn = arg(amn) and k̄mn · x̄ = kn(x cos χm + y sin χm).
The complex amplitude coefficients can be written in terms of the directional wave spectra as

2
∣∣amn

∣∣2 = S(ωn, χm)dωdχ, (14)

where dω = ωn+1 − ωn and dχ = χm+1 − χm. The expression for the surface elevation turns into
an inverse Fourier integral when dω becomes infinitesimal and we write amn = A(ωn, χm)dωdχ,
such that

2
∣∣A(ω, χ)

∣∣2dωdχ = S(ω, χ). (15)

The energy in the waves is given by
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E = ρg
〈
η2〉 = ρg

∫ ∞

0
dω

∫ π

−π
dχ S(ω, χ). (16)

The directional wave spectrum can be assumed to be decomposed into a direction independent
spectrum and a directional spreading function (DSF)

S(ω, χ) = S(ω)D(ω, χ), (17)

where periodicity is required, D(ω, 2π) = D(ω, 0), and conservation of energy requires that the
directional spreading function is normalized∫ π

−π
D(ω, χ)dχ = 1. (18)

Several different directional spreading functions have been defined and studied in the literature.
A common assumption is that the directional spreading function can be described by a unimodal
model parametrized by the mean direction χ̄ and another parameter, such as the spreading parameter
or a directional width, so that it is independent of the wave frequency. The default representation, still
widely used, was defined in [33] and reads

D(χ− χ̄) = F(s) cos2s
(

χ− χ̄

2

)
, (19)

where χ̄ is the principal wave direction and F(s) is defined such that the normalization constraint in
Equation (18) is satisfied. In [34], the coefficient F(s) was defined in terms of gamma functions as

F(s) =
22s−1

π

(Γ(s + 1))2

Γ(2s + 1)
, (20)

which was later also used in [25], albeit presented differently, for the spreading parameter s = 5, 15, 25.
Here, we will use the directional spreading function presented in [35] and used recently in [7],

D(χ− χ̄) =

{
F(s) cos2s(χ− χ̄), |χ− χ̄| < π

2 ,
0, otherwise,

(21)

with

F(s) =
1√
π

Γ(s + 1)
Γ(s + 1

2 )
=

1
π

(2s)!!
(2s− 1)!!

, (22)

which is simply 1 over the integral in Equation (18), hence the normalization constraint (18) is satisfied.
For example, for the spreading parameter s = 1, the coefficient is F(s) = 2/π. Note that the argument
in the cosine function of Equation (21) differs by a factor 2 from the convention defined in [33] and
displayed in Equation (19). For discrete wave directions, the sum over all wave directions

M

∑
m=1

D(χm − χ̄)dχ (23)

only converges to the integral value when dχ is infintesimally small. Hence, the coefficient will be
defined as

F(s) =
1

∑M
m=1 cos2s(χm − χ̄)dχ

, (24)

which converges to the value in Equation (22) when dχ→ 0.
The principal wave direction will be considered here as χ̄ = 0, i.e., moving along the x-direction.

The shape of the directional spreading function for different values of the spreading parameter s is
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shown in Figure 2. As can be seen from the figure, the higher the spreading parameter, the more energy
in the waves is distributed along the principal wave direction.

Figure 2. (a) Directional spreading function and (b) surface elevation of a long-crested, unidirectional
wave, to be compared against the short-crested waves in Figures 3–5. For the case of only one wave
direction χ = 0, the value of the spreading parameter is irrelevant as cos2s(0) = 1 for any values of
s. The factor F(s) in Equation (24) equals F(s) = 1/π in the case of a single wave direction, which
guarantees normalization in Equation (18).

From Equations (15) and (17), the amplitude function can be also decomposed into a directional
independent part and the directional dependent part. However, from Equation (15), only the modulus
of the complex amplitude is known, and we add an unknown phase ϕ(ω, χ), which is assumed to be
uniformly distributed over (−π, π),

A(ω, χ) =
∣∣A(ω, χ)

∣∣eiarg(A(ω,χ))

=

√
S(ω)D(ω, χ)

2dωdχ
eiarg(A(ω,χ))

=
∣∣A(ω)

∣∣√D(ω, χ)
1

dχ
eiarg(A(ω,χ))

= A(ω)

√
D(ω, χ)

1
dχ

eiϕ(ω,χ),

(25)

where D(ω, χ) is the directional spreading function defined in Equation (21). In this work, we will use
incident irregular unidirectional waves for which the surface amplitude A(ω) is known, and compute
the complex amplitudes for the short-crested waves according to the expression in Equation (25).

