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Abstract: As the low-carbon economy continues to expand, wind power, as one form of clean
energy, promotes the low-carbon power development process. In this paper, a multi-objective
environmental economic dispatch (EED) model is proposed considering multiple uncertainties of the
system. Carbon trading costs and green certificate trading costs are introduced into the economic
costs. Meanwhile, the objective function of pollutant emissions is taken into account in the model,
which can further promote the reduction of pollutant emissions in the system scheduling. The output
of wind turbines is uncertain and volatile, so it brings new challenges to the power system EED once
the large-scale wind power accesses the power grid. For the multiple uncertainties of the system,
fuzzy chance-constrained programming is introduced, and the output of the wind turbines and the
load are regarded as fuzzy variables. We use the clear equivalence forms to clarify the fuzzy chance
constraints. The improved multi-objective standard particle swarm optimization (SPSO) algorithm is
used to solve the optimization problem effectively. The feasibility and effectiveness of the proposed
model and algorithm are verified by an example of a 10-unit system with two wind farms.

Keywords: wind power generation; environmental economic dispatch (EED); carbon trading; green
certificate trading; fuzzy chance constraint; standard particle swarm optimization (SPSO)

1. Introduction

Compared with the traditional fossil energy, wind power has the advantages of no energy
consumption, no emission and no pollution, and its strategic status is gradually increasing as
an alternative energy source and even the dominant energy source [1]. At the same time, with the
continuous development of renewable energy power generation, wind power as an important
driving force to promote the development of the low-carbon economy has attracted more and more
attention [2,3].

The traditional power system economic dispatch (ED) model [4,5] takes the minimum total
costs of the scheduling cycle as the goal of the ED model of the power system with wind farms,
without considering the environmental problems such as carbon emissions. Tian et al. introduced the
carbon emission costs in the power grid planning to limit the CO2 emissions of the power generation
system and adopted the advanced emission reduction technology unit for priority scheduling [6].
Wang et al. formulated a multi-objective ED problem considering wind penetration and utilized
a modified multi-objective particle swarm optimization (PSO) algorithm to solve the ED model [7].
Cui et al. developed a multi-timescale power system operation model integrating both the unit
commitment and ED sub-models [8]. However, in [7,8], they did not consider the uncertainty of wind
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power forecasts, nor the emission of pollutants. Gómez-Lázaro et al. confirmed that multiple Weibull
models are more suitable to characterize aggregated wind power data [9]. Hetzer et al. developed
a model with wind energy conversion system generators, in which a Weibull probability density
function was used to characterize the stochastic wind speed. Both the risk of overestimation and
cost of underestimation of available wind power have been considered by introducing reserve cost
and penalty cost into the objective function [10]. However, the valve point cost of the thermal power
unit is not taken into account in its economic costs. Meibom et al. established the intraday rolling
optimization scheduling model on the basis of the wind power probability prediction, and the model
was solved quickly by using the method of reduced scene tree [11]. However, the system operation
risk is not considered in the model. Azizipanah-Abarghooee et al. developed a new multi-objective
stochastic framework based on chance-constrained programming, and this framework benefits from
a new method named the hybrid modified cuckoo search (HMCS) algorithm and differential evolution
to extract the Pareto-optimal surface for minimum cost and maximum probability of meeting the target
cost [12].

Currently, wind power has been developed and utilized in many countries on a larger scale, but
large-scale wind power production is variabile [13,14]. Its uncertainty, fluctuation and anti-peaking
characteristics [15–18] cause many problems for wind power access and operation scheduling.
Scholars and researchers pay more attention to the study of the uncertainty of wind power [19–21],
and they have proposed many methods to deal with EED with wind power problems. Jiang et al.
established a wind-thermal economic emission dispatch (WTEED) model, where the wind power
cost was considered as a part of the optimization objective function. The gravitational acceleration
enhanced particle swarm optimization (GAEPSO) algorithm was applied to optimize the costs and
emission objectives [22]. Hooshmand et al. proposed a new approach based on a hybrid algorithm
consisting of genetic algorithm (GA), pattern search (PS) and sequential quadratic programming
(SQP) techniques to solve the well-known power system economic dispatch problem (ED) [23].
Azizipanah-Abarghooee et al. proposed a multi-objective stochastic search algorithm to analyze
the probabilistic WTEED problem considering both overestimation and underestimation of available
wind power [24]. Morshed et al. formulated and solved a probabilistic optimal power flow approach
(POPF) for a hybrid power system. In the proposed approach, the Monte Carlo simulation (MCS)
was combined with the antithetic variates method (AVM) to determine the probability distribution
function (PDF) of the power generated by the hybrid system [25]. Azizipanah-Abarghooee et al.
proposed an improved gradient-based Jaya algorithm to generate a feasible set of Pareto-optimal
solutions corresponding to the operation cost and emission calculated through a new robust bi-objective
gradient-based method [26]. Morshed et al. proposed a new method based on a hybrid algorithm
consisting of the imperialist competitive algorithm (ICA) and the sequential quadratic programming
(SQP) technique to solve the power system economic load dispatch (ELD) problem [27]. Alham et al. set
a multi-objective optimization model considering the uncertainty of wind power. The multi-objective
problem can be transformed into a single-objective optimization problem by the weighted sum method,
where the optimal Pareto front is obtained by changing weight factors [28]. The above literature works
do not take into account the trading costs of green certificates, and the introduction of green certificate
trading costs into scheduling has practical significance along with the promotion of green certificates in
various countries [29,30]. Therefore, it is realistic to consider the green certificate transactions in EED.

