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Abstract: This paper describes the evolution of the thermal network and its applications for making
simplified thermal models of buildings by means of thermal resistances (R) and capacitances (C). In the
literature, there are several modelling schemes for buildings. Here, we investigate the advantages,
disadvantages, and improvements of thermal networks. The thermal network method has been used in
different studies for calculating indoor air temperature and heating load, estimating model parameters,
and studying building interactions with heating and cooling systems. This review paper conducts an
investigation into the application, system identification, and structure of thermal networks compared
to other tools. Within the framework of the thermal network method, we conclude with some new
proposals for research in this field to expand the idea of the thermal network to other engineering and
energy management fields.

Keywords: building energy performance; thermal networks; simplified models of building;
data-driven models

1. Introduction

Buildings are one of the main sectors for energy reduction efforts in EU countries. They consume
around 40% of total used energy and are responsible for more than 35% of carbon emissions [1]. Hence,
building and district energy management and optimisation problems have been identified as being an
interesting and challenging topic for engineers. Such problems have been receiving much attention
due to the importance of energetic or economic themes. For instance, energy engineers are primarily
interested in: the main energy sources in various historical times, district energy systems and how
they operate, available energy sources according to the time and region, design considerations for
residential and industrial zones, and reducing greenhouse gas emissions and their environmental
impacts. Furthermore, economic feasibility, performance analysis, and the role of energy policies [2]
represent other fields of research.

Until now, energy engineers have put a lot of effort into energy production potential, modelling,
and optimisation, although district energy system management and greenhouse gases are still crucial
issues [3]. According to the literature, energy efficiency at the district level depends on the performance
of the heating and cooling systems, the energy consumption, the energy production, and the energy
losses in distribution systems.

Engineers have developed various methods to quantify and optimise the used and produced
energy on large and small scales (district or building scale) [4,5]. The common modelling approaches
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are categorised as deterministic energy models, stochastic energy models, and artificial neural networks.
In deterministic energy models, the key parameters influencing the heat demand must be identified [6].
On the other hand, stochastic modelling is mainly used for forecasting and has not been used
significantly for nonlinear problems [7]. Finally, artificial neural networks are used when many
parameters are included in the model [3], and the model is derived from available datasets [7]. It is
necessary to develop interactions between different modelling methods, as this favours the production
of simple, robust, and verified models. This objective can be facilitated by means of machine learning
techniques to make models and computers capable of learning from datasets and patterns without
being explicitly programmed [8]. Several studies have identified that a data-driven model with
a combination of deterministic and stochastic models is reliable enough to express envelope properties
and forecast indoor conditions and the heating load [9–12]. Experimental results demonstrate that
the hybrid model exhibits a better performance compared with the other techniques. In fact, all the
predictors constructed by means of the energy-consuming patterns have a more reliable performance
than those designed only by the construction data [13].

Another type of categorisation of modelling techniques is steady-state and dynamic models,
which can be used in both forward and inverse approaches. The degree-days method is applicable to
calculating the amount of energy that a heating system uses from one day/week/month/year to the
next. Although this method can provide accurate results for calculating the peak and average loads
for sizing the system, it is not very interesting for modelling dynamic indoor conditions, occupancy
behaviour, and building interactions studies [6,14]. Furthermore, sophisticated technologies for
energy metering and environmental monitoring, in cooperation with communication and networking
technologies, can be key features of future smart buildings and grids [15,16], where transient responses
of the thermal performance of buildings play a vital role instead of steady state solutions.

After a description about different building energy performance techniques and some of the
available tools, this paper focuses on the thermal network method as an alternative approach, which has
shown its capability to simulate and forecast the thermal load of a building in different problems.
In addition, with an interest in data-driven models for various applications in building energy
management such as thermal load prediction [17], electricity consumption models [18], and local energy
production [19], the thermal network method provides results that are as accurate as neural networks,
in addition to maintaining the real interpretation of specified parameters. In this context, despite other
review papers that describe the thermal network as an option along with other tools for building
energy performance, the main contribution of this review paper is to cover the main applications of
thermal networks for building energy assessment. It includes studying the functionality of the thermal
network method for inverse modelling and system identification problems and concentrating on the
importance of the structure of thermal networks for different applications.

The rest of this paper is organised as follows: Section 2 studies different steady state and dynamic
modelling methods, categorising available models into three different groups, named as forward,
inverse, and hybrid approaches. Section 3 looks at the different applications of the thermal networks
method to assess energy problems in buildings and it concludes with five main categories for building
energy management problems and the application of the thermal network method for each type of
problem. Section 4 considers inverse modelling and data-driven models with the available system
identification approach for parametric models and the thermal network method. Section 5 details how
different thermal network structures are developed for simulating internal mass effects, multi-zone
buildings, and appliances. Section 6 investigates the functionality of thermal networks in comparison to
available software and tools, in addition to investigating how effectively engineers used the outcomes
of the available software and tools to train various thermal networks and parametric models. Finally,
Section 7 presents the conclusion and suggests new research proposals to expand the application of
the thermal network method for energy problems of buildings.
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2. Building Energy Performance Simulation

Evidently, the consumed energy required to keep a zone in proper comfort and health conditions
depends on various factors [20], such as indoor temperature, humidity, chemical contents, ventilation
rate, surface temperatures, and PPD level (predicted percentage of dissatisfied). Indoor comfort opens
new areas of research for the development of various controllers for HVAC (heat, ventilation, and air
conditioning) systems, electric power, illumination, and new technologies, such as smart meters,
occupancy detectors, sensor technologies, and building to grid characterisation [21].