In the frequency domain, the surface elevation can be written as the product of the amplitude
function and a transfer function Hm(ω),

η̂(x, y, ω) =
M

∑
m=1

A(ω, χm)e−ik(x cos χm+y sin χm)dχ =
M

∑
m=1

√
D(χm − χ̄)dχA(ω)Hm(ω), (26)

where Hm(ω) = e−ik(x cos χm+y sin χm)+iϕ(ω,χm).
In the time domain, the inverse Fourier transform of the product becomes a convolution

η(x, y, t) =
M

∑
m=1

√
D(χm − χ̄)dχ η(0, 0, t) ∗ hm(t), (27)
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where η(0, 0, t) = Â(ω) is the surface elevation at point (x, y) = (0, 0) and hm(t) is the inverse Fourier
transform of the transfer function Hm(ω).
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Figure 3. Directional spreading function D(χm − χ̄) in Equation (21) for s = 1 and increasing wave
directions from 3, 15 and 63, as shown in the directional spreading function plots. A time instant of
the surface elevation is shown to the right. (a) three wave directions χm = ±mπ/4 with m = 0, 1;
(b) 15 wave directions χm = ±mπ/16 with m = 0, . . . , 7; (c) 63 wave directions χm = ±mπ/64 with
m = 0, . . . , 31.
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Figure 4. Directional spreading function D(χm − χ̄) in Equation (21) for spreading parameter s = 5
increasing wave directions from 3, 15 and 63, as shown in the directional spreading function plots.
A time instant of the surface elevation is shown to the right. (a) three wave directions χm = ±mπ/4
with m = 0, 1; (b) 15 wave directions χm = ±mπ/16 with m = 0, . . . , 7; (c) 63 wave directions
χm = ±mπ/64 with m = 0, . . . , 31.



Energies 2018, 11, 964 10 of 22

- - /2 0 /2

Wave direction angle

0

0.5

1

1.5

2

2.5

3

D
ire

ct
io

na
l s

pr
ea

di
ng

 fu
nc

tio
n

a)

Chosen DSF
Wave directions
s=1
s=2
s=5
s=25

-1.5
10

-1

-0.5

20

0

S
ur

fa
ce

 e
le

va
tio

n 
[m

]

0.5

15

y-coordinates [m]

0

1

x-coordinates [m]

1.5

10
5

-10 0

- - /2 0 /2

Wave direction angle

0

0.5

1

1.5

2

2.5

3

D
ire

ct
io

na
l s

pr
ea

di
ng

 fu
nc

tio
n

b)

Chosen DSF
Wave directions
s=1
s=2
s=5
s=25

-1.5
10

-1

-0.5

20

0

S
ur

fa
ce

 e
le

va
tio

n 
[m

]

0.5

15

y-coordinates [m]

0

1

x-coordinates [m]

1.5

10
5

-10 0

- - /2 0 /2

Wave direction angle

0

0.5

1

1.5

2

2.5

3

D
ire

ct
io

na
l s

pr
ea

di
ng

 fu
nc

tio
n

c)

Chosen DSF
Wave directions
s=1
s=2
s=5
s=25

-1.5
10

-1

-0.5

20

0

S
ur

fa
ce

 e
le

va
tio

n 
[m

]

0.5

15

y-coordinates [m]

0

1

x-coordinates [m]

1.5

10
5

-10 0

Figure 5. Directional spreading function D(χm − χ̄) in Equation (21) for spreading parameter s = 25
increasing wave directions from 3, 15 and 63, as shown in the directional spreading function plots.
A time instant of the surface elevation is shown to the right. Note that, due to the few wave directions,
the magnitude of the directional spreading function defined by Equation (24) does not completely
converge to the integral value in (22), but takes a smaller value. (a) three wave directions χm = ±mπ/4
with m = 0, 1; (b) 15 wave directions χm = ±mπ/16 with m = 0, . . . , 7; (c) 63 wave directions
χm = ±mπ/64 with m = 0, . . . , 31.