This paper is organized as follows: Section 2 describes the fuzzy chance-constrained programming.
Sections 3 and 4 set up the green certificate transaction cost model and the carbon transaction cost
model, respectively. Section 5 proposes an EED model of the power system with wind farms. Section 6
presents the improved SPSO algorithm for solving the proposed EED model. In Section 7, the results
of a 10-unit system with two wind farms are analyzed. Finally, Section 8 summarizes the conclusions.
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2. Fuzzy Chance-Constrained Programming

2.1. Clear Equivalence Forms of Fuzzy Chance Constraints

Fuzzy chance-constrained programming is a branch of fuzzy programming, which is used to
solve the problem that the constraints contain fuzzy variables. The optimization problem with the
constraints containing fuzzy variables can be formulated as:

min f (x) (1)

s.t. g(x, ξ) ≤ 0 (2)

where x is the decision vector, ξ is the fuzzy parameter vector, f (x) is the objective function and g(x,ξ)
is the constraint function.

The existence of fuzzy parameters leads to the constraint condition not being able to give a definite
feasible set. Thus, the chance-constrained processing is applied, that is the constraint condition is
expected to be set at a certain confidence level of α, that is:

Cr{g(x, ξ) ≤ 0} ≥ α (3)

where α is the confidence level; Cr{•} is the probability of the event in {•}.
Clear equivalence forms can deal with the chance-constrained conditions. If the condition of

constraint g(x,ξ) is as follows:

g(x, ξ) = h1(x)ξ1 + h2(x)ξ2 + . . . + ht(x)ξt + h0(x) (4)

where ξk is the trapezoidal fuzzy parameter (rk1, rk2, rk3, rk4), k = 1, 2, . . . , t, t ∈ R, and rk1–rk4 are the
membership parameters.

Define two functions:

hk
+(x) =

{
hk(x), hk(x) ≥ 0
0, hk(x) ≤ 0

(5)

hk
−(x) =

{
0, hk(x) ≥ 0
−hk(x), hk(x) ≤ 0

(6)

where k = 1, 2, . . . , t. Specially, if h(x) = 1, then h+(x) = 1, h−(x) = 0; if h(x) = −1, then h+(x) = 0, h−(x) = 1.
When the confidence level α ≥ 0.5, the clear equivalence form of the chance constraint (such as

Equation (3)) is:

(2− 2α)
t

∑
k=1

[
rk3hk

+(x)− rk2hk
−(x)

]
+ (2α− 1)

t

∑
k=1

[
rk4hk

+(x)− rk1hk
−(x)

]
+ h0(x) ≤ 0 (7)

2.2. Membership Function of Fuzzy Parameters

Fuzzy parameter P̃F of the load and the output of wind turbines can be represented by
a trapezoidal function in the scheduling cycle:

µ(PF) =


PF4−PF
PF4−PF3

, PF3 ≤ PF ≤ PF4

1, PF2 ≤ PF ≤ PF3
PF−PF1
PF2−PF1

, PF1 ≤ PF ≤ PF2

0, others

(8)

where µ(PF) is a trapezoidal membership function and PFi (i = 1, 2, 3, 4) is the trapezoidal
membership parameter.
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PFi can be determined based on the predicted value Pforecast:

PFi = ωiPforecast (9)

where ωi (i = 1, 2, 3, 4) is the coefficient of proportionality, 0 < ωi < 1. The coefficient of proportionality
can generally be determined by the historical data of the wind turbine output and the load.

The trapezoidal fuzzy parameter can be represented by four tuples:

P̃F = (PF1, PF2, PF3, PF4) = Pforecast(ω1, ω2, ω3, ω4) (10)

The trapezoidal fuzzy parameter is shown in Figure 1.

Figure 1. Trapezoidal fuzzy parameters.

3. Green Certificate Trading Cost Modeling

3.1. Indicator and Production of Green Certificate

The green certificate trading mechanism is put forward on the basis of a renewable energy quota
system. At present, this mechanism has been widely used in Britain, the United States, Australia and
other countries. In this paper, we define the electric energy produced by the thermal power unit to
be non-green electric energy, and the electric energy generated by the wind turbine is green electric
energy. Generally, in the scheduling cycle, the system can obtain one green certificate when it produces
1 MWh of green electric energy. According to the total output of the system, the government mandates
configuring a certain green electric energy production target. The system will use green electric energy
to exchange green certificates and pay the required green certificates before the deadline, otherwise it
will face high fines.

