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Abstract: In the revolution of green energy development, microgrids with renewable energy sources 

such as solar, wind and fuel cells are becoming a popular and effective way of controlling and 

managing these sources. On the other hand, owing to the intermittency and wide range of dynamic 

responses of renewable energy sources, battery energy-storage systems have become an integral 

feature of microgrids. Intelligent energy management and battery sizing are essential requirements 

in the microgrids to ensure the optimal use of the renewable sources and reduce conventional fuel 

utilization in such complex systems. This paper presents a novel approach to meet these 

requirements by using the grey wolf optimization (GWO) technique. The proposed algorithm is 

implemented for different scenarios, and the numerical simulation results are compared with other 

optimization methods including the genetic algorithm (GA), particle swarm optimization (PSO), the 

Bat algorithm (BA), and the improved bat algorithm (IBA). The proposed method (GWO) shows 

outstanding results and superior performance compared with other algorithms in terms of solution 

quality and computational efficiency. The numerical results show that the GWO with a smart 

utilization of battery energy storage (BES) helped to minimize the operational costs of microgrid by 

33.185% in comparison with GA, PSO, BA and IBA. 

Keywords: battery energy storage sizing; optimization; energy management systems; economic 

load dispatch; grey wolf optimization (GWO); microgrid 

 

1. Introduction 

With the ever-growing energy demand, greenhouse gas (GHG) emission reductions, energy-

efficiency improvements, and adequate clean power have become major challenges in the energy 

sector. A promising solution to this issue is the development of microgrids with renewable energy 

sources such as solar, wind and fuel cells. The microgrids can be self-sufficient power grids 

(standalone microgrids) working with local sources or grid-connected microgrids attached to the 

conventional utility grid. Irrespective of the microgrids’ form, they have succeeded in reducing the 

CO2 amount and cutting energy costs [1,2]. However, due to the fluctuations and intermittency of 

renewable-energy sources such as wind turbines (WTs) and photovoltaic (PV) units, the utilization 

of storage devices has become crucial in the microgrids [3]. These storage devices can inject auxiliary 
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power to the grid during a power shortage or store the surplus power from the renewable sources 

during off-peak load demands. 

As mentioned above, the storage devices’ participation (charging/discharging) in microgrids is 

essential to maintain the power balance. Nevertheless, excessive battery capacity would increase the 

cost while a very small battery capacity results in insufficient power that leads to instabilities or 

increases the cost of conventional fuel usage. Therefore, finding the optimum capacity or size for 

storage devices is highly important for minimizing microgrid dispatch problems and optimizing 

operation costs [4–6]. 

In addition, intelligent energy-management methods aim to specify the optimum size of the 

battery, as well as reduce the use of conventional fuel and overall operating cost. As a result, several 

types of research have been conducted to address the optimal sizing of renewable-energy sources. 

The authors in [7] described the technical and economical sizing comparison of energy-storage 

systems (ESS) with three renewable-energy sources PV, wind, and wave power, using a heuristic 

optimization stand on an adaptive storage operation. Aghamohammadi and Abdolahinia [8] 

determined the optimal size of the battery energy-storage system (BESS) based on the primary 

frequency control of the microgrid. A mixed-integer linear programming algorithm was utilized to 

address the optimum dispatching power flow in the microgrid, as well as the optimum sizing of 

storage devices [9–14]. Meta-heuristic algorithms have been applied in the hybrid energy system to 

find the optimal size of the battery devices in the microgrid [15–20]. A dynamic programming 

algorithm was employed in [21,22] to find the optimal scheduling problem, considering the efficiency 

and operating characteristics of storage devices in microgrids with isolated and grid-connected 

modes. 

A genetic algorithm (GA) was utilized in [23,24] based on an optimization method to find the 

optimum sizing of microgrid components that consisted of a PV array, fuel cell (FC) and storage 

device as well as distributed generation (DG) units under the hybrid electricity market. This method 

was conducted to increase the lifecycle cost and minimize the GHG of the microgrid. However, some 

researchers employed particle swarm optimization (PSO) to evaluate the optimum size of BESS at a 

lower total cost [25–27]. 