The fluid potential of the incident wave in Equation (10) can be written in the frequency domain as

φ0(x, y) =
M

∑
m=1

ig
ω

A(ω, χm)ψ0(z)ei[−k(x cos χm+y sin χm)] dχ, (28)
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where ψ0(z) is the vertical eigenfunction defined as

ψ0(z) =
cosh(k(z + h))

cosh(kh)
. (29)

Consider now a buoy located at position (xi, yi) with local cylindrical coordinates (r, θ, z). Due to
properties of Bessel functions, the incident fluid potential in Equation (28) can be rewritten in the local
coordinate system as

φ0(r, θ, z) =
M

∑
m=1

ig
ω

A(ω, χm)ψ0(z)ei[−k(xi cos χm+yi sin χm)]e−ikr cos(θ−χm) dχ

=
M

∑
m=1

ig
ω

A(ω, χm)ψ0(z)e−ik(xi cos χm+yi sin χm) dχ
∞

∑
n=−∞

(−i)n Jn(kr)ein(θ−χm)

=
∞

∑
n=−∞

Z0(z)

[
M

∑
m=1

ig
ω

A(ω, χm)e−ik(xi cos χm+yi sin χm) (−i)n

Z0(0)
e−inχm dχ

]
︸ ︷︷ ︸

Ai
0n

Jn(kr)einθ

=
∞

∑
n=−∞

Z0(z)Ai
0n Jn(kr)einθ ,

(30)

where Z0(z) is the normalized vertical eigenfunction satisfying ψ0(z) = Z0(z)/Z0(0) and Jn(kr) are
oscillating Bessel functions.

2.2.3. Multiple Scattering

Any point in the global coordinate system can be written in terms of the local cylindrical coordinate
system defined at the origin (xi, yi) at each buoy as (x, y, z) = (xi + r cos θ, yi + r sin θ, z). At each
buoy, the fluid domain is divided into an interior region I beneath the buoy and an exterior region II
outside r > Ri (see Figure 1). By separation of variables, a solution to the Laplace equation and the
linear boundary constraints at the free surface, the seabed and at the buoy surfaces can be found for
the two fluid domains on the general form

φi(I) =
Vi

2Li

(
(z + h)2 − r2

2

)
+

∞

∑
n=−∞

[
γi

m0

( r
Ri

)|n|
+

∞

∑
m=1

γi
mn cos(λi

m(z + h))
In(λi

mr)
In(λi

mRi)

]
einθ (31)

φi(II) =
∞

∑
n=−∞

[
αi

0nZ0(z)
Hn(kr)

Hn(kRi)
+

∞

∑
m=1

αi
mnZm(z)

Kn(kmr)
Kn(kmRi)

]
einθ , (32)

where I/II define the interior/exterior regions and Li = h− di where h is the water depth and di the
individual drafts of the buoys. The wave number k0 = −ik is a solution to the dispersion relation
ω2 = gk tanh(kh), and the Hankel functions Hn(kr) correspond to propagating modes. The wave
numbers km, m > 0 are consecutive roots to the dispersion relation ω2 = −gkm tan(kmh), and the
Bessel functions Kn(kmr) correspond to evanescent modes. In(λmr) are modified Bessel functions with
argument λi

m = mπ/Li.
The term proportional to the velocity Vi in the potential in the interior domain is required to

satisfy the inhomogeneous boundary constraint at the body surface of the oscillating buoy. If the buoy
is stationary, its velocity vanishes Vi = 0, and the potential in the interior region only contains its
second, homogeneous term.

Solving the multiple scattering problem is essentially a matter of finding the unknown coefficients
in expressions (31) and (32) by requiring continuity of the potentials and their derivatives at the domain
boundaries r = Ri. The problem can be solved with incident waves and oscillating buoys occurring
simultaneously, but for clarity will here be solved as two separate problems, where, in the scattering
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problem, the buoys are held fixed and there are incident waves, and in the radiation problem the buoys
are free to oscillate, but there are no incident waves. The derivation follows the same procedure as
shown in [16,28], and the reader is referred to those references for further details.