Within the unit period of t, the green certificate indicator of the government for the system is:

Rqt = θPDt/ε (11)

where Rqt is the green certificate production indicator required by the government within the unit
period of t; θ is the proportion coefficient of the green electric energy allocated by the government
according to the output of the system; PDt is the sum of the output of wind turbines and thermal

power units within the unit period of t, that is PDt =
N
∑

i=1
PGit +

NW
∑

j=1
PWjt, where N is the number of

thermal power units, PGit is the output of the thermal power unit i within the unit period of t, NW is
the number of wind turbines, PWjt is the output of the wind turbine j within the unit period of t and ε

is the amount of the green electric energy needed to exchange a green certificate.
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In the power system with wind farms, only the electric energy produced by the wind farm is
green electric energy. Within the unit period of t, the amount of the green certificate exchanged by the
green electric energy produced by the system is:

Rpt =
NW

∑
j=1

PWjt/ε (12)

where Rpt is the amount of the green certificates exchanged for the green electric energy produced by
the system.

3.2. Green Certificate Trading Cost Model

The green certificate trading process in the power system analyzed in this paper has three cases:
(1) when the amount of the green certificates exchanged is larger than the amount of the government
indicator, the excess green certificates are sold, as well as the proceeds from it; (2) when the amount of
the green certificate exchanged is less than the amount of the government indicator, but greater than
the difference between the amount of the government indicator and the amount of the green certificate
that can be purchased, the cost of the green certificate purchased should be paid; (3) when the amount
of the green certificate exchanged is less than the difference between the amount of the government
indicator and the amount of the green certificate that can be purchased, in addition to the payment of
the purchase cost of the green certificate, also the fine for the amount of the vacancies needs to be paid;
that is:

FRt =


KRt
(

Rqt − Rpt
)
, Rpt ≥ Rqt

KRt
(

Rqt − Rpt
)
, Rqt − RLt ≤ Rpt ≤ Rqt

KRtRLt + KHt
(

Rqt − RLt − Rpt
)
, Rpt ≤ Rqt − RLt

(13)

FR =
T

∑
t=1

FRt (14)

RLt = ϕRqt (15)

where KRt is the price of the green certificate trading within the unit period of t; KHt is the penalty price
of the green certificate of the amount of the vacancies within the unit period of t; RLt is the amount of
the green certificate that can be purchased by the system within the unit period of t; φ is the margin
of the amount of the green certificate that can be purchased; FRt is the green certificate trading costs
of the system within the unit period of t; T is the total number of periods of the day-ahead dispatch,
taking 24 as the value; FR is the green certificate trading costs of the system in the scheduling cycle T.

4. Carbon Trading Cost Modeling

4.1. Allocation of Carbon Emission Rights and Carbon Emissions

At present, there are mainly two ways to allocate the initial amount of carbon emission rights in
the world: one is the free allocation for specific rules; the other is the paid distribution of the auction
methods. The paid distribution of the initial carbon emission rights will increase the cost of power
generation companies, while the free allocation of the initial carbon emission rights is easy for power
generation companies to accept. In this paper, the method of the baseline is used to link the allocation
of carbon emission rights and the power generation of the system. Both thermal power units and
wind turbines use a distribution method that is proportional to the amount of electricity generated to
increase the utilization of clean energy. For a power generation system with wind farms, the amount
of carbon emission rights allocated to it within the unit period of t is:

Eqt = ηPDt (16)
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where Eqt is the amount of carbon emission rights allocated by the system within the unit period of
t; η is the amount of carbon emissions quota allocated per unit quantity of electricity, determined by
the “regional grid baseline emission factor” issued by the China National Development and Reform
Commission [31].

Wind power as a green clean energy, the wind farm does produce carbon emissions during the
production process. Therefore, in the power system that contains wind farms, carbon emissions are
only related to thermal power units. The system carbon emissions within the unit period of t are:

Ept =
N

∑
i=1

δiPGit (17)

where δi is the carbon emission intensity of the unit quantity of electricity of a thermal power unit I
and Ept is the carbon emission of the system within the unit period of t.