Generally, between 50% and 70% of the total used energy in a building is consumed to provide the
thermal comfort [22]. Thus, developing a suitable control system based on a thermal model of buildings
that can manage preferences for indoor air quality in the most optimised situation has been studied by
many researchers [23,24]. As previously mentioned, the steady-state and dynamic models are the two
main approaches for determining the annual energy consumption of buildings. The stationary heat
balance equation is a well-known approach for making steady-state models. This method provides
a summary of the outside temperature’s effects on the building’s constant indoor air temperature.
While, in some specific cases, the heat loss coefficient and the efficiency of the HVAC system are
affected by the outside temperature, the steady-state model is considered for different temperature
intervals and time periods: this is called the Bin method [25].

Steady-state models provide good results for determining the maximum required loads by
assuming that the internal temperature of the building does not change throughout the whole year.
If the aim is to optimise the annual energy consumption, a variable indoor temperature considered in
dynamic models will be of greater use for designers. Some preliminary work for transient thermal
models was carried out in 1967 by introducing the response factor method [25,26] and the periodic heat
flow model to determine the “total equivalent temperature differential” for a building. The dynamic
approach generally includes the thermal network method, modal analysis, differential equations,
autoregressive moving average modelling (ARMA), Fourier series, and transfer functions. Available
techniques for calculating the energy consumption for buildings and districts are shown in Figure 1.

Figure 1. Commonly used methods for building thermal performance assessment.

The numerical calculations give the possibility to dynamic models to calculate very accurate
results when discretised time steps are used. Nowadays, different types of software are available to
determine the energy consumption in buildings by means of steady-state or dynamic models [27].
A study from K.U. Leuven (Belgium) calls into question the margin of error for steady-state and
dynamic simulation methods for a low-energy building in a social housing company. It has been
shown that the EPW (Flemish energy performance regulation–semi-steady state model) calculates the
total energy demand, with a small excess in accuracy compared to software using dynamic models,
such as TRNSYS and ESP-r [28].

The presented models in Figure 1 can be categorised into forward, inverse, or hybrid approaches.
A forward approach (Degree days, ASHRAE conduction transfer function) is a time-consuming
approach in terms of preparing the initial information for a model. It is used when detailed information
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about the building is known and is also called white box modelling. Difficulties in preparing detailed
information for modelling buildings as a white box problem push engineers to search for alternative
solutions using simplified models. These new techniques are less comprehensive, in physical terms,
but the modelling and mathematical formulations are much simpler than white box models. In fact,
data-driven models are extracted from specific datasets. They are also called black box models
(ARMA model) and use inverse modelling. A more practical solution can rely on a hybrid model.
The hybrid modelling technique is a combination of forward and inverse methods together, also called
grey box modelling.

Neural network models, linear parametric models (Transfer functions), and thermal network
methods are described in the literature as possible simplified models of buildings [29]. Among the
available simplified models, the thermal network method is considered as a grey box model with an
interesting approach for providing fast and accurate results through a simple representation of the
different heat transfer features of a building. In the next chapter, the simplified models, especially the
thermal network method, are of concern and the main applications of this method in different kinds of
literature are described.

3. Applications of the Thermal Network Method

The thermal network method provides a very simple method for moving from a steady-state
domain to a transient domain. Thanks to the effort of researchers, the thermal network method has
become one of the most reliable ways to make accurate building models. In this section, we will present
a literature review based on some of the available literature from the 1990s to 2016. We will try to
clarify the advantages, disadvantages, and the evolution of this method during these years to introduce
new subjects of research into this topic. In general, the thermal network method has been applied
in different research areas such as analysing different wall structures, building and heating system
interactions, system identification, thermal mass and storage, solar radiation, and multi-zone models.

Some preliminary work for developing a thermal network to calculate transient heat transfer in
a plane wall was carried out in the 1980s. Hassid [30] investigated the first 2R1C model for calculating
the energy savings in passive solar buildings. He described his model with three quantities: the total
thermal conductance (U), the responses of the elements to temperature, and solar radiation changes
which originate inside (L) or outside (M) the building within a 24-h period. He used the 2R1C structure,
as shown in Figure 2a, to calculate L and M for different buildings. His model is based on the minimum
and maximum indoor temperature during the day and night. He claimed this model could be extended
to study storage walls and two-zone effects by doubling the equations. Two years later, Seems [31]
used a more complicated model with 3R2C, shown in Figure 2b, to determine transient heat transfer in
a plane wall. These studies represent the early attempts to motivate building designers to use a thermal
network analysis procedure. At that time, representing all the complicated heat transfer phenomena
inside the model (ex: multi-layered elements or high mass wall and ground connections) was the
main problem.