Conversely, some researchers were concerned about minimizing the operation cost of the power 

networks that affect the optimum sizing of the components of a microgrid. Ahmadi and Abdi [28] 

demonstrated an efficient method that depends on a hybrid big bang–big crunch algorithm, which 

reduced the total present cost of the system. A non-linear programming optimization model was 

proposed to determine the optimal operation and sizing of the storage systems, reducing the cost of 

the hybrid system while satisfying the service requirements [29]. Active distribution networks 

(ADNs) are optimal operations used to minimize network losses, as well as the cost of power 

imported from the external grid. Nick et al. [30] considered the ESS size which is the main factor that 

affects the performance of ADNs. The differential evolution algorithm was utilized in [31] to 

determine the size of the renewable-energy sources, reduce power losses, enhance voltage constancy 

of the system, and reduce the cost in the microgrid. 

Recently, hybrid algorithm techniques that combine more than one algorithm have been widely 

utilized to solve optimization problems and satisfy problem constraints. GA based on the fuzzy 

expert system was used in [32] to determine the sizing of the ESS and set its power output. GA based 

on multi-objectives called photovoltaic-trigeneration optimization was used in [33]. A new sizing 

method based on simulink design optimization was employed in [34] to perform technical 

optimization of the hybrid system components. A PSO algorithm integrated with the fuzzy logic 

expert system that was applied to different scenarios was used in [35] to enhance the performance of 

storage devices in supplying power in the microgrid. A decision tree on a linear programming based 

on fuzzy and multi-agent systems was implemented to adapt pricing rules and minimize the 

generation cost for a typical autonomous microgrid [36]. Appendix A provides more details about 

the related works’ approaches. 

However, some of the meta-heuristic algorithms search only in the neighborhood space for the 

best solutions without paying attention to the global space. This type of algorithm may mislead the 
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search process and leave the optimization-searching space stuck to a local solution only. Furthermore, 

some algorithms have perfect global search abilities, but their local exploration capability is limited. 

Due to these limitations, more robust algorithms are needed for premature concurrence and 

accelerate the exploration process. In this regard, a new advanced meta-heuristic algorithm named 

grey wolf optimization (GWO) that has a good balance between the local and global search spaces is 

implemented in this paper. The main objective of this study is to minimize the operation dispatch 

costs in the microgrid by taking into account the optimum size of the battery-storage devices. The 

proposed algorithm is based on the hunting attitude of a pack of grey wolves with a high balance 

between the exploration and exploitation [37]. Finally, to verify the performance and the stability of 

the proposed algorithm, it is implemented on a typical low-voltage microgrid system. Different 

scenarios have been conducted and the simulation results compared with other optimization 

methods. The GWO results prove the capability of the proposed method in finding the best global 

optima in the optimization problem in terms of solution quality and computational efficiency. The 

main contribution of this study can be presented as follow: (1) proposing a novel approach to an 

intelligent energy-management method that increases the penetration of the renewable-energy 

sources and reduces the dependence on fossil fuel in the microgrid; and (2) takes into account the 

effect of the optimum size of battery-storage system on the operation management as well as the 

overall cost of the microgrid. 

This paper is organized as follows: Section 2 illustrates the mathematical problem formulation 

of the operational cost management in the microgrid. Section 3 gives a brief description of the 

proposed grey wolf algorithm. The implementation of the GWO in the microgrid and the monitoring 

method for the storage devices are described in Section 4. Numerical results and a discussion are 

presented in Section 5. Finally, Section 6 provides the conclusion of this research. 