4.2. Carbon Trading Costs Model

The carbon trading process in the power system analyzed in this paper has three cases: (1) when
the carbon emission is less than the carbon emission rights quota, the excess carbon emission rights
quota is sold, as well as the proceeds from it; (2) when the carbon emission is larger than the carbon
emission rights quota, but less than the sum of the self-allocation of the carbon emission rights quota
and the carbon emission rights that can be purchased, the cost of the carbon emission rights purchased
should be paid; (3) when the carbon emission is larger than the sum of the self-allocation of the carbon
emission rights quota and the carbon emission rights that can be purchased, in addition to the payment
of the purchase cost of carbon emission rights, also the fine of the amount of the excesses needs to be
paid. That is:

FCt =


KCt
(
Ept − Eqt

)
, Ept ≤ Eqt

KCt
(
Ept − Eqt

)
, Eqt ≤ Ept ≤ Eqt + ECt

KCtECt + KLt
(
Ept − ECt − Eqt

)
, Ept ≥ Eqt + ECt

(18)

FC =
T

∑
t=1

FCt (19)

ECt = ρEqt (20)

where KCt is the price of the carbon emission rights trading within the unit period of t; KLt is the
penalty price of the carbon emission rights of the amount of the excesses within the unit period of
t; ECt is the carbon emission rights that can be purchased by the system within the unit period of t;
ρ is the margin of the carbon emission rights that can be purchased; FCt is the carbon trading costs of
the system within the unit period of t; FC is the carbon trading costs of the system in the scheduling
cycle T.

5. Green Low-Carbon Economic Dispatch Model of the Power System with Wind Farms

5.1. Objective Function of Economic Costs

When considering the carbon trading costs of the system, its economic cost objective function is:

minF1 = min(FG + FW + FC) (21)

When considering the green certificate trading costs of the system, its economic cost objective
function is:

minF1 = min(FG + FW + FR) (22)
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where F1 is the economic cost objective function of the system in the scheduling cycle T; FG is the
economic costs of thermal power units’ operation in the scheduling cycle T; FW is the economic costs
of wind turbines’ operation in the scheduling cycle T.

The economic costs of the thermal power units FG can be formulated as:

FG =
T

∑
t=1

N

∑
i=1

{[
C(PGit) + E(PGit) +

(
1− IGi(t−1)

)
SGit

]
IGit

}
(23)

where C(PGit) is the fossil energy consumption cost of the thermal power unit i within the unit period
of t; E(PGit) is the energy consumption cost of the valve point effect of the thermal power unit i within
the unit period of t; IGit is the operation status of the thermal power unit i within the unit period of
t, where IGit = 1 indicates that the unit is in operation, IGit = 0 indicates that the unit is in shutdown;
SGit is the start-up cost of the thermal power unit i within the unit period of t.

C(PGit) = aiPGit
2 + biPGit + ci (24)

E(PGit) =
∣∣∣ei sin

[
fi

(
PGit − PGi

min
)]∣∣∣ (25)

SGit = ψi + σi

(
1− e−TGit

off/τi
)

(26)

where ai, bi and ci the generation cost coefficients of the thermal power unit i; ei and fi are the valve
point effect coefficients of the thermal power unit i; PGi

min is the lower limit of the output of the
thermal power unit i; ψi, σi and τi are the start-up cost coefficients of the thermal power unit i; TGit

off

is the downtime of the thermal power unit i within the unit period of t.
There is no consumption of fossil energy in the operation of wind turbines. On the basis of

considering the cost of wind power investment and operation and maintenance, the average generation
cost in the whole life cycle of wind power can be approximately expressed as the linear relationship
with the power generation. That is:

FW =
T

∑
t=1

NW

∑
j=1

KW PWjt (27)

where KW is the generation cost coefficient of wind turbines within the unit period of t.

5.2. Objective Function of Pollutant Emissions

During the course of operation, the thermal power generating units not only produce CO2, but also
produce pollutants such as sulfur oxides, nitrogen oxides and other polluting gases. These polluting
gases will have some influence on the ecological balance (such as fog and haze, acid rain, ozone
damage and greenhouse effect) [32]. The objective function of the pollutant emission of the system can
be written as:

minF2 = min

{
T
∑

t=1

NW
∑

i=1

[
gi
(
aiSO2 PGit

2 + biSO2 PGit + ciSO2

)
+ hi

(
aiNOx PGit

2 + biNOx PGit + ciNOx

)]}
(28)

where F2 is the objective function of system pollutant emission; gi and hi are the weight coefficients of
SO2 and NOx emissions of the thermal power unit i; aiSO2 , biSO2 and ciSO2 are the emission coefficients
of SO2 of the thermal power unit i; aiNOx , biNOx and ciNOx are the emission coefficients of NOx of the
thermal power unit i.

5.3. Unit Constraints

Unit output constraint:
PGi

min ≤ PGit ≤ PGi
max (29)



Energies 2018, 11, 943 8 of 19

Unit ramp rate constraint:
− Rdi ≤ PGit − PGi(t−1) ≤ Rui (30)

Unit start and stop time constraint:{
TGit

on ≥ TGimin
on

TGit
off ≥ TGimin

off (31)

where PGi
max is the upper limit of the output of the thermal power unit i; Rui and Rdi are the

ramp-up rate constraint values and the ramp-down rate constraint values of the thermal power
unit i, respectively; TGit

on is the boot time of the thermal power unit i within the unit period of t;
TGimin

on and TGimin
off are the minimum boot time and the minimum downtime of the thermal power

unit i, respectively.