Figure 2. The early thermal network models for plane wall structures. (a) 2R1C model with Tw showing
the wall temperature; (b) 3R2C model with Ts1 and Ts2 showing the wall surface temperatures.
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The early studies come to the conclusion that thermal mass calculation is a challenging issue
and several studies have been conducted on this subject. In 1991, Mathews [32] introduced a new
method to calculate the effective heat storage of a building by relating the massive layer capacitance to
the resistance of each layer. In his analysis, β factor affects the thermal capacitance of each layer of
a building. In fact, β is the ratio of the resistance of each layer to the total resistance of a multi-layer
wall (from the outdoor temperature to the indoor temperature) for exterior layers. On the other hand,
for interior elements, the β depends on the ratio of half the resistance of a layer and the resistance of this
layer up to the indoor surface. Mathews verified the accuracy of his model with the experimental results
from 62 different buildings. Mathews’ model [32] is able to predict accurate indoor air temperature for
unoccupied office blocks, shops, schools, residential buildings, low mass well-insulated structures in
contact with the ground, and low and high mass poorly insulated structures.

Mathews’ method also presented a new idea for determining other parameters in simplified
thermal networks. One year later, in 1992, Lombard [33] developed a new method based on the time
constant of the building, to consider the variations of the parameters with time. This assumption gives
a better description for studying natural and forced ventilation in thermal networks. In addition,
he showed that the time step of 1 h is adequate for most types of structures (stable solution), but for
very light structures, the maximum time step must be 15 min. He proposed the method for a first-order
model and concluded with a possible extension to higher order models.

When inverse methods become an alternative approach for determining the parameters of
thermal networks, researchers figured out that identified parameters in thermal networks differ
from the thermal properties of structures. In fact, the lumped capacitance assumption, used in thermal
networks, accumulates the effects of many elements into a few parameters that can affect the physical
interpretation of thermal networks [34]. Although the inverse modelling approach might not estimate
accurate parameters, it could provide better adjustment between adapted models and measurements
compared to the deterministic approaches that were already being used.

Progress in numerical analysis and computer performance during the past decade has helped
engineers to solve more complicated equations and thus more complex models. The 3R2C model for
simulating transient heat transfer in plane walls had already been used [31], but its application in the
making models of buildings, and even more complicated structures, has become easier. Furthermore,
more complicated structures with 3R4C for a plane wall, or considering a 2R1C for each layer of
a multi-layer wall, could help to make more complex models, and even RC ladders [35].

In 2002, Fraisse [36] made a comparison between different thermal branches, one with a 3R4C
wall branch, and others with simpler thermal networks using 2R1C and 3R2C. The aim of his study
was to use thermal networks for convective and longwave exchanges with a linear model. He proved
that a 3R2C model provides results as accurate as the 3R4C model for a plane wall structure. Therefore,
it should not be necessary to use a very detailed model for further applications of thermal networks.
In addition to this achievement, Fraisse [36] made one of the early designs for studying the interaction
of a thermal network of a building with the electric and hydraulic heating floor. He also managed to
get very accurate outputs for a coupled model. However, he did not give a detailed explanation of the
identified parameters and their physical interpretation. Moreover, the interaction between the heating
system and building model was also studied by Romaní [37]. He summarised the main characteristics
of a thermally activated building system (TABS) with the implementation of the thermal network
method and control strategies for the thermal model of buildings.

Thermal networks have also been used to investigate new methods to optimise envelope structures
and minimise energy losses in buildings. For instance, Gonzalez [38] introduced a novel method for
parameter estimation of a 3R2C model, called the dominant layer method. This method represents
the massive layer of a wall with one resistance and one capacitance, and the other resistances and
capacitances represent other wall layers. He showed that this new method provides even more accurate
results than those from transfer functions. In 2009, Sambou [39] optimised a wall construction by
introducing the thermal network impedances in the frequency domain. He determined the effective
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wall capacitance and wall construction to estimate the optimal thickness and effective capacitance
of the massive layer. At first, he optimised four different types of structures and concluded that
thermal inertia plays an important role in summer thermal comfort and in winter energy demands.
He concluded that there is a direct relationship between insulation layer thickness and the thermal
capacitance of the massive layer for heat loss reduction. In another work on simulating building
structure by means of RC networks, Cheng [40] determined the building impedance and time lag.
He tried to achieve the most optimised structure for a wall, and finally, concluded that a seven-layer
wall with the massive layer in between the insulation layers presents the smallest energy losses.

The importance of solar radiation in energy assessments of buildings is undeniable and
researchers develop different methods to implement this crucial factor by means of thermal networks.
Ogunsola [41] did not consider radiation on walls directly in his thermal network and he decided to
use solar-air temperature in a 3R2C structure. However, a deeper study on solar radiation effects on
the required heating/cooling load was conducted by Yan [42]. He presented a method to consider
the radiative heat flux on the inner surface of external envelopes to improve the accuracy of thermal
networks. He showed that simplifying the zone configuration might make a small error in load
calculation that is not significant.

