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Abstract: This paper presents a robust digital control strategy using error correction techniques to
improve the robustness of conventional deadbeat control methods. The proposed control method,
based on the discrete converter models, determined control law using an error correction technique
based on the discrete Lyapunov stability theorem. The steady-state performance and dynamic
response of the presented method was analyzed and verified. The experimental results showed that
the method derived in this paper not only offered improved robustness, but also endowed the grid
current with lower Total Harmonic Distortion (THD), while still maintaining a fast, dynamic response.
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1. Introduction

As electronic devices are widely employed for use in industrial and other applications, there is a
large degree of research interest in relevant control methods affecting power quality [1–3]. With the
rapid growth of digital technology, digital control technologies have received considerable attention
in recent years [4–6]. Predictive control is a typical digital control. Algorithms have been applied to
current control in power electronic converters, such as deadbeat control and model predictive control
(MPC) methods.

As described in [7,8], the deadbeat control method calculates control law according to a discrete
converter model in every sampling instant to ensure that the controlled variable tracks the reference
values in the following instant. These concepts are simple and intuitive, and can be easily implemented
in digital signal processors (DSPs). Most importantly, deadbeat control methods have the advantage
of a fast response. However, problems with this control scheme include delays in the digital
system leading to oscillations; disturbances leading to offsets; and modeling mismatches leading
to instability [9,10]. Model predictive control is another algorithm that uses a discrete model to
predict the future behavior of a controlled variable, until a specific sampling interval in time [11].
The optimal control law can be obtained by minimizing the cost function that represents the error of
the control variables [12]. The larger number of calculations and model mismatch of MPC are its main
disadvantages. Issues of predictive control often degrade the performance of converters and reduce
overall robustness.

Many improved strategies have been proposed and discussed to overcome the drawbacks of
traditional predictive control [13–15]. In [13], the duty ratio, which is the sum of the previous duty ratio
at the (k − 2)th instant and a prediction error coefficient, was updated once every two switching cycles
to improve robustness in the presence of parameter variation, and the prediction error was the error of
the reference value and the predicted value at the (k + 2)th instant. In [14], the algorithm to improve
robustness proposed that the error between the reference and the measured current at the (k + 1)th
instant was controlled, instead of being set to zero, and made equal to half the difference between the
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previous two current errors. The previous two current errors were the error of the reference value and
the measured value at the previous two instants, respectively. In [15], the last prediction errors at the
(k − 1)th instant, with a weighting factor, were added to the prediction model to improve prediction
accuracy and help the predictive current control method derive a better value at the (k + 1)th instant.
The prediction error was the error between the predicted values and their measured values at the
(k − 1)th instant that the switching state S(k − 1) was used.

The Lyapunov-function-based control strategy is widely used because it leads to the global
stability of both nonlinear and linear control strategies. Several relevant works have described this
performance, such as [16–22]. In [16], the dynamic controller structure utilized a Lyapunov-based
method in the control design procedure, requiring a shorter prediction horizon to guarantee the
asymptotic stability of the system [17,18]. The problem of fuzzy control design was resolved when
using the Lyapunov function, showing better overall performance. In [19,20], the presented control
approaches, which were modified with Lyapunov functions, were applied in inverters with different
filters. In [21,22], in order to achieve better dynamic performance for the three-phase rectifiers,
a discrete Lyapunov function was combined with a cost function, adding to the control process.
In particular, the proposed control approach was modified based on the control method presented
in [22]. Furthermore, Lyapounov functions have already shown excellent performance modifying the
predictive control of finite control set models [23].

In this paper, performance and robustness improvements were achieved by assuming that, instead
of being set to zero, the error between the reference current value and the predicted current value at the
(k + 1)th instant was controlled for based on the Lyapunov stability theorem, equal to the error between
the reference current value and the measured current value at the kth instant with a corresponding
coefficient. The modeling of a single-phase voltage source rectifier (S-VSR) is depicted in Section 2.
Section 3 outlines the basic principle of the proposed control method and defines the discrete Lyapunov
function, showing the global stability of the system. In Section 4, the influence of the control coefficient
α on both steady-state performance and dynamic response is analyzed and improved robustness is
described in comparison to the conventional deadbeat control method. Importantly, α is decided based
on a damping ratio. In Section 5, the presented method is tested under a single-phase rectifier system.
The experimental results show the outstanding performance of the proposed method compared to the
conventional deadbeat control method. Finally, conclusions are drawn in Section 6.