5.4. System Constraints

5.4.1. System Chance Constraints

When the fuzzy parameters express the output of the wind turbine and load, constraints
under certain conditions of the power balance of the system are meaningless. Therefore, the fuzzy
chance-constrained programming model is adopted, and its constraints include fuzzy variables.
The inequality constraints are established at a certain confidence level and are expressed in the form of
probability. The level of confidence can reflect the decision maker’s requirement for the operation level
of the power system. The system power balance chance constraint is:

Cr

{
P̃Lt −

N

∑
i=1

PGit −
NW

∑
j=1

P̃Wjt = 0

}
≥ α (32)

where P̃Lt is the load fuzzy parameter within the unit period of t; P̃Wjt is the output fuzzy parameter of
the wind turbine j within the unit period of t; α is the confidence level.

Due to the uncertainty of the load and the output of the wind turbine, it is necessary to add
reserve power to reduce the risk of the load loss and the risk of the waste of wind energy resource,
that is spinning reserve constraints are introduced into the constraints. Reserve is the treatment of the
uncertainty of the prediction value. After the fuzzy parameter is used to represent the prediction value,
the chance-constrained condition includes the treatment of the uncertainty of the prediction value.
Therefore, there is no need to introduce reserve power in the spinning reserve constraint. The spinning
reserve chance constraint of the system is:

Cr

{
P̃Lt −

N

∑
i=1

PGimax IGit −
NW

∑
j=1

P̃Wjt ≤ 0

}
≥ α (33)

5.4.2. Clear Equivalence Forms of System Chance Constraints

Using the method of Section 2, the power balance constraint (Equation (32)) and the spinning
reserve constraint (Equation (33)) of the system are transformed into the corresponding clear
equivalence forms.

The clear equivalence form of the system power balance constraint:

(2− 2α)

(
PLt3 −

NW

∑
j=1

PWjt2

)
+ (2α− 1)

(
PLt4 −

NW

∑
j=1

PWjt1

)
−

N

∑
i=1

PGit = 0 (34)
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The clear equivalence form of the system spinning reserve constraint:

(2− 2α)

(
PLt3 −

NW

∑
j=1

PWjt2

)
+ (2α− 1)

(
PLt4 −

NW

∑
j=1

PWjt1

)
−

N

∑
i=1

PGimax IGit ≤ 0 (35)

6. Model Solving

6.1. Pareto Optimal Solution

When there are multiple objective functions, there is usually a bunch of solutions that cannot be
simply compared with each other. This solution is called the Pareto-optimal solution or non-dominated
solution. The set consisting of all Pareto-optimal solutions is called the Pareto-optimal solution set of
the multi-objective optimization problem.

For the multi-objective optimization problem, individual x1 dominates individual x2 (i.e., x1 ≺ x2)
if and only if the following relationship is established at the same time:{

∀i ∈ {1, 2, · · · , k} : fi(x1) ≤ fi(x2)

∃j ∈ {1, 2, · · · , k} : f j(x1) ≤ f j(x2)
(36)

where fi(x) is the i-th objective function and k is the number of objective functions.
All non-dominated individuals constitute the Pareto-optimal solution S, correspondingly in the

target space to form the Pareto optimal leading edge PF

PF = { f (x) = ( f1(x), f2(x), · · · , fk(x))|x ∈ S} (37)

6.2. Improved Multi-Objective Standard Particle Swarm Optimization

In the standard particle swarm optimization (SPSO), the inertia weightω decreases linearly in the
iterative process, so that the PSO algorithm has good global search performance at the beginning, can
be quickly positioned near the global optimal point, has good local search performance in the later
stage and can accurately get the global optimal solution. Its inertia weight ω is:

ω = ωstart −
ωstart −ωend

tmax
× t (38)

where t is the number of iterations; tmax is the maximum number of iterations; ωstart is the initial inertia
weight; ωend is the terminal inertia weight.

The biologic heuristic algorithm has a great advantage in solving the optimal problem. Use the
predation behavior of birds to improve the SPSO algorithm. Birds not only have predation behavior,
but also have anti-predation behavior, that is to say, birds hunt for food while avoiding natural enemies.
Then, we set the worst particle in the iteration process, and after each search, the worst particle is
obtained by comparison, taking into account the next iteration to update the speed and location. That is
to say, in the process of bird flight, there must be a bird closest to the food (the best particle), and there
must be a bird closest to the natural enemies (the worst particle). Through the sharing of information,
birds are kept close to food and away from natural enemies during flight. In this way, each particle
updates its velocity and position (deviates from the worst particle and points to the optimal particle),
which is more comprehensive than the SPSO in which the velocity and position (points to the optimal
particle) of the particle are updated. This algorithm does not easily fall into the local optimal solution,
and it is easier to obtain the global optimal solution. Its flowchart is shown in Figure 2. The particle
velocity and position update formula is:

Vt+1
i = ωVt

i + c1r1

(
Pt

best,i − Xt
i

)
+ c2r2

(
Pt

gbest − Xt
i

)
+ c3r3

(
Xt

i − Pt
worst,i

)
+ c4r4

(
Xt

i − Pt
gworst

)
(39)
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Xt+1
i = Xt

i + Vt+1
i (40)

where c1 and c2 are the acceleration coefficients of the particle flying to its own optimal position and
flying to the global optimal position, c3 and c4 are the acceleration coefficients of the particle deviating
from its own worst position and deviating from the global worst position and r1, r2, r3, r4 are random
numbers between zero and one.