The internal mass effect, containing internal walls and furniture, is another challenging issue.
The consideration of furniture thermal mass for large buildings is essential, but very difficult to
estimate. Ogunsola [43] proposed a simple model made of a 3R2C branch to show the wall and
roof effects and a 2R2C branch to show the internal mass effect, as well as specifying a branch with
one resistance to show massless windows. He tested this model for three different types of the
building structure (light, medium, and heavy structured walls), and he included uncertainty for input
information, such as solar radiation and outside temperature. In these cases, the identified model for
a light structure building generates larger errors compared to other types of buildings.

Another application of thermal networks for energy assessments in buildings was done by
Ginestet [44], who intended to make a calculation device for architects in order to determine the
suitability of the initial sketch, from the energy consumption point of view. In his tool, a 2R1C model
is identified for a multi-layer wall with a reflective Newton algorithm. In addition, he tried to optimise
the thermal insulation, the heat capacity of the wall, and the building’s heating load.

Eco-design requirements for energy efficiency lead to the importance of defining European regions
with common climatic characteristics [45]. The capability of thermal networks to calculate heating and
cooling loads in different climates was also studied by De Rosa [46]. He used a simple RC network in
different countries to study the effects of different environmental conditions on the proposed model.
He defined degree-days as a climate parameter of each place, which reinforced the functionality of his
model in different European countries. He highlighted the fact that the linear relationship between
heating load demand and heating degree-days (number of days that a building needs heating load) in
European countries is due to the large values for heating degree-days (HDD > 800). On the other hand,
he defined the modified cooling degree-days (CDD) to develop another linear correlation between
cooling load demand and CDD.

Lastly, a complete review of different building modelling methods demonstrates that grey box
models, especially thermal networks, are effective models for making a sophisticated building energy
management system [47]. Thermal networks are customised for use with either white or grey box
models. In addition to studies trying to explore suitable modelling features of thermal networks [48],
some researchers consider other aspects for developing new control situations of smart buildings [37],
longwave radiation [49], green walls effects [14], and multi-zone models [50]. In addition, the thermal
network method has been used to study the application of phase change materials (PCM) in building
envelope components for thermal storage [51,52] with assuming non-linear capacitances. Ventilated
cavity walls and concrete slabs [53,54] can also be considered by developing thermal networks with
parallel branches. Furthermore, various glazing systems are usually studied as a set of resistances
and the thermal masses are omitted in proposed thermal networks [55]. Overall, we can categorise
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different applications of thermal networks to structure analysis, system identification of thermal
networks, indoor conditions and energy consumption, solar radiation and heat gains, and finally
building interactions, as shown in Table 1.

Table 1. Thermal network applications in different problems.

Application Research Fields Sample works

Structure Analysis

- Multi-layer structures
- Optimising the building insulation layer
- Envelope time constant
- Phase change materials
- Ventilated and cavity walls

[39,40,44,54,56]

Parameter identification of thermal networks
- U-value of a building
- Thermal capacitance and storage
- Internal mass effects

[40,57]

Indoor condition and energy consumption

- Indoor air temperature calculation
- Peak load calculation
- Hourly energy demand model
- Building connections with energy systems

[36,37,41]

Solar radiation and heat gain

- Solar radiation distribution
- Longwave radiation models
- Green walls
- Glazing systems
- District radiation models

[14,28,55,58]

Buildings interactions - Multi-zone simulations
- Adjacent wall effects [50,59]

4. Inverse Modelling and System Identification

System identification facilitates the application of thermal networks, though it brings other
complexities when interpreting the physical descriptions of thermal networks. One of the first
applications of the system identification approach for determining the parameters of an RC model for
a school building was done in 1990 by Penman [60]. He used the least square technique to determine
different resistances and capacitances in his 3R2C model. He studied the reliability of parameters and
the accuracy of identified parameters in the thermal network for integration with BEMS (Building
Energy Management System). He showed three out of his five parameters could be identified accurately,
though there were large differences between identified values for indoor capacitance and external
resistance. Finally, he concluded that the deviations between the identified model and experimental
data might be constrained to the constant adjustment of unidentified parameters.

At that time, identifying five parameters for BEMS was cumbersome, so Coley [61] used least
square error algorithms with upper and lower limits for parameters to identify the same model as
Penman with shorter periods of time. According to his observations, initial values generated some
oscillations in the model’s outputs. The model’s parameters reached their almost steady values after
the 500th time step, and the identified parameters are in good accordance with Penman’s work.
These studies were the first to integrate building thermal network models with control systems by
means of online parameter calculation [61].

Immediately afterwards, Dewson [62] worked with the same RC network as Penman and Coley
to elaborate the details of the identification problem using the RMS (Root Mean Square) technique.
He explained the uncertainties in identification algorithms related to the existence of multiple local
minima, the extreme sensitivity of some parameters compared to others, and poor convergence, etc.
He specified three different tests for each parameter, and showed small deviations of parameters
from their actual values, despite the good “fit” of the measured temperatures with the model’s
output. Dewson presented his work with a second-order model for a one-zone building, and he
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questioned the capability of the method to simulate multi-zone buildings and the identification of
physically-related parameters.

Since 2000, the system identification approach has been accepted as a powerful procedure for
identifying the model parameters of unknown systems, especially in the field of energy performance
in buildings. The available algorithms [63,64], informative conditions [65–67], and other aspects of the
system identification method are studied in different books and papers.