2. Modeling of the Converter

Figure 1 shows the single-phase voltage source rectifier. The equation for the converter can be
described as:

Ls
di
dt

= e− Ri−Vr (1)

where e, Vr and i are the grid voltage, converter voltage, and grid current, respectively, and R and Ls

are the equivalent series resistance and filter inductance, respectively.
According to the Forward Euler method, di/dt can be approximated as:

di
dt

=
i(k + 1)− i(k)

T
(2)

where T is the sampling period.
By substituting (2) into (1) [7], the discrete-time model of the S-VSR can be obtained as:

i(k + 1) = (1− RT
Ls

)i(k) +
T
Ls

[e(k)−Vr(k)] (3)
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Figure 1. Single-phase voltage source rectifier.

3. The Principle of the Proposed Method

Stability is essential for control systems and it is also very important that measured current, i(k),
tracks the reference value, i*(k), precisely. Namely, current tracking error, ∆i(k), converges to zero.
The Lyapunov theorem is powerful in ensuring the stability of all control systems.

Tracking error, ∆i(k), is defined as:

∆i(k) = i(k)− i∗(k) (4)

As [23] depicts, the discrete Lyapunov function, L(x(k)), should satisfy the following properties to
ensure the stability of the control system:

(1) L(0) = 0;
(2) L(x(k)) > 0 for all x(k) 6= 0;
(3) L(x(k))→ ∞ as ‖x(k)‖ → ∞;
(4) ∆L(x(k)) < 0 for all x(k) 6= 0.

Thus, the discrete Lyapunov function, L(∆i(k)), can be defined as:

L(∆i(k)) =
1
2

∆i2(k) (5)

From (4) and (5), ∆L(∆i(k)) can be expressed as:

∆L(∆i(k)) = L(∆i(k + 1))− L(∆i(k))
= 1

2 [i(k + 1)− i∗(k + 1)]2 − 1
2 [i(k)− i∗(k)]2

(6)

To satisfy the Lyapunov stability theorem and ensure that current tracking error converges to
zero, we defined the following relationship:

i(k + 1)− i∗(k + 1) = α[i(k)− i∗(k)] (7)

Substituting (7) into (6), the following expression for ∆L(∆i(k)) can be obtained:

∆L(∆i(k)) = L(∆i(k + 1))− L(∆i(k))
= 1

2 (α
2 − 1)[i(k)− i∗(k)]2

(8)

It is apparent that the system is stable if α is chosen as:

− 1 < α < 1 (9)
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The control law of the presented method can be written with (3) and (7) as:

Vr(k) = e(k) + ( Ls
T − R)i(k)

− Ls
T i∗(k + 1)− α Ls

T [i(k)− i∗(k)]
(10)

It is clearly depicted that when α = 0, (10) is the prediction model of the conventional deadbeat
control method.

One of the key issues related to the method presented is how to decide the best control coefficient,
α, to use in the prediction model. Selection and analysis of the control coefficient is described in the
following section.

4. Selection and Analysis of Control Coefficient

4.1. Influence of Stability

When a digital control strategy is applied, a delay always exists in the control system, including
the sampling time. The calculation time of the control strategy and, more importantly, duty is always
updated in each subsequent sampling period. Figure 2 shows what happens when a delay exists in a
control system. According to the datasheet of TI and the experimental results, the total sampling and
convention time was T1 = 8.6 µs, and the calculation time of the control strategy was T2 = 3.1 µs. As the
switching period was 100 µs, it was enough for all of the sampling and calculations in the switching
period. Because the duty calculated in the kth switching period was updated at the beginning of the
(k + 1)th switching period, a one sampling period delay was assumed to analyze the problem.

Figure 2. Description of delay exists in the control system.

A discrete control block diagram of the proposed control strategy under a S-VSR is shown in
Figure 3.

Figure 3. Inner current loop control block diagram.

In the S Domain, the transfer function of the controlled object in the current loop can be
expressed as:

Gp(s) =
1

sLs + R
(11)
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The delay of one sampling period is modeled by the z−1 block. The zero-order hold (ZOH)
equivalence transfer function of Gp(s) is shown as (11) [9].