2. Mathematical Problem Formulation 

The optimum sizing and load dispatch are important aspects of power-system management. The 

mathematical objectives and constraints considered in GWO formulation can be presented as follows: 

2.1. Objective Function 

This paper aims to reduce the operation cost while satisfying all the constraints, Therefore, 

determining the potential cost of the generation sources in the microgrid is extremely important, and 

based on that the different cost functions of the generation sources are determined as follows 

[3,12,38,39]: 

𝑀𝑖𝑛𝐹(𝑋) = ∑ 𝑓𝑡 + 𝑂𝑀𝐷𝐺 + 𝑇𝐶𝑃𝐷𝐵𝐸𝑆

𝑇

𝑡=1

𝑏 (1) 

where 

𝑓
𝑡

= ∑ 𝐶𝑜𝑠𝑡𝑔𝑟𝑖𝑑,𝑡 + 𝐶𝑜𝑠𝑡𝐷𝐺,𝑡 + 𝐶𝑜𝑠𝑡𝐵𝐸𝑆,𝑡 + 𝑆𝑈𝐶𝑀𝑇,𝑡 + 𝑆𝑈𝐶𝐹𝐶,𝑡 + 𝑆𝐷𝐶𝑀𝑇,𝑡

𝑇

𝑡=1

+ 𝑆𝐷𝐶𝐹𝐶,𝑡                                  

(2) 

𝐶𝑜𝑠𝑡𝑔𝑟𝑖𝑑,𝑡 = {

𝐵𝑔𝑟𝑖𝑑,𝑡𝑃𝑔𝑟𝑖𝑑,𝑡                      𝑖𝑓 𝑃𝑔𝑟𝑖𝑑,𝑡 > 0

 (1 − 𝑡𝑎𝑥)𝐵𝑔𝑟𝑖𝑑,𝑡𝑃𝑔𝑟𝑖𝑑,𝑡    𝑖𝑓 𝑃𝑔𝑟𝑖𝑑,𝑡 < 0  

0                                           𝑖𝑓  𝑃𝑔𝑟𝑖𝑑,𝑡 = 0

} (3) 

𝐶𝑜𝑠𝑡𝐷𝐺,𝑡 = 𝐵𝑀𝑇,𝑡𝑃𝑀𝑇,𝑡𝑢𝑀𝑇,𝑡 + 𝐵𝐹𝐶,𝑡𝑃𝐹𝐶,𝑡𝑢𝐹𝐶,𝑡 + 𝑃𝑃𝑉,𝑡𝐵𝑃𝑉,𝑡 + 𝑃𝑊𝑇,𝑡𝐵𝑊𝑇,𝑡 (4) 

𝐶𝑜𝑠𝑡𝐵𝐸𝑆,𝑡 = 𝐵𝐵𝐸𝑆,𝑡𝑃𝐵𝐸𝑆,𝑡𝑢𝐵𝐸𝑆,𝑡 (5) 

𝑆𝑈𝐶𝑀𝑇,𝑡 = 𝑆𝑈𝑀𝑇 × 𝑚𝑎𝑥(0, 𝑢𝑀𝑇,𝑡 − 𝑢𝑀𝑇,𝑡−1) (6) 

𝑆𝑈𝐶𝐹𝐶,𝑡 = 𝑆𝑈𝐹𝐶 × 𝑚𝑎𝑥(0, 𝑢𝐹𝐶,𝑡 − 𝑢𝐹𝐶,𝑡−1) (7) 
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S𝐷𝐶𝑀𝑇,𝑡 = 𝑆𝐷𝑀𝑇 × 𝑚𝑎𝑥(0, 𝑢𝑀𝑇,𝑡−1 − 𝑢𝑀𝑇,𝑡) (8) 

𝑆𝐷𝐶𝐹𝐶,𝑡 = 𝑆𝐷𝐹𝐶 × 𝑚𝑎𝑥(0, 𝑢𝐹𝐶,𝑡−1 − 𝑢𝐹𝐶,𝑡) (9) 

𝑂𝑀𝐷𝐺 = (𝑂𝑀𝑀𝑇 + 𝑂𝑀𝐹𝐶 + 𝑂𝑀𝑃𝑉 + 𝑂𝑀𝑊𝑇) × 𝑇 (10) 

The total operation dispatch of the microgrid is comprised of the operation dispatch cost of the 

utility grid, the costs of fuel DG units, the price of the battery energy storage (BES) operation, 

operation and maintenance costs of DGs, costs of startup/shutdown of Micro-Turbine (MT) and Fuel 