Scattering Problem

Consider incident short-crested waves as described by the fluid potential in Equation (30) and let
the buoys be fixed, with zero velocity Vi = 0. The potential in the exterior domain of any buoy will be
a superposition of incident wave φi

0, scattered waves φi
S, and incoming waves that are scattered off the

other buoys φ
j
S, j 6= i,

φi,II = φi
0 + φi

S + ∑
j 6=i

φ
j
S

∣∣∣
i
. (33)

By using Graf’s addition theorems for Bessel functions, the outgoing waves from one buoy can be
written as an incoming wave in the local coordinates of another cylinder as

φ
j
S

∣∣
i =

∞

∑
n=−∞

[
Z0(z)Jn(kr)

∞

∑
l=−∞

Tij
0lnα

j
0l +

∞

∑
m=1

Zm(z)
In(kmr)
In(kmR)

∞

∑
l=−∞

Tij
mlnα

j
ml

]
einθi , (34)

where the expressions for Tij = Tij
mln are given in the Appendix. Continuity between the interior (31)

and exterior solutions (32) and their derivatives along the boundaries r = Ri between the interior and
exterior domains implies the infinite system of equations

∞

∑
m=0

Di
smnαi

mn = −
∞

∑
m=0

D̃i
smn

(
Ai

0nδm0 + ∑
j 6=i

∞

∑
l=−∞

Tij
mlnα

j
ml

)
, (35)

together with an expression for the coefficients γ in the interior solution in terms of the coefficients α,
given in Equation (A5). The matrices D, D̃ and their components are defined in the appendix.

To solve for the unknown coefficients αi from Equation (35), we truncate the infinite sums at the
vertical cut-off Λz for the vertical sums ∑m Zm(z) and the angular cut-off Λθ for the angular sums
∑n einθ . The system of equations take the form

1 −B1T12 · · · −B1T1N

−B2T21 1 · · · −B2T2N

...
...

. . .
...

−BNTN1 −BNTN2 · · · 1




α1

α2

...
αN

 =


B1 A1

0n
B2 A2

0n
...

BN AN
0n

 , (36)

where Bi = −[Di]−1D̃i is the single-body diffraction matrix and Ai
0n is defined for the incident,

short-crested waves as in Equation (30). The matrix on the left-hand side is called the diffraction
matrix. The diagonal entries are identity matrices, and the non-diagonal entries BiTij account for the
hydrodynamical multiple scattering interactions. Neglecting the multiple scattering would result in
the diffraction matrix being the identity matrix. Solving the equation in (36) is the computationally
most extensive part of the computation, as the diffraction matrix is a large, quadratic matrix of size
N(Λz + 1)(2Λθ + 1).

When the scattering coefficients α in the diffraction potential in the exterior domain have been
solved from Equation (36), the coefficients γ in the potential in the interior domain can be found from
Equation (A5), and the heave excitation force can be computed from Equation (11) as

Fi
exc(ω) = 2πiωρ

[
γi

00
(Ri)

2

2
+ 2Ri

Λz

∑
m=1

γi
m0

(−1)m

λi
m

I1(λ
i
mRi)

I0(λi
mRi)

]
. (37)
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Radiation Problem

The radiation problem follows the same procedure as the scattering problem, but solves the
problem when there are no incident waves and the buoys are free to oscillate with independent
velocities Vi.

The potential in the exterior domain of any buoy will be a superposition of radiated and scattered
waves of the own body, and incoming waves that are scattered and radiated off the other buoys,

φi,II = φi
R + φi

S + ∑
j 6=i

(
φ

j
R + φ

j
S

)∣∣∣
i
. (38)

By using Graf’s addition theorems for Bessel functions, the outgoing waves from one buoy can
be written as an incoming wave in the local coordinates of another cylinder as in (34), and again
continuity between the fluid domains implies the infinite system of equations

∞

∑
m=0

Di
smnαi

mn = −
∞

∑
m=0

D̃i
smn

(
∑
j 6=i

∞

∑
l=−∞

Tij
mlnα

j
ml

)
−ViRi

sδ0n, (39)

together with Equation (A5), where Ri
s is the radiation vector defined in the appendix and α contains

coefficients for both the scattered and radiated waves in (38). As in the scattering problem, the infinite
sums are truncated to obtain a finite system of equations

1 −B1T12 · · · −B1T1N

−B2T21 1 · · · −B2T2N

...
...