Figure 2. Flowchart for improved SPSO.

7. Example Analysis

7.1. Basic Data and Parameters

Take a regional power grid as an example: the area includes 10 thermal power units and two
wind farms, and the scheduling cycle takes 24 h. The parameters of the thermal power unit are shown
in Table 1. For all thermal power units, the weight coefficients of SO2 and NOx emissions (gi and hi) are
0.5. The allocation quota of carbon emission per unit of electricity in the system η is 0.798. The green
electric energy distribution quota θ is 0.3. The amount of green electric energy needed to exchange
a green certificate ε is 1 MWh/copy. The generation cost coefficient of wind turbines KW is 79$/MW.
Load prediction is shown in Table 2. The output prediction of two wind farms is shown in Table 3.
Load prediction and wind power output prediction are represented by trapezoidal fuzzy parameters,
and the values of trapezoidal fuzzy membership parameters are shown in Table 4. The population size
of the particles is 20. The maximum number of iterations is 300.
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Table 1. (a) Parameters of the thermal power unit. (b) Parameters of the thermal power unit.

(a)

Unit Rui/
MW/h

Rdi/
MW/h δi

Pmax/
MW

Pmin/
MW

ai/
$/(MW2·h)

bi/
$/(MW·h)

ci/
$/h

ei/
$/h

fi/
rad/MW

1 130 130 0.97 455 150 0.00048 16.19 1000 450 0.041
2 130 130 0.98 455 150 0.00031 17.26 970 600 0.036
3 60 60 0.98 130 20 0.00200 16.60 700 300 0.086
4 90 90 1.25 130 20 0.00211 16.50 680 340 0.082
5 40 40 1.13 162 25 0.00398 19.70 450 310 0.048
6 40 40 1.22 80 20 0.00712 22.26 370 270 0.098
7 40 40 0.85 85 25 0.00079 27.74 480 300 0.092
8 40 40 0.74 55 10 0.00413 25.92 660 380 0.094
9 40 40 0.74 55 10 0.00222 27.27 665 300 0.085

10 40 40 0.69 55 10 0.00173 27.79 670 290 0.078

(b)

Unit aiSO2/kg/
(MW2·h)

biSO2/kg/
(MW·h)

ciSO2/
kg/h

aiNOx/kg/
(MW2·h)

biNOx/kg/
(MW·h)

ciNOx/
kg/h

ψi/
$/h

σi/
$/h

τi/
h

1 0.00019 2.06 198.33 0.022 −2.86 130.00 5500 5500 5
2 0.00018 2.09 195.34 0.020 −2.72 132.00 5500 5500 5
3 0.00220 2.14 155.15 0.044 −2.94 137.70 550 550 2
4 0.00220 2.25 152.26 0.058 −2.35 130.00 550 550 2
5 0.00210 2.11 152.26 0.065 −2.36 125.00 700 700 2
6 0.00250 3.45 101.43 0.080 −2.28 110.00 170 170 2
7 0.00220 2.62 111.87 0.075 −2.36 135.00 200 200 2
8 0.00420 5.18 126.62 0.082 −1.29 157.00 30 30 1
9 0.00540 5.38 134.15 0.090 −1.14 160.00 30 30 1

10 0.00550 5.40 142.26 0.084 −2.14 137.70 30 30 1

Table 2. Load prediction for 24 h.

Hour Load/MW Hour Load/MW Hour Load/MW

1 700 9 1300 17 1000
2 750 10 1400 18 1100
3 850 11 1450 19 1200
4 950 12 1500 20 1400
5 1000 13 1400 21 1300
6 1100 14 1300 22 1100
7 1150 15 1200 23 900
8 1200 16 1050 24 800

Table 3. Output prediction of two wind farms for 24 h.

Hour Wind Farm 1/MW Wind Farm 2/MW Hour Wind Farm 1/MW Wind Farm 2/MW

1 190 165 13 390 50
2 300 145 14 340 115
3 330 120 15 320 125
4 360 160 16 120 170
5 350 140 17 10 150
6 370 120 18 40 195
7 440 130 19 50 140
8 460 80 20 20 240
9 350 35 21 5 140

10 250 10 22 250 70
11 420 75 23 350 10
12 380 85 24 240 80



Energies 2018, 11, 943 12 of 19

Table 4. Trapezoidal fuzzy membership parameters.