Gp(z) = (1− z−1)Z
[

Gp(s)
s

]
= T

Ls
1

z−(1−RT/Ls)

(12)

The closed-loop transfer function of the current loop, with regard to e(k), which functioned as a
disturbance, can be described as:

G(z) =
i(k)
i∗(k)

=
(k3z− k1)z−1Gp(z)

1 + k2z−1Gp(z)

=
z− α

z2 − (1− R
T
Ls

)z + (1− α− R
T
Ls

)

(13)

where k1 = αLs/T, k2 = (1 − α)Ls/T − R, and k3 = Ls/T.
In order to ensure the stability of the system, the following should be satisfied:

0 < 1− α− RT/Ls < 1 (14)

In this paper, the system parameters were selected as Ls = 3.2 mH, R = 0.3 Ω, and T = 0.0001 s.
Based on (9) and (14), the control coefficient, α, could be limited as:

− 0.005 < α < 0.995 (15)

4.2. Influence of Steady-State Error

Based on the closed-loop transfer function of the current loop shown in Figure 3, with e(k)
representing a disturbance, we can derive the error transfer function for i*(k) as follows:

Enn(z) =
i∗(k)− i(k)

i∗(k)
=

z2 − (2− R T
Ls
)z + (1− R T

Ls
)

z2 − (1− R T
Ls
)z + (1− α− R T

Ls
)

(16)

When i*(k) = 0, we derive the disturbance error transfer function for e(k).

Dss(z) =
i∗(k)− i(k)

e(k)
=

T
Ls
(z− 1)

z2 − (1− R T
Ls
)z + (1− α− R T

Ls
)

(17)

Thus, the steady state error E(z) can be described as:

E(z) = Enn(z)i∗(k)− Dss(z)e(k) (18)

It is supposed that i*(k) and e(k) are all sinusoidal, and E(z) can be written as:

E(z) = I
z2 − (2− R

T
Ls

)z + (1− R
T
Ls

)

z2 − (1− R
T
Ls

)z + (1− α− R
T
Ls

)

z sin(ωiT)
z2 − 2z cos(ωiT) + 1

−

E

T
Ls

(z− 1)

z2 − (1− R
T
Ls

)z + (1− α− R
T
Ls

)

z sin(ωeT)
z2 − 2z cos(ωeT) + 1

(19)

A bode diagram of Enn(z) and Dss(z) is given in Figure 4.
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Figure 4. Bode diagram of steady-state error: (a) Enn(z); (b) Dss(z).

As shown in Figure 4a, the gain in Enn(z) was among 10−5~10−3 when the working frequency
was 50 Hz, which can be regarded as tracking without steady state error. From Figure 4b, we can see
that the gain in Dss(z) was among 10−5~10−3 when the working frequency was 50 Hz. As α became
larger, the gain in Enn(z) and Dss(z) was nearly the same for all working frequencies, which implies
that the value of α did not influence the steady-state performance of the control system.

Based on the final value theorem of discrete control systems, we can derive steady state error e(∞) as:

e(∞) = lim
z→1

(z− 1)E(z) = 0 (20)

4.3. Influence of Robustness

To investigate the influence of the inductance parameter mismatch on robustness, the pole locus
was analyzed, with variations in the nominal value, Ls, based on the typical value of α.

By replacing Ls with the actual value of the inductance, La, the closed-loop transfer function, G(z)a,
of the current loop can be expressed as:

G(z)a =
i(k)
i∗(k)

=
(k3az− k1a)z−1Gp(z)a

1 + k2az−1Gp(z)a

=
z− α

z2 − (1− R
kT
Ls

)z + (1− α− R
kT
Ls

)

(21)

where k1a = αLa/T, k2a = (1 − α)La/T − R, k3a = La/T, and k = Ls/La, denoting the difference between
the inductance value used in the controller and the actual value. Figure 5 depicts the zero-pole graph
of the variation in k with different values of α. p1,p2,p3 and p4 were all poles of G(z)a.

Figure 5. Cont.
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Figure 5. Pole locus diagram of G(z)a with variations in k (from 0.4 to 1.6, in increments of 0.1). (a) The
whole sight of pole locus; (b) The pole (p1 and p2) locus based on α = 0 and α = 0.4; (c) The pole (p3)
locus based on α = 0.8; (d) The pole (p4) locus based on α = 0.8.

It can be observed from Figure 5 that when α = 0, the poles were much closer to the unit circle,
regardless of whether La was smaller or larger than Ls, and the system had weaker robustness. When α

was selected within the range calculated in (15), the poles were always in the unit cycle, regardless of
the size of La. The influence of the equivalent series resistance R parameter mismatch on robustness
could be analyzed in the same way, with k defined as k = Ra/Rs, where Ra and Rs were the actual value
and the ideal value, respectively. Therefore, from Figure 5, we can see that the proposed control had
better robustness than the conventional deadbeat control.