. . .
...

−BNTN1 −BNTN2 · · · 1




α1

α2

...
αN

 =


V1B1

R
V2B2

R
...

VN BN
R

 , (40)

where Bi
R = [Di]−1Ri

s. When the scattering and radiation coefficients α have been solved from
Equation (40), the coefficients γ in the potential in the interior domain can be found from Equation (A5),
and the heave radiation force can be computed from Equation (12) as

Fi
rad(ω) = 2πiωρ

[
ViLi

4

(
(Ri)2 − (Ri)4

4(Li)2

)
+ γi

00
(Ri)

2

2
+ 2Ri

Λz

∑
m=1

γi
m0

(−1)m

λi
m

I1(λ
i
mRi)

I0(λi
mRi)

]
. (41)

There is an implicit velocity dependence in the coefficients γ that can be factored out, and the
radiation force can be written in terms of added mass and radiation damping as

Fi
rad(ω) =

N

∑
i=1

[iωmrad − B]ij V j. (42)

2.3. Numerical Implementation

To transform Equation (35) to a finite system of linear equations, the vertical and angular cut-offs
have been chosen as Λz = 20 (index s, m = 1, . . . , 20) and Λθ = 3 (index l, n = −3,−2, . . . , 2, 3). In [28],
these cut-off values were shown to produce results with a high accuracy as compared to computations
performed with the state-of-art software WAMIT (version 7.062, Massachusetts Institute of Technology,
MA, USA). The theory and equations described in Sections 2.1 and 2.2 have been implemented and
solved in a MATLAB (version R2017a, MathWorks Inc., MA, USA) script.

Although the method allows the use of an interaction distance cut-off [28] to speed up the
computations with attained high accuracy, in this paper, that option has not been used, and full
hydrodynamical interaction is computed between all devices.
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The water depth has been chosen to constant h = 25 m, based on the depth at the test site Lysekil
on the west coast of Sweden. In this paper, the dimensions of the WECs in the park have been chosen
constant and equal for all WECs. The buoy radius has been chosen to R = 3 m, the draft to d = 0.5 m
and the power take-off damping to Γ = 200 kNs/m.

The incident short-crested waves are computed as described in Section 2.2.2, where the incident
long-crested waves with amplitude A(ω) is the Fourier transform of the incident long-crested waves at
the origin, η(0, 0, t). The time-series of incident waves η(0, 0, t) is measured by a Datawell Waverider
buoy installed at the Lysekil test site, Sweden. One hour of incident wave data has been used, which
was measured on 1 January 2015 with a sampling frequency of 2.56 Hz. The sea state is characterized
by a significant wave height of Hs = 1.88 m and an energy period of Te = 5.98 s.

3. Results and Discussion

3.1. Irregular, Short-Crested Waves

The surface elevation in time domain is plotted at the same instant in time for different values
of the spreading parameter s and different number of wave directions in Figures 2–5, together with
the corresponding directional spreading function. As is expected from the form of the directional
spreading function and clear from the figures, a larger spreading parameter s implies that more
energy in the waves is propagating along the principal wave direction, with the asymptotic state being
a unidirectional wave. Hence, the short-crested wave in Figure 5a with s = 25 takes a similar form
as the long-crested, unidirectional wave in Figure 2. In Figures 3–5, the spreading parameter is kept
constant to s = 1, s = 5 and s = 25, respectively, while the number of wave directions is increased
from three in subfigures (a), 15 in subfigures (b) and 63 in subfigures (c).