Fuzzy Parameter Wind Power Output Load

ω1 0.6 0.9
ω2 0.9 0.95
ω3 1.1 1.05
ω4 1.4 1.1

7.2. Calculation Results and Analysis

Consider the carbon trading (i.e., the economic costs objective function is Equation (21)).
The carbon trading penalty price KLt is 60$/t; the margin of the carbon emission rights that can
be purchased ρ is 0.4; the confidence level α is 0.85; the carbon trading price KCt is 20$/t. Figures 3
and 4 show the change curves of the economic costs and pollutant emissions with the number of
iterations under the SPSO algorithm, respectively. Figures 5 and 6 show the change curves of the
economic costs and pollutant emissions with the number of iterations under the improved SPSO
algorithm, respectively. Table 5 shows the final economic costs and pollutant emissions under the
SPSO and improved SPSO algorithms.

Figure 3. The change curve of economic costs with the number of iterations (SPSO).

Figure 4. The change curve of pollutant emissions with the number of iterations (SPSO).
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Figure 5. The change curve of economic costs with the number of iterations (improved SPSO).

Figure 6. The change curve of pollutant emissions with the number of iterations (improved SPSO).

Table 5. The final F1 and F2 under the SPSO and improved SPSO.

SPSO Improved SPSO

economic costs F1/k$ 626.381 626.194
pollutant emissions F2/t 170.105 170.037

It can be seen from Figures 3 and 4 that the economic costs and the pollutant emissions are
minimized when the number of iterations reaches 90 times under the SPSO algorithm. Figures 5 and 6
show that when the improved SPSO algorithm is used, the convergence speed is improved, and the
minimum values have been reached when the number of iterations is 30. It is proven that the improved
SPSO algorithm can improve the optimization speed.

It can be seen from Table 5 that the economic cost is 626.194 thousand dollars and the pollutant
emission is 170.037 tons under the improved SPSO algorithm. Its optimal dispatch results are reduced
compared with the dispatch results of the SPSO algorithm. It is proven that the improved SPSO
algorithm can improve the accuracy of optimization.

Consider the carbon trading (i.e., the economic costs objective function is Equation (21)).
The carbon trading penalty price KLt is 60$/t; the margin of the carbon emission rights that can
be purchased ρ is 0.4; the confidence level α is 0.85. Figure 7 shows the change curve of total economic
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costs F1 and system pollutant emission F2 with the change of carbon trading price KCt. Figure 8 shows
the change curve of carbon trading costs FC with the change of carbon trading price KCt.

Figure 7. Economic costs and pollutant emission at different carbon trading prices.

It can be seen from Figure 7 that with the increase of the carbon trading price KCt, the low-carbon
scheduling target weight increases, and low emission units and wind turbines gradually gain
advantages. Low-emission units and wind turbines’ generating costs are higher, so the total economic
costs of the system F1 will increase accordingly. With the increase of the carbon trading price,
the increase of the output of the wind turbines makes the output of the thermal power units decrease,
so the pollutant emissions of the system F2 will decrease accordingly.

Figure 8. Carbon trading costs at different carbon trading prices.

It can be seen from Figure 8 that when the carbon trading price KCt is low, the system of carbon
emissions Eqt is greater than the amount of the carbon emission rights quota Eqt. Therefore, it is
necessary to purchase carbon emission rights, which results in a certain carbon trading cost FC.
With the increase of carbon trading price, the output of wind turbines will increase by a small margin,
and the cost of carbon emission rights purchased will increase, so the carbon trading costs will increase.
When the carbon trading price reaches 18$/t, the carbon trading costs reach the peak value, which is
30.372 thousand dollars. As the carbon trading price continues to increase, the output of wind turbines
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will gradually increase, and the system carbon emissions will decrease, so the carbon trading costs
decrease. Therefore, the carbon trading costs increase first and then decrease.

Consider the green certificate trading (i.e., the economic costs objective function is Equation (22)).
The green certificate trading price KRt is 3$/copy; the green certificate trading penalty price KHt is
9$/copy; the confidence level α is 0.85. Figure 9 shows the change curve of total economic costs F1

and system pollutant emissions F2 with the change of the purchase margin of the green certificate φ.
Figure 10 shows the change curve of green certificate trading costs FR with the change of the purchase
margin of the green certificate φ.

Figure 9. Economic costs and pollutant emission at different margins of the green certificate.

It can be seen from Figure 9 that with the increase of the purchase margin of the green certificate φ,
the system can purchase more green certificates, so we can reduce the output of high cost low emission
units and wind turbines. The total economic costs of the system F1 will decrease accordingly. With the
increase of the purchase margin of the green certificate, the decrease of the output of the wind turbines
makes the output of the thermal power units increase, so the pollutant emissions of the system F2 will
increase accordingly. It can be seen from Figures 7 and 9 that the total economic costs of the system
and the emissions of pollutants are restricted by each other, and the relationship between them is
negatively related.