A system identification problem is usually bonded to some uncertainties in the identified
parameters, the model’s reliability, multiple local minima, the information matrix, and experiment
design, etc. DYNASTEE [68] is a pioneering group who collect and study such effects on the
identification problem in buildings. They have tried to improve and strengthen the basis of system
identification techniques in building modelling by holding competitions and workshops for more
than 10 years. Androutsopoulos [69] collected and compared the data for 10 years of competitions
to present the progress of system identification in building energy management. He concluded that
to identify thermal networks, regarding the best and worst results, the identified value for thermal
resistance R was calculated almost equally by all competitors. However, the thermal capacitances had
very scattered values.

System identification is also a strong tool for the application of parametric models
(transfer functions). Parametric models have been used for energy assessments in buildings which
are mainly based on statistical analysis [48]. Unfortunately, parametric models and thermal networks
have not formed a large part of the literature until the last decade, because of the lack of experimental
data and slow computers for data processing purposes. Since 2008, most of the works on thermal
modelling of buildings have concentrated on system identification for parametric models and thermal
networks. Wu [70] showed that parametric models can simulate the indoor air temperature for
university offices with a very high accuracy for short and long periods. This dataset contains 109 days
of data for 374 rooms and spaces in a university building. At the same time, thermal networks provide
a more elegant solution, since they determine accurate results while also maintaining the physical
characteristics of buildings.

Nowadays, system identification toolboxes and packages are available for most programming
languages, such as MATLAB [71], R [72], Python, Labview, and JModelica [73], etc. These toolboxes
and packages contain many functions for linear and nonlinear identification. They have very powerful
functions to describe a physical model, with transfer functions, or state space models. In addition to
black box models, some languages provide specific tools for grey box modelling, such as the MATLAB
system identification toolbox, E4 toolbox [74], the CTSM package in R [75], and LORD (LOgical
R-Determination), which is specifically for thermal network identification [76]. These tools facilitate
the implementation of the thermal network method for making inverse models.

Jiménez [10,77] used MATLAB’s system identification toolbox to make LTI (Linear Time Invariant)
parametric models of a building. She made a correspondence between simple RC network components
with ARMAX (Autoregressive moving average model with exogenous inputs) model coefficients.
Therefore, each coefficient in the identified model was a combination of a set of parameters from
the thermal network. She calculated the indoor temperature, the difference between the indoor and
outdoor temperatures, U-values (thermal transmittance), and the heating load as the outputs of the
model. In addition, her determined U-values presented very low errors compared to the experimental
results. In her work, she used the toolbox to determine the U-value for only one wall and did not
apply it to the whole building. Jiménez used the system identification toolbox to check the data, select
the order and the structure of the parametric model, and for the identification of parameters.

The system identification approach increased the interest in studying certain aspects, such as
internal mass and appliances effects by means of thermal networks, in more depth. The first studies
of appliance effects in contact with thermal networks started by adding a new branch to a building
model. Park [78,79] introduced a 1R1C branch to consider appliances in a building, as shown in
Figure 3a. She determined the thermal network parameters as a function of identified parameters in
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different parametric models (ARX (Autoregressive exogenous), ARMAX, BJ (Box–Jenkins), and OE
(Output error)). She concluded that for a second order building model, the ARX model provides the
most accurate results according to her experimental data. In another work, Wang [80] used a genetic
algorithm to determine the parameters of the model by means of data collected from an office building
over a period of two weeks. This model contains all the effective capacitances of the envelope,
including the walls and roof. In addition, he considered the internal mass (internal walls, furniture,
and appliances) by means of a 2R2C branch (3R2C+2R2C), as represented in Figure 3b. He was able to
simulate indoor temperature with a high accuracy, though he did not provide any explanations about
the accuracy of identified parameters for the internal mass branch.

As mentioned earlier in this paper, a good model can be developed by integrating different
techniques at the same time, and the thermal network method is able to be integrated easily with
other methods. The application of the thermal network method in conjunction with transfer functions
was investigated by Xu and Wang [81]. In their work, they simulated the same building in [80],
but this time, they used a transfer function to model some parts of the building for which enough
detailed information was available, such as the structure’s materials. For other parts, without sufficient
information, they used a 2R2C branch and estimated the parameters of that branch using a genetic
algorithm. The RC branch was connected to transfer functions and operated the same way as if
there were no transfer functions, and as if the RC thermal networks modelled the whole building.
Usually, the coefficients of the transfer functions are easily available, or they can be easily calculated
using the physical properties of the building’s envelope [25]. The optimal parameters for the 2R2C,
in this case, were similar to their values in another work [80], which used a complete thermal network
(3R2C+2R2C).

Figure 3. The branches added to study. (a) appliances; and (b) internal mass effects.

The progress in the thermal network method and the ease of making a thermal model of buildings
in forward or inverse modelling problems has motivated researchers to develop new mathematical
methods for finding buildings’ thermal properties. Peng [82] introduced a new harmonic method to
solve thermo-electrical circuit equations, which he called TEAM (Thermoelectricity Analogy Method).
For this purpose, he proposed new equations to calculate the decay rates and time lag of a thermal
network by means of electrical analogy and could then determine the temperatures of each node
accurately. He showed that the proposed method is as accurate as the Laplace method, and it is easier
to apply than harmonic methods.