Cell (FC), and the total cost per day of BES (TCPDBES). The cost of BES constraints is determined by 

considering the one-time fixed cost (FCBES) and the annual maintenance cost of the battery (MCBES); 

these costs are proportional to the battery size. The storage cost when the size of the battery is equal 

to its maximum size is calculated by considering the FCBES and the MCBES, which are as follows: 

𝐶𝑜𝑠𝑡𝐵𝐸𝑆 = (𝐹𝐶𝐵𝐸𝑆 + 𝑀𝐶𝐵𝐸𝑆) × 𝐶𝐵𝐸𝑆,𝑚𝑎𝑥  (11) 

The time horizon (T) used in this paper is one day (24 h), in which the calculation of the operation 

time was based on that time. TCPD is determined in this study by accounting the interest rate (IR) of 

the financing installation and the lifetime (LT) of BES, which is as follows [3,12]: 

𝑇𝐶𝑃𝐷𝐵𝐸𝑆 =
𝐶𝐵𝐸𝑆,𝑚𝑎𝑥

365
(

𝐼𝑅(1 + 𝐼𝑅)𝐿𝑇

(1 + 𝐼𝑅)𝐿𝑇 − 1
 𝐹𝐶𝐵𝐸𝑆 + 𝑀𝐶𝐵𝐸𝑆) (12) 

2.2. Constraints 

The minimization of the operational cost in a microgrid is subjected to a number of constraints 

including the balance of the electrical load demands, the boundaries of DGs constraints, the operation 

reserve (OR) constraints, and the BES constraints. Details of the aforementioned constraints are 

described below. 

2.2.1. Balance of Electrical Load Demands 

The microgrid power generation sources that including MT, FC, PV, WT, and the power injected 

from BES or the external power from the utility grid, should satisfy the demands of the electrical load 

(PD,t) in the microgrid with minimum operating costs. This constraint can be represented by using 

Equation (13). 

P_MT,t u_MT,t + P_FC,t u_FC,t + P_PV,t + P_WT,t + P_BES,t u_BES,t + P_grid,t = PD,t     t = 1, 2, …, T (13) 

2.2.2. Boundaries of Distributed Generation (DG) Constraints 

The output operation of the distributed generators of each unit should be within the maximum 

and minimum limits [40], which is as follows: 

P_MT,min ≤ P_MT,t ≤ P_MT,max                          t = 1, …, T (14) 

P_FC,min ≤ P_FC,t ≤ P_FC,max                           t = 1, …, T (15) 

P_PV,min ≤ P_PV,t ≤ P_PV,max                           t = 1, …, T (16) 

P_WT,min ≤ P_WT,t ≤ P_WT,max                          t = 1, …, T (17) 

2.2.3. Grid Constraints 

The power supplied from the utility grid should be within the maximum and minimum limits 

in each time step: 

𝑃𝑔𝑟𝑖𝑑,𝑚𝑖𝑛 ≤ 𝑃𝑔𝑟𝑖𝑑,𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥                                       𝑡 = 1, … , 𝑇 (18) 
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2.2.4. Operation Reserve (OR) Constraints 

The reserve power can be pumped into the microgrid in less than 10 min from the electrical 

power generation by turning on the MT, FC, utility and BES, and is formulated as follows [3]: 

P_MT,t u_MT,t + P_FC,t u_FC,t + P_PV,t + P_WT,t + P_BES,t u_BES,t + P_grid,t ≥ PD,t + ORt        t = 1, 2, …, T (19) 

where ORt is 10 min. 