Hence, the upper rows, i.e., Figures 3a, 4a and 5a all have three wave directions but increasing
spreading parameter from s = 1 to s = 25, and equivalently the Figures 3b, 4b and 5b share the
same 15 wave directions but increasing spreading parameter, and Figures 3c, 4c and 5c all have
63 wave directions but increasing spreading parameter. As can be seen from the figures, not only
the spreading parameter affects the surface elevation, but also the number of wave directions. The
fewer wave directions, the more the waves resemble a long-crested, unidirectional wave, which should
be expected.

To analyse the effect of wave directions and spreading parameter even further, the surface
elevations for all cases is shown in Figure 6. Here, the spreading parameter increases with the columns,
with s = 1 in the left column, s = 5 in the middle and s = 25 in the right column, and the number
of wave directions increases with the rows, with three wave directions in the top row, 15 in the
middle and 63 wave directions in the bottom row. In the upper left figure, the three wave directions
{−π/4, 0, π/4} are clearly distinguishable, whereas this is more vague in the other cases. As can
be seen in the figures, the fewer wave directions (upper row) and the higher spreading parameter
(right column), the more the resulting waves resemble long-crested waves.
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Figure 6. Surface elevations corresponding to the surfaces in Figures 3–5, but here shown in two
dimensions and over a larger ocean surface. The crests/throughs are shown in green/blue color
according to the three-dimensional plots in Figures 3–5. The spreading parameter increases with the
columns, with s = 1 in the left column, s = 5 in the middle and s = 25 in the right column. The number
of wave directions increases with the rows, with three wave directions in the top row, 15 in the middle
and 63 wave directions in the bottom row.

3.2. Wave Energy Arrays in Short-Crested Waves

Due to the random phase in Equation (25), different short-crested waves will be generated in each
simulation. The random phase is a function of both the wave direction and the frequency, hence all wave
direction and wave frequency components of the composed waves will receive independent phases each
time. For an evaluation of the wave energy park performance in short-crested waves, the simulations
should be carried out a number of times with different random phases, and the average taken.

In Figure 7a,b, two different simulations of park performance in short-crested waves are shown.
The park consists of 16 WECs in a gridded layout with 20 m separation distance. In the figure, the color
of each WEC shows the normalized energy absorption qi of Equation (8), i.e., value qi > 1 implies
that the WEC absorbs more wave power than it would in isolation at the origin. As can be seen from
Figure 7a,b, the result differs for two different random phases in the short-crested waves; there is no
clear pattern of wave shadowing or constructive/destructive interactions. In Figure 7c, an average of
50 simulations such as the ones shown in Figure 7a,b is shown. When an average is taken, a pattern
emerges, and it is clear that wave shadowing occurs: the first row at x = 0 m absorbs more power than
the second row at x = 20 m, and so on. The case of long-crested, unidirectional waves is shown in
Figure 7d, where as expected the absorbed power by each WEC decreases strictly with the number
of rows perpendicular to the incident wave direction. One can observe that when an average over
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a multiple of short-crested waves with different random phases is taken, the result converges to the
long-crested wave case.
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Figure 7. Time averaged energy absorption in a park consisting of 16 Wind Energy Conversion Systems
(WECs.) The absorbed energy is divided by the absorbed energy of a single WEC in isolation to
give the normalized energy absorption of Equation (8); hence, a value above 1 shows that the device
absorbs more energy than an isolated device at the origin would, whereas a value below 1 shows that
the absorption decreases. All short-crested wave simulations are run with 15 wave directions and
spreading parameter s = 5. (a,b) two simulations in short-crested waves with different random phases;
(c) average over 50 runs of short-crested waves with different random phases; (d) park in long-crested
waves propagating along the x-axis.

The convergence of the normalized energy absorption is shown in more detail in Figure 8.
Here, for each simulation number S, the average of the ratio of the individual normalized energy
absorption in short-crested and long-crested waves is computed, and the average is taken over all the
simulations s = 1, . . . , S,

1
S

S

∑
s=1

(
1
N

N

∑
i=1

qi
short,s

qi
long,s

)
. (43)

As can be seen from the figure, the power absorption for the parks in short-crested waves
converges to the unidirectional case; after 30 simulations with random phases, the difference is less
than 5% and, after 50 simulations (shown in Figure 7c), the difference is 1.6%.