Furthermore, the application of parametric models to simulate and forecast the humidity ratio
has been investigated by Mustafaraj [83]. He used linear parametric models to make a temperature
model and a relative humidity model for a building. He used BJ, ARX, ARMAX, and OE models
to identify the thermal behaviour of an office. He showed that a second order model is accurate
enough for temperature simulations because all the equations for temperature are linear, while the
relative humidity is a nonlinear phenomenon. Therefore, a seventh order model was needed. Overall,
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we can compare the different modelling techniques and the general conclusions about the system
identification approach as it is represented in Table 2.

Table 2. Overall description of inverse modelling in buildings.

Method Available Functions Identified Parameters Model Output

Black box models Parametric models
(ARX, ARMAX, BJ, OE) Not physically interpretable Very accurate

Grey box models Thermal networks,
differential equations

U-values are physically interpretable,
big challenges to identify thermal capacitances Very accurate

White box models Steady state and Dynamic models Physically interpretable accurate

5. The Structure of Thermal Networks

The previous sections have focused more on the application and development of thermal networks
rather than the complexities and limitations of working with them. A controversial problem in the
thermal network method is the number of capacitances and resistances. If the model does not have
enough capacitances and resistances, then it may fail to provide accurate results. On the other hand,
identification algorithms need lots of time to identify the parameters in very complicated models
with a large number of resistances and capacitances. Moreover, the complicated models might be
accurate for one building but might fail to simulate another building with an insufficient dataset.
In fact, categorising thermal network methods as simplified models seems to be somewhat deceptive.
The truth is that these models can become complex very easily. If the purpose of the model is to show
multi-layer structures, different branches of the walls, roof, windows, ground, longwave radiations,
etc., then the number of parameters increases exponentially.

For instance, Deng [84] used 37 capacitances to indicate a detailed thermal RC network for
a four-room office. On this ground, we can argue that solving a thermal network with 37 capacitances
for a building is a very complicated and time-consuming problem. He used model reduction techniques,
such as aggregation of state, to reduce the number of capacitances to one capacitance for each room.
Deng’s findings lend support to the claim that the model reduction technique does not have a major
effect on parameters. In fact, any new component in the reduced model will be a summation of
previous components obtained with a higher order model.

Kramer [85] studied various RC models by increasing the number of resistances and capacitances
to find the appropriate model for a building. Finally, he concluded that a model with three capacitances
can provide accurate results and that a more complicated model is unnecessary. As reported by Kramer,
increasing the number of capacitances to more than three did not have a large effect on the model’s
accuracy. Unfortunately, he did not clarify the accuracy and physical interpretation of the identified
parameters. He just used the term of effective parameters, rather than apparent parameters, to explain
the differences between the real values and the identified ones.

Reynders [86] studied the quality of grey box models and also identified parameters for different
thermal networks. He used first to fifth order RC models and trained the models with five different
datasets. He used a CTSMR package [75] (stochastic modelling) implemented in statistical computing
language (R) [87] to identify the capacitances and resistances of his models. He also used the IDEAS
library in Modelica to provide training data. He concluded that from a first-order model to a fifth
order model, a large number of buildings can be modelled accurately, whether the building is well
insulated or not. In the case of identified parameters, he identified the total conductance (UA) of the
building accurately for third order, and more complex, models. However, the identified parameters for
walls and indoor air capacitances were not as accurate as UA values. In another work, the multi-zone
problem was studied by repeating a similar thermal network for each zone and adding a 2R1C
branch to consider the adjacent walls. It was shown that repeating a 4R3C thermal network (seven
parameters for a room) to model a three-zone problem can explode to a 16R11C (27 parameters)
thermal network [50]. What one can conclude from the literature is that not every thermal network is
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able to represent all the thermal features of a problem, and researchers try to develop their thermal
networks according to the most important modes of the system.

6. Software and Tools

Until now, the thermal network methods have been detailed through their applications, the use
of inverse modelling and system identification, and their different structures. Besides, a large part of
the literature in the field of building energy assessment describes the vast potential of the available
software and tools. Furthermore, the accuracy and functionality of the thermal network method and
available tools have been compared in numerous works. Thus, it seems interesting to introduce the
main advantages and disadvantages of these available software and tools in comparison with the
thermal network method. In addition, a comparison between the outcomes of the available software
and tools and the thermal network method provides a better vision on how the thermal network
method remains a competitive approach.

In the literature, parametric models and the thermal network method tend to be used for energy
assessments in buildings. Still, the main concern when using the thermal network method is to yield
a reliable approach to determine and predict the heating/cooling load for energy optimisation purposes.
EPISCOPE (Energy Performance Indicator Tracking Schemes for the Continuous Optimisation of
Refurbishment Processes in European Housing Stocks) and TABULA (Typology Approach for Building
Stock Energy Assessment) are two good examples of European projects which provide rich databases to
determine energy consumption for different buildings in different countries, based on the degree-days
method [88]. Considering that the degree-days method deals with the steady-state solution of the
problem, its results are not very suitable for dynamic solutions and control purposes. On the other hand,
available software can provide quite accurate transient results, in addition to a detailed description of
the envelope and connections with heating systems and electrical networks.