2.2.5. Battery Energy Storage (BES) Constraints 

The lithium battery is used for the BES system for the microgrid in this research. This type of 

battery has many advantages such as lack of memory effect, a high energy density, and its ability to 

lose power is slow when not engaged [3,12,41,42]. Battery constraints can be classified into charging 

and discharging modes: 

Discharging Mode 

  𝐶𝐵𝐸𝑆,𝑡+1 = 𝑚𝑎𝑥 {(
𝐶𝐵𝐸𝑆,𝑡 − ∆𝑡𝑃𝐵𝐸𝑆,𝑡

ƞ𝑑

) , 𝐶𝐵𝐸𝑆,𝑚𝑖𝑛}                              𝑡 = 1, … . , 𝑇     (20) 

where 

𝑃𝐵𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑃𝐵𝐸𝑆,𝑡 ≤ 𝑃𝐵𝐸𝑆,𝑚𝑎𝑥                                                               𝑡 = 1, … , 𝑇 (21) 

Charging Mode 

𝐶𝐵𝐸𝑆,𝑡+1 = 𝑚𝑖𝑛{(𝐶𝐵𝐸𝑆,𝑡 − ∆𝑡𝑃𝐵𝐸𝑆,𝑡  ƞ𝑐), 𝐶𝐵𝐸𝑆𝑚𝑖𝑛}                        𝑡 = 1 … . 𝑇 (22) 

where 

𝑃𝐵𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑃𝐵𝐸𝑆,𝑡 ≤ 𝑃𝐵𝐸𝑆,𝑚𝑎𝑥                                                𝑡 = 1, … , 𝑇 (23) 

where 

𝑃𝐵𝐸𝑆,𝑡 𝑚𝑎𝑥 = 𝑚𝑖𝑛 {𝑃𝐵𝐸𝑆,𝑚𝑎𝑥 ,
(𝐶𝐵𝐸𝑆,𝑡 − 𝐶𝐵𝐸𝑆,𝑚𝑖𝑛)ƞ𝑑

∆𝑡
}                   𝑡 = 1, … , 𝑇 (24) 

𝑃𝐵𝐸𝑆,𝑡 𝑚𝑖𝑛 = 𝑚𝑖𝑛 {𝑃𝐵𝐸𝑆,𝑚𝑎𝑥 ,
(𝐶𝐵𝐸𝑆,𝑡 − 𝐶𝐵𝐸𝑆,𝑚𝑖𝑛)ƞ𝑑

∆𝑡
}                    𝑡 = 1, … , 𝑇 (25) 

The boundary limits of BES power in discharging and charging modes are expressed in 

Equations (21) and (23), respectively. The battery capacity in charging and discharging modes are 

expressed in Equations (20) and (22), respectively. The maximum power of BESS is expressed 

mathematically in Equation (24), whereas the minimum power of BES is expressed in Equation (25). 

The proposed storage device should satisfy all the constraints from (20)–(25). 

3. Grey Wolf Optimizer (GWO) 

Grey wolf optimizer (GWO) is one of the powerful meta-heuristic algorithms proposed by [37]. 

As a newly developed algorithm it has the ability to compete with others algorithms such as PSO, 

GA and many other algorithms in terms of solution accuracy, minimum computational effort, and 

aversion of premature convergence. GWO was inspired by grey wolves, members of the Canidae 

family which are leading predators on top of the food chain. This type of wolves lives in groups of 5 

to 12 members. 

The leader of the wolf pack is called alpha, and is responsible for the pack. While beta is the 

second level after alpha who reinforces the alpha’s instructions throughout the pack and delivers 

feedback to alpha. The lower level of the grey wolf hierarchy is called omega and usually plays the 

role of scapegoat. Moreover, if the wolf is not alpha, beta or omega, then he or she is called delta.  

The duties of delta wolves are as scouts, sentinels, elders, hunters and caretakers. Figure 1 illustrates 

the social dominant hierarchy of the grey wolves. The GWO steps for hunting the prey are presented 

in the next sub-section. 
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Figure 1. The dominance hierarchy of grey wolves. 

Mathematical Formulation of GWO 

The behavior of the GWO can be formulated mathematically, where the alpha (α) wolf position 

is assumed to be the best answer in the proposed GWO algorithm, while the beta (β) and delta (δ) 

positions are the second and third best answers, respectively. The omega (ω) represents the rest of 

the answers to the problem. The hunting in GWO algorithm is directed by α, β, and δ, while the 

omega follows them. The attacking process of the grey wolves involves several steps before they 

catch the prey. First, the wolves tend to encircle the prey to stop her from moving, this encircling 

behaviour can be represented by the following set of equations: 

𝐷→ = |𝐶→. 𝑋𝑝
→(𝑡) − 𝑋→(𝑡)|    (26) 

𝑋→(𝑡 + 1) = 𝑋𝑝
→(𝑡)−𝐴→. 𝐷→ (27) 

where 𝐴→  and 𝐷→  are the vector coefficients, 𝑋𝑝
→  is the vector location of the prey, t is current 

iteration, and 𝑋→ is the location vector of a grey wolf. The encircling equations can be obtained by 

finding the 𝐴→ and 𝐶→ vectors. 