In Figure 9a, the total instant power of a park with 16 wave energy devices (with park layout
shown in Figure 7) is shown both in long-crested and short-crested waves. The power has been divided
by the average power of a single device in isolation times the number of devices in a park. As is
clear from the figure, the power output of the park in these short-crested waves have smaller power
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peaks than in the long-crested waves. This is a desired behaviour as connection to the electricity
grid requires a good electricity quality with small power fluctuations. This is also an expected result,
since the WECs in the same row perpendicular to the unidirectional wave direction will be excited
simultaneously by the incident long-crested waves, whereas this does not happen in short-crested
waves. Nevertheless, although it is an expected result, it is still important to quantify the reduction of
the power fluctuations in short-crested waves, so that realistic values are used as design parameters
for the electrical system of a park. A useful measure of the power fluctuations in a park is given
by the variance (6). However, low fluctuations is only one measure of good park performance; in
addition, large energy absorption is required, which can be quantified in terms of the normalized
energy absorption (7). An optimal park will have a high energy absorption and low power fluctuations,
simultaneously.
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Figure 8. Convergence of the normalized energy absorption with number of simulations. For each
simulation S, the average over the 1:Sth simulations is shown for the average of the energy absorption
as in Equation (43), corresponding to the park of 16 WECs in Figure 7. Hence, Figure 7c, which is the
average over all 50 simulations, corresponds to the last point in this figure.
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Figure 9. Performance of a wave energy park of 16 devices in long-crested, unidirectional waves,
as compared to short-crested waves. The short-crested waves are composed of waves travelling in
15 directions with spreading function s = 5, corresponding to the directional spreading function and
surface elevation shown in Figure 4b. (a) power for the full park in long-crested and short-crested
irregular waves. The power has been divided by N · P̄i

isolated to be displayed in terms of the normalized
power. For clarity, q = 1 is highlighted with a red line; (b) normalized energy absorption versus
variance for the long-crested and short-crested waves, respectively. The average values for all the
50 simulations of short-crested waves is highlighted with a filled triangle.
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To evaluate this, both the variance and the energy absorption have been plotted in Figure 9b.
Ideal performance would end up in the upper left part of the figure, with high energy absorption and
low variance. The performance in long-crested waves is shown by a black asterisk, and the performance
in short-crested waves is shown by orange triangles, one for each simulation (corresponding to different
random phases). The average of all the short-crested waves is shown with a larger filled triangle.
As can be seen from the figure, the energy absorption in short-crested waves has a significantly
lower variance, i.e., the power fluctuations are significantly lower. The spread in normalized energy
absorption is large and ranges from 0.512 to 1.60, but the average of all simulations in short-crested
waves has a normalized energy absorption of 0.925, which is similar to and even slightly higher
than the value in long-crested waves, q = 0.910. To summarize, the power fluctuations are lower in
short-crested waves, and the energy absorption is comparable. In short, the performance is better in
short-crested waves as compared to long-crested waves.

3.3. Effect of Varying Wave Directions and Spreading Parameter

In Section 3.2, results were presented for short-crested waves with 15 wave directions and
spreading parameter s = 5, corresponding to directional wave spectrum and corresponding surface
elevation shown in Figure 4b. In this section, we evaluate the performance in short-crested waves
of different number of wave directions and different spreading parameter values. In Figure 10,
the extension of Figure 9b is shown for a larger class of short-crested waves. Short-crested waves with
spreading parameter s = 5 consisting of 3, 15 and 63 wave directions (corresponding to the waves in
Figure 4) and short-crested waves with spreading parameter s = 1, s = 5 and s = 25 consisting of waves
with 15 wave directions (corresponding to the waves in Figure 3b, 4b and 5b) have been considered.
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Figure 10. Performance of short-crested waves with different spreading parameters and number
of wave directions, as compared to performance in long-crested waves. The variance (measure of
the power fluctuations) and the normalized energy absorption of the park are shown. All 50 of the
simulations with different random phases are shown as small unfilled markers, whereas the mean
values are shown as larger filled markers.