According to a survey among more than 800 architects and engineers, there is a large difference of
interests between two groups to use available tools for buildings energy assessment [27]. The results
confirm that engineers are more interested in the accuracy of their models, as well as the validation
and calibration of their models, while architects devote more attention to creating sustainable models,
as is presented in Figure 4. However, another survey illustrates variabilities in accredited building
energy performance compliance demonstration software [89]. The uncertainties related to available
software and tools to generate post-accredited models are the main shortcoming for most of the
available tools. It has also been shown that one user can make a variation in simulation results up
to 40% among different tools. Moreover, the lack of the effective establishment of energy setting
parameters is known as the obstacle in the process of building performance data setup in some
of the available tools [90]. Nevertheless, available software and tools play a vital role in building
performance simulation. The application of simulation tools for artificial lighting [91], passive cooling
of buildings [56], and correlation of building energy use intensities, estimated by various building
performance simulation programs [92], are strong features in the building performance simulation
and tools.

Generally, the available tools for making dynamic thermal models of buildings are mainly based
on deterministic models. Therefore, the thermal load forecast for buildings is calculated on the
basis of physical principles. These equations can vary from very crude estimates of the thermal
properties up to detailed comprehensive building models [93]. A comparison of 20 different available
software packages and tools shows that multi-disciplinary tools, such as “CitySim”, “TRNSYS”,
“EnergyPlus”, “ESP-r”, “IDA ICE”, and “Modelica” libraries, are capable of covering many or all
of the areas of interest [94]. However, calculations which are completely based on the physics of
the building are usually applied to single buildings, and they have not been significantly used in
district simulations [95], and studies demonstrate the difficulties of ensuring that valid and consistent
compliance outcomes are generated [24].
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Figure 4. Ranking criteria concerning tools accuracy.

The screening process for detailed and simplified models of buildings tool selection among
presented materials by Allegrini et al. [94] is shown in Figure 5. Here, building energy management
problems are categorised into five groups. The detailed, simple, and not implemented models are
scored with 2, 1, and 0 values. According to Figure 5, TRNSYS and ESP-r contain detailed models for
each energy management problem category. TRNSYS [96] is used to simulate thermal and electrical
energy systems for a single zone or multi-zone problem. Thermal modelling (solar thermal collectors,
heat pumps, fuel cells), electrical modelling (photovoltaics, cogeneration, wind turbines), district
heating networks, and detailed building energy simulation are the main strengths of this tool. On the
other hand, “ESP-r” [97] is as strong as TRNSYS; however, it does not provide detailed models for
long-wave radiation. Also, both pieces of software do not model transportation and embodied energy.
“EnergyPlus” [98] is another powerful tool for building and district simulation, and is a free and open
source software. Although it covers almost the same criteria as TRNSYS and ESP-r, it does not provide
detailed models for photovoltaics, wind power, and thermal storage.

Figure 5. Data screening of available tools with embedded thermal model of buildings.
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The Modelica Buildings Library is another free open-source library with dynamic simulation
models for building energy and control systems. The library contains models for HVAC systems,
controls, heat transfer between rooms and the outside, multi-zone airflow (including natural ventilation
and contaminant transport), single-zone computational fluid dynamics coupled to heat transfer and
HVAC systems, and electrical DC and AC systems (with two- or three-phase), that can be balanced
and unbalanced. The primary use of the library is for flexible and fast modelling of building energy
and control systems to accelerate innovation leading to cost-effective, very low energy systems for
new and existing buildings. In contrast to tools which use detailed models of buildings, CitySim [99]
uses the thermal network method for single and multi-zone simulation. Other tools such as Polysun
and Solene use the stationary heat balance equation.

The development in different software packages has been another challenging point for the
application of the thermal network method. New software with very detailed libraries could change
the applicability of the thermal network method. These developed pieces of software and tools can
provide accurate results by considering very detailed information about a building’s geometry and
geographical situation [100] in order to calculate and optimise consumed energy in buildings [101,102].
Indeed, some studies have been done to compare the accuracy of available software and tools with the
thermal network method. For instance, in 2005, Nielsen [103] studied the effects of windows on indoor
conditions in simplified models. He focused on the relationships between solar energy transmittance,
incidence angles, and shadings. He determined parameters for internal and external construction
properties according to EN ISO 13786 [104] and showed that a simple thermal network could provide
results which are as accurate as Bsim (developed by the Danish Building and Urban Research team),
even if it used comparatively little input information.

A complete study to identify the thermal network of a building for temperature and load
calculation was done by Ogunsola in 2015 [41,43]. At first, he trained his model by means of two
different datasets (summer and winter). Then, he compared the outputs of his thermal network to
the outputs of EnergyPlus. Finally, he reached the conclusion that the identified thermal network
provides results that are more accurate, and that it is adaptable for different building structures,
which makes it suitable for the building energy management system (BEMS). Indeed, the trained RC
network parameters are estimated according to the outcomes of buildings (indoor temperature and
heating/cooling load), while available software and tools make the model by considering the physical
properties of the problem, and they include more physical phenomena in their simulation schemes.
Therefore, if detailed output information such as envelope temperature, convective and radiative heat
transfer rates, and wind effects are not of interest, and if sufficient measurements of a building or
district are available, such as the indoor conditions of each zone, heating load, and weather conditions,
then thermal networks can offer quite accurate estimations with limited parameters.