𝐴→ = 2𝑎→. 𝑟1
→ − 𝑎→    (28) 

𝐶→ = 2. 𝑟2
→ (29) 

𝑎 = 2 − 𝑡 ∗
2

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (30) 

where 𝑎→ is linearly changed from 2 to 0 during the algorithm iterations, and r1 and r2 are random 

values between (0, 1). In each iteration, the best solutions from alpha, beta and delta are saved and 

the other wolves (omega) update their positions based on the best solutions. These steps are 

represented by the following equations: 

𝐷𝐴𝑙𝑝ℎ𝑎
→ = |𝐶1

→. 𝑋𝐴𝑙𝑝ℎ𝑎
→ − 𝑋→| (31) 

𝐷𝐵𝑒𝑡𝑎
→ = |𝐶2

→. 𝑋𝐵𝑒𝑡𝑎
→ − 𝑋→| (32) 

𝐷𝐷𝑒𝑙𝑡𝑎
→ = |𝐶3

→. 𝑋𝐷𝑒𝑙𝑡𝑎
→ − 𝑋→| (33) 

The vector positions of the prey can be determined based on the alpha, beta and delta positions 

using the following equations: 

𝑋1
→ = |𝑋𝐴𝑙𝑝ℎ𝑎

→ − 𝐴1
→. 𝐷𝐴𝑙𝑝ℎ𝑎

→ | (34) 
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𝑋2
→ = |  𝑋𝐵𝑒𝑡𝑎

→ − 𝐴2
→. 𝐷𝐵𝑒𝑡𝑎   

→ | (35) 

𝑋3
→ = |𝑋𝐷𝑒𝑙𝑡𝑎

→ − 𝐴3
→. 𝐷𝐷𝑒𝑙𝑡𝑎

→ | (36) 

𝑋→(𝑡 + 1) =
𝑋1

→ + 𝑋2
→ + 𝑋3

→

3
 (37) 

The exploration and exploitation of the grey wolf agents depend on the parameter A, by 

decreasing A half of the iterations are devoted to exploration (|A| ≥ 1). Meanwhile, when the (|A| < 

1) the other half of the iterations are devoted to exploitation. The pseudo-code of the GWO 

(Algorithm 1) is presented in the following form: 

Algorithm 1: GWO pseudo-code 

Initialize the locations of the grey wolf population Xi (i = 1, 2, …, n 

Initialize a, A and C 

Calculate the objective function value for each grey wolf agent 

Set: Xα as best result of the search agents   

Xβ as the second best result of the search agents 

Xδ as the third best result of the search agents 

While (t < max number of iteration) the termination criterion is not satisfied do 

Initialize r1 and r2 values 

Update a by Equation (30) 

Update A by Equation (28) 

Update C by Equation (29) 

For i  

For j 

Update the positions of each grey wolf agent by using Equations (31)–(37) 

End j 

End i 

Calculate the fitness of all agents with the new positions 

t = t + 1 

End while 

return Xα 

4. The GWO Implementation of the Optimal Operation Management of the Microgrid 

In this research, a GWO is used to solve the operation management issues in the microgrid by 

finding the optimal values of the parameters that help to minimize the operational cost of the 

generation sources in the microgrid and fulfil all the constraints (13)–(25) in each step of the GWO 

algorithm. Figure 2 shows the flowchart of the grey wolf algorithm performance for operation 

management in the microgrid.  
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Figure 2. Flowchart of the grey wolf optimization algorithm used in the microgrid. 
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However, due to the limitations of the generation sources and the energy-management 

constraints, the function handle (Algorithm 2) should be utilized as follows: 