It can be seen from Figure 10 that when the green certificate purchase margin φ is small, fewer
green certificates are purchased, and the cost of green certificate trading FR is the sum of green
certificate purchase cost and penalty cost. As the margin of purchase increases, the cost of the green
certificate purchased increases, and the cost of the penalty decreases. Because the price of the penalty is
higher than the price of green certificate purchased, the trading cost of green certificates is decreasing.
As the margin continues to increase, the penalty cost continues to decrease to zero, where the amount
of green certificate exchanged Rpt is less than the amount of green certificate quota Rqt, but the amount
of green certificate vacancies does not exceed the amount of green certificate that can be purchased
RLt, so one only needs to pay the purchase cost of green certificate vacancies. Taking into account
that the purchased green certificates can be re-sold, the green certificate trading costs FR have one
a small change.
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Figure 10. Green certificate trading costs at different margins of the green certificate.

Consider the green certificate trading (i.e., the economic cost objective function is Equation (22)).
The green certificate trading price KRt is 3$/copy; the green certificate trading penalty price KHt is
9$/copy; the green certificate purchase margin φ is 0.4. Figure 11 shows the change curve of total
economic cost F1 with the change of confidence level α.

It can be seen from Figure 11 that when the confidence level α is low, the total economic cost of
the system F1 is small, that is to say, high risk brings high returns. With the increase of the confidence
level α, the total economic cost of the system F1 is increasing gradually, that is to say, high reliability
requires a high cost of investment. The confidence level reflects the decision maker’s grasp of risk,
and the risk originates from the fuzziness of load and the output of the wind turbine. In the actual
decision making, according to the data analysis of the output of the wind turbine and the load, the unit
combination scheme that can accept the above risk and achieve the maximum economic return can
be selected.

Figure 11. Economic costs at different confidence levels.

Consider the green certificate trading (i.e., the economic cost objective function is Equation (22)).
The green certificate trading price KRt is 3$/copy; the green certificate trading penalty price KHt is
9$/copy; the green certificate purchase margin φ is 0.4; the confidence level α is 0.85. We take the
multi-objective economic scheduling in this paper as Model 1. Take the single-objective economic
scheduling that only takes the minimum total economic costs of the system F1 as the scheduling goal
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as Model 2. Take the single-objective economic scheduling that only takes the minimum pollutant
emissions of the system F2 as the scheduling goal as Model 3. Table 6 lists the scheduling results in the
different models.

Table 6. Output prediction of two wind farms for 24 h.

Model Economic Costs of the System F1/k$ Pollutant Emissions of the System F2/t

1 632.528 170.367
2 614.296 193.727
3 648.105 163.448

It can be seen form Table 6 that under Model 3, only taking the minimum pollutant emissions
of the system F2 as the scheduling goal, wind turbines have a priority to generate electricity relative
to thermal power units, making the system’s pollutant emissions the smallest. However, due to the
high cost of wind power generation, the economic costs of the system are the highest among the three
models. Under Model 2, only taking the minimum economic costs of the system F1 as the scheduling
goal, thermal power units have a priority to generate electricity relative to wind turbines, making the
system’s economic costs the smallest. However, because the thermal power units discharge pollutants
while generating electricity, the pollutant emissions of the system are the highest among the three
models. The scheduling results of Model 1 are between those of Model 2 and Model 3. This model
ensures the system’s scheduling economy, while reducing the amount of pollutant emissions of the
system, which is good for environmental protection.

8. Conclusions

This paper presents an EED model of the power system with wind farms. Carbon trading costs
and green certificate trading costs are introduced into economic costs. The objective function of
system pollutant emission is introduced to further promote the pollutant emission reduction of the
system. For the uncertainty and volatility of the load and the output of the wind turbines, this paper
regards them as fuzzy variable and establishes the fuzzy chance constraints. The fuzzy chance
constraints are clarified by the clear equivalence forms. The optimal allocation of the EED issue
involving a 10-unit system with two wind farms is determined by the improved multi-objective SPSO
algorithm. Simulation results demonstrate that the algorithm is efficient and the solution is reasonable.
The following conclusions can also be reached: (1) The improved SPSO algorithm can improve the
optimization speed and the accuracy of optimization relative to the SPSO algorithm in this paper. (2)
The total economic costs of the system and the emissions of pollutants are restricted by each other, and the
relationship between them is negatively related. (3) Changes of carbon trading price (green certificate
trading price) and the purchase margin of the green certificate (purchase margin of carbon emission
rights) will produce different influences on the system economic costs and pollutant emissions. Therefore,
choosing a reasonable trading price and purchase margin can balance the system economic cost and
pollutant emissions. (4) High reliability requires a high cost of investment, while high risk brings high
returns. Considering the fuzziness of the load and the output of wind turbines, choosing a reasonable
confidence level can realize the control of risks and achieve the minimum economic cost. (5) Relative to
single-objective ED, multi-objective EED ensures the system’s scheduling economy, while reducing the
amount of pollutant emissions of the system, which is good for environmental protection.
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