Due to the lack of experimental data for different problems, researchers use the outcomes of
available software and tools for specific building simulations to train different thermal network
structures [86,101,105]. The consequence of this collaboration is to investigate various thermal network
models in accordance with different buildings, different properties, and different geographical
situations, in order to achieve the best configuration for simplified models. A comparison between
the functionality of the commercial software and detailed models compared to the thermal network
approach is given in Table 3. It can be concluded that not every model is able to simulate all desired
phenomena. Thus, designers should choose their modelling technique according to the individual
problem specifications. If the model is supposed to deal with detailed output information about the
envelope, flow features, and thermal properties of different elements, then this requires a detailed CFD,
or simpler model, available with the presented software and tools in Figure 5. Nevertheless, if the
general output information, such as heating load and indoor temperature, is sufficient, then thermal
network and parametric models are of more interest.
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In conclusion, many works [60–62] depict that model identification and thermal networks
can easily determine accurate results and physical properties of a building in order to develop
a sophisticated building energy management system.

Table 3. A comparison between available software and tools and the thermal network method.

Available Information Commercial Software Thermal Networks

Building Model Detailed model of building, separated walls, roof,
and adjacent walls

Lumped capacitance assumption with finite
number of nodes

Structure properties Detailed information of each element is required Features are accumulated in one or
two parameters

Input data
Detailed data is necessary, solar radiation on each
wall, distribution factor, longwave radiations,
ventilation and infiltration

General information is sufficient according to
the model, solar radiation, and outdoor
temperature is sufficient

Indoor conditions Calculated from physical equations and
boundary conditions

Detailed measurements are required to train
the model

Model accuracy Must be calibrated with experimental
measurements Very accurate results from inverse modelling.

Modelling time Time-consuming Fast

Calculation time For CFD models it can be cumbersome Fast

Model output Detailed results for each element and zone Limited results, indoor temperature,
heating loads

7. Conclusions

In this paper, a literature review of the thermal network method has been provided to cover
different research studies which have mainly been done between 1990 and 2016. The main idea was to
highlight the progress and capability of this method to make dynamic thermal models of buildings.
The paper investigates this topic concentrating on available models, applications, system identification,
structure, and available software and tools.

Overall, it can be concluded that although the thermal network method has not been used to
represent nonlinear phenomena such as relative humidity, it still provides quite accurate models
for simulating indoor temperature and load demands. In addition, among the available simplified
models, they can also represent the physics of the building and boundary conditions which give
a clear idea about the system compared to neural networks. The capability of the thermal network
method to simulate and predict the thermal performance of buildings with a high accuracy and
limited information makes it a distinguished method compared to detailed modelling methods.
The disadvantage of this method is that it can become complex very easily. If clever assumptions are
not taken into account, then a large number of resistances and capacitances will be required to make
a building simulation. Furthermore, the application of this method, in terms of control systems, is not
often considered, and some developments are still needed to couple thermal networks to building
energy management systems.

With the vast application of thermal networks in various research problems, it seems that the
thermal network method can be an option for future research concerning energy assessments in
buildings and districts. Additionally, despite the vast application of the thermal network method,
it seems that most of the presented works in this domain lack adequate data analysis techniques.
Most of the developed algorithms for system identification facilitate the calculation process to minimise
the error between model outputs and measurements. However, the error minimisation is the first step
for system identification and engineers must implement it post analysis (residual analysis, correlation
analysis, etc.) to validate the accuracy and uniqueness of their model. Thus, it is really important
to consider problems and uncertainties, such as informative dataset preparation, local minima
convergence, and the parameter correlations, which can occur through the implementation of the
system identification methods. By means of data-preparation and model analysis techniques, engineers
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can make a presumption about the number of required parameters, the identifiable and non-identifiable
structures, the adequate number of variables, and the adequate number of observations to generate
a unique identification problem.

In addition to those investigations on mathematical issues, future works need to be done to
establish the thermal network method for building energy assessments: one of the interesting topics
of research would be the simultaneous analysis of the HVAC systems with building thermal models.
The unified modelling approach for different kinds of heating and cooling systems, along with the
thermal network model of buildings (when available), would lead to the development of an efficient
building energy management system.

The application of the thermal network method to study non-linear and stochastic phenomena can
be other subjects for research. These studies can be conducted through the conjunction of wind speed
and humidity ratio models with the thermal network method. In addition, considering time-dependent
parameters (resistances and capacitances) in the structure of thermal networks can also represent an
interesting area for further research. Another encouraging topic is the application of thermal networks
for large-scale modelling (district simulation), studying interactions between buildings, coupling
district thermal networks to central heating and cooling systems, occupancy behaviour, and optimising
energy consumption at the district level. In sum, the prospect of being able to implement the thermal
network method for a net-zero energy district serves as a continuous incentive for future research.
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