Algorithm 2: Function handle 

For t = 1 to NT   do 

For m = 1 to NOA do 

Part 1: power balance and generation source capacity handling 

Calculate the power difference between the generation sources and load demand 

Pdiff = (P_MT,t u_MT,t + P_FC,t u_FC,t + P_PV,t + P_WT,t + P_BES,t u_BES,t + P_grid,) − PD,t; 

Select random generation sources based on their capacity  

While P_diff ≠ 0 do 

Subtract P_diffm,t from the selected units 

Check the capabilities of the generation units based on lower and upper limits as follows: 

If   Pm,FC,t < PFC,min   then  Pm,FC, = PFC,min;  

or  Pm,MT,t < PMT,min then Pm,MT,t = PMT,min; 

or  Pm,grid,t < Pgrid,min then Pm,grid,t = Pgrid,min; 

or Pm,BES,t < PBES,min then Pm,BES,t = PBES,min; 

Elseif  Pm,FC,t > PFC,max    then  Pm,FC, = PFC,max;  

or  Pm,MT,t > PMT,max  then Pm,MT,t = PMT,max; 

or  Pm,grid,t > Pgrid,max then  Pm,grid,t = Pgrid,max; 

or Pm,BES,t < PBES,max then  Pm,BES,t = PBES,max; 

End if 

Calculate P_diffm,t 

Select another generation units randomly 

End while 

Part 2: ORs handling 

Calculate objective function (ft) by using Equation (2) 

If  P_MT,t u_MT,t + P_FC,t u_FC,t + P_PV,t + P_WT,t + P_BES,t u_BES,t + P_grid,t < PD,t + ORt 

Then   ft = ft + Penalty_Factor ×(P_MT,t u_MT,t + P_FC,t u_FC,t + P_PV,t + P_WT,t + P_BES,t u_BES,t + P_grid,t – (PD,t + 

ORt)) 

End if  

End for m 

Calculate Equation (1) 

End for t 

Since the OR’s constraints should be met, the penalty factor value considered in this paper is 10. 

The grey wolves’ numbers (search agents) and the iterations numbers are set. The population vector 

of the GWO can be represented as follows: 

𝑋 = [
𝑥1

1 ⋯ 𝑥𝑛
1

⋮ ⋱ ⋮
𝑥1

𝑝
⋯ 𝑥𝑛

𝑝
] (38) 

where n represents the control variable numbers or search agents positions. The population number 

(grey wolves) is represented by p. 

To minimize the operational cost in the microgrid, we employed a monitoring method for the 

microgrid operations to set the charging and discharging rules for storage devices that integrated 

with the grey wolf algorithm. The method is based on evaluating the economical price factor of the 

microgrid within 24 h. Therefore, the batteries’ decisions in the microgrid charge and discharge are 

based on the difference between the highest and lowest mean price of the utility market and the DGs 

within 24 h. The grey wolf algorithm makes the charging decision by comparing the dispatch cost of 

the storage devices with other DGs such as gas and the dynamic generation price of the utility grid. 

Moreover, a switching mechanism is integrated with the GWO that controls the storage devices’ 

operation by comparing the instantaneous capacity of storage devices with its full practical capacity. 
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A signal indicates when the battery capability goes below full-capacity status. This signal indicator 

will be considered under other price factors: 

A. The charging signal will be activated when the price of local distribution generators is below 

the mean value of the price of DGs or the utility market price. 

B. The discharging signal will activate to supply electrical power to loads of the microgrid when 

the battery-charging price is lesser than the other prices of the generation source. 

C. A standby signal is generated when the charging cost of storage devices is above the DG price, 

or when the storage devices have been charged with a higher price than other generation sources in 

a microgrid at the time of comparison. 