From Figure 10, it is clear that all short-crested waves show a similar performance with lower
power fluctuations and similar energy absorption, as compared to the performance in long-crested
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waves. The more the short-crested waves tend towards long-crested waves (i.e., the fewer the
wave directions and the higher the spreading parameter, as discussed in Section 3.1 and shown
in Figures 3–6), the more the resulting performance converges to the unidirectional case. An ideal wave
energy park would have low fluctuations and high power absorption and end up in the upper left
corner. The simulations show that the spread in the results is large, but when an average is taken over
all 50 simulations with different random phases, the trend is clear; the parks in short-crested waves have
lower fluctuations, and no significant change in power absorption as compared to long-crested waves.

4. Conclusions

Realistic ocean waves can be short-crested and consist of irregular waves travelling in several
directions simultaneously. However, most studies on wave energy parks have been carried out in
long-crested, unidirectional waves. The few that have considered short-crested waves have indicated
that the performance of the wave energy parks might be different in short-crested as compared to
long-crested waves, and that the subject needs further study.

In this paper, theory for including short-crested (multidirectional) irregular waves in a multiple
scattering method has been developed and implemented in a semi-analytical MATLAB code.
The directional dependence of the waves is described by a directional spreading function, and the
impact of different spreading parameters and number of wave directions has been analysed.
The short-crested waves converge to unidirectional, long-crested waves with increasing spreading
parameter and decreasing number of wave directions.

The model has then been used to evaluate the performance of wave energy parks in short-crested
waves. The performance is evaluated according to two important parameters: the energy absorption
and the power fluctuations. An optimal wave energy park will have a large energy absorption but low
power fluctuations, in order to ensure a good electricity quality to the electric grid.

Since all the wave direction components have different random phases, each simulation
will produce different results due to the different waves produced at each location in the park.
A convergence study was performed and showed that the energy absorption in short-crested waves
converges to the long-crested case; an average of 50 simulations differed only 1.6% in energy
absorption from the long-crested waves case. The power fluctuations, however, are clearly lower in
the short-crested waves. The conclusion, therefore, is that the performance of wave energy parks in
short-crested waves can be better than what has been anticipated from simulations using long-crested
waves, with similar energy absorption and lower power fluctuations.
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Appendix A. Defined Functions and Parameters

The vertical eigenfunctions are defined as

Z0(z) = 1
N0

cosh(k(z + h)), N2
0 = 1

2

(
1 + sinh(2kh)

2kh

)
,

Zm(z) = 1
Nm

cos(km(z + h)), N2
m = 1

2

(
1 + sin(2kmh)

2kmh

)
.

(A1)

Integrating the vertical coordinate z along the fluid column gives rise to the constants

ci
s0 =

(−1)sk

k2 + λi
s
2

1
Li N0

sinh(kLi), ci
sm =

(−1)skm

k2
m − λi

s
2

1
Li Nm

sin(kmLi), (A2)

where the distance between the float bottom and the seabed at equilibrium is Li = h − di and
λi

m = πm/Li. The expressions needed for Graf’s addition theorems are

Tij
0ln =

1
Hl(kRj)

Hl−n(kRij)e
iθij(l−n), Tij

mln =
In(kmRi)

Kl(kmRj)
Kl−n(kmRij)e

iθij(l−n)(−1)n, (A3)

and Rij, θij are the distance and the angle between the two cylinders, respectively. The matrices
involved in solving for the coefficients in the exterior domain in the multiple scattering problem are

Di
smn = qi

mnδms − Li
smn, D̃i

smn = q̃i
mnδms − Li

smn

(
Jn(kRi)δm0 + 1− δm0

)
,

Li
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|n|Li

Ri ci
0sci
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∞
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pi
rnci

rsci
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∞
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Hn(kRi)
, qi

mn =
kmhK′n(kmRi)
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In(kmRi)
,

pi
mn =

πmI′n(λi
mRi)

In(λi
mRi)

.

(A4)

When the parameters α have been solved from the diffraction matrix equation, the coefficients in
the potential in the interior domain can be solved for from

γi
sn =

[(
− 1

6
+

(Ri)2

4(Li)2

)
δs0 −

(−1)s
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j
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with Vi = 0 for the scattering problem and Ai
0n for the radiation problem.
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