4.4. Selection of α

According to (13), we can obtain the damping ratio as follows:

ξ =
1− R T

LS

2
√

1− α− R T
Ls

(22)

The better damping ratio in the industrial application was 0.707, thus α was chosen as 0.52 by
solving (23):

ξ =
1− R T

LS

2
√

1− α− R T
Ls

= 0.707 (23)

5. Experimental Results

The experimental test was performed under the S-VSR prototype described in Figure 6. The control
strategy was achieved in a DSP system with TMS320F28069 (Texas Instruments, Dallas, TX, USA).
The waveforms of the measured current and its analysis were obtained using a Tektronix oscilloscope
and power analyzer. The system parameters are given in Table 1. In order to test availability, we gave
the reference value of the filter inductance directly.

Table 1. Experimental results.

Varible Symbol Value

The grid voltage (RMS) e 50 V/50 Hz
Filter inductance Ls 3.1 mH

Equivalent series resistance R 0.3 Ω
DC side capacitor C 1000 µF
Sampling period T 1 × e−4 s

Switching frequency f 10 kHz
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Figure 6. The experimental prototype.

5.1. Steady-State Performance Tests

Figure 7a,b shows the grid current behavior of the presented method when the reference value
was 6.8 A, with unity power factor. The experimental results showed better steady-state behavior for
the proposed method. The grid current was highly sinusoidal, with total harmonic distortion (THD)
of 1.86%. Figure 7c,d describes the tested results of the traditional deadbeat control. As observed in
the experimental results, there was oscillation in the system, with a noisy current and a THD of 4.1%,
which may have been caused by a delay. From Figure 7, we can see that the error correction improved
steady-state performance.

Figure 7. Steady-state test results using the proposed method (α = 0.52) and the conventional deadbeat
control method. (a) The voltage and current waveforms (α = 0.52); (b) The harmonic spectrum of the
current (α = 0.52); (c) The voltage and current waveforms of the conventional deadbeat control; (d) The
harmonic spectrum of the current of the conventional deadbeat control.

5.2. Dynamic Response Tests

An important aspect to any control system is the dynamic response to changes in the reference
value [23]. Figure 8 shows the system behavior for a current with a reference step from a 0 A to a 6 A
peak and from a 6 A to a 3 A peak, for the proposed control method and the conventional deadbeat
control method. Figure 8a shows that the current reached a steady state within 460 µs, compared to
395 µs in Figure 8b. The transient time in Figure 8c was 664 µs and in Figure 8d was 564 µs. Compared
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to the traditional deadbeat control method, the dynamic response of the proposed control strategy was
slightly slower with smaller amounts.

Figure 8. Current behavior during the reference step change from a 0 to 6 A peak and from a 6 A to 3 A
peak. (a) 0 A to 6 A peak with the proposed control method (α = 0.52); (b) 0 A to 6 A peak with the
conventional deadbeat control method; (c) 6 A to 3 A peak with the proposed control method (α = 0.52);
(d) 6 A to 3 A peak with the conventional deadbeat control method.

5.3. Investigation of Robustness

The system parameters, especially filter inductance, varied with temperature and other
environmental factors. The performance of the proposed method and deadbeat control method,
with differing levels of error between the modeled and the real inductance, in the range of −30%
to 30%, is given in Figures 9–12, respectively. It was found that the variation in inductance led to
increased current THD, but at lower levels using the proposed control method. However, there were
large current oscillations with higher levels of THD using the conventional deadbeat control method
when inductance varied. These experimental results show stronger robustness using the proposed
control method.

Figure 9. Current behavior when the inductance had a mismatch of −30%. (a) Under the proposed
control method (α = 0.52); (b) Under the conventional deadbeat control method.
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Figure 10. Current behavior when the inductance had a mismatch with −15%. (a) Under the proposed
control method (α = 0.52); (b) Under the conventional deadbeat control method.

Figure 11. Current behavior when the inductance had a mismatch with +15%. (a) Under the proposed
control method (α = 0.52); (b) Under the conventional deadbeat control method.

Figure 12. Current behavior when the inductance had a mismatch with +30%. (a) Under the proposed
control method (α = 0.52); (b) Under the conventional deadbeat control method.

6. Conclusions

To overcome the weak robustness of conventional deadbeat control methods, this paper proposed
a robust digital control strategy using error correction based on the discrete Lyapunov theorem.
The proposed method introduced error correction into the prediction model to increase robustness.
More importantly, the discrete Lyapunov theorem was added to the model to improve global stability.
Theoretical analyses using transfer functions and zero-pole graphs, and experimental results under a
single-phase voltage source rectifier system, demonstrated that the proposed method not only behaved
with stronger robustness, but also led to a high sinusoidal current with lower THD, while still retaining
a fast, dynamic response and minimal level of tracking error. The proposed method shows encouraging
prospective applications to numerous model-based control strategies.
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