The following equations illustrate the conditions of charging and discharging operations of the 

storage devices: 

𝐵𝐸𝑆𝑐ℎ,𝑡 =  {

𝑃𝐵𝐸𝑆,𝑡 = 𝑃𝑔𝑟𝑖𝑑,𝑡                             𝑖𝑓 𝐵𝑃𝑔𝑟𝑖𝑑,𝑡
 < 𝐵𝑃𝐷𝐺,𝑡

𝑃𝐵𝐸𝑆,𝑡 =  𝑃𝐷𝐺,𝑡                              𝑖𝑓 𝐵𝑃𝐺𝐷,𝑡  < 𝐵𝑃𝑔𝑟𝑖𝑑,𝑡

                 𝑃𝐵𝐸𝑆,𝑡 = 0                                   𝑖𝑓 𝐵𝑃𝐵𝐸𝑆,𝑡
 > 𝐵𝑃𝑔𝑟𝑖𝑑,𝑡

 𝑜𝑟 𝐵𝑃𝐷𝐺,𝑡

 (39) 

𝐵𝐸𝑆𝑑𝑖𝑠,𝑡 = {

   𝑃𝐷,𝑡 = 𝑃𝐵𝐸𝑆,𝑡 + 𝑃𝐷𝐺,𝑡                      𝑖𝑓 𝐵 (𝑃𝐵𝐸𝑆,𝑡 + 𝑃𝐺𝐷,𝑡) <  𝐵𝑃𝐷𝐺,𝑡

        𝑃𝐷,𝑡 = 𝑃𝐵𝐸𝑆,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡                     𝑖𝑓 𝐵 (𝑃𝐵𝐸𝑆,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡) <  𝐵𝑃𝑔𝑟𝑖𝑑,𝑡

  𝑃𝐵𝐸𝑆,𝑡 = 0                                        𝑖𝑓 𝐵𝑃𝐵𝐸𝑆,𝑡
>  𝐵𝑃𝑔𝑟𝑖𝑑,𝑡

𝑜𝑟 𝐵𝑃𝐷𝐺,𝑡

 (40) 

The GWO will treat the battery devices as a source, load or standby source depending on the 

generated signals at the time of comparison, as shown in the equations below: 

𝑃𝑀𝑇,𝑡 𝑢𝑀𝑇,𝑡 + 𝑃𝐹𝐶,𝑡𝑢𝐹𝐶,𝑡 +  𝑃𝑃𝑉,𝑡 + 𝑃𝑊𝑇,𝑡 + 𝑃𝐵𝐸𝑆,𝑡𝑢𝐵𝐸𝑆,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡 = 𝑃𝐷,𝑡 (41) 

𝑃𝑀𝑇,𝑡 𝑢𝑀𝑇,𝑡 + 𝑃𝐹𝐶,𝑡𝑢𝐹𝐶,𝑡 +  𝑃𝑃𝑉,𝑡 + 𝑃𝑊𝑇,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡 = 𝑃𝐷,𝑡 + 𝑃𝐵𝐸𝑆,𝑡𝑢𝐵𝐸𝑆,𝑡 (42) 

𝑃𝑀𝑇,𝑡 𝑢𝑀𝑇,𝑡 + 𝑃𝐹𝐶,𝑡𝑢𝐹𝐶,𝑡 +  𝑃𝑃𝑉,𝑡 + 𝑃𝑊T,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡 = 𝑃𝐷,𝑡 (43) 

To validate the efficiency of the monitoring method with different capacities of the battery and 

to select the optimal size of the battery, the maximum capacity of the battery device is set as a control 

variable, and the minimum capacity set to 10% of the maximum capacity. This means that the 

optimization and the energy stored in the BES after determining the operation cost should be within 

the range [50 kWh–500 kWh]. The step size between the maximum and minimum capacity of the BES 

is 100 kWh in each step and the algorithm takes it gradually until the optimal size of the BES is 

reached. Figure 3 illustrates the sizing process for selecting the optimal size. 
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Figure 3. Flowchart of sizing process. 

5. Numerical Results and Discussion 

The effectiveness of the developed grey wolf algorithm is demonstrated in this paper by utilizing 

it to solve different non-linear parameters and complex problems by considering the load dispatch 

issues in the microgrid. 
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Description of the Microgrid Test System and the Data Inputs 

The proposed grey wolf algorithm is designed to work with any application as well as different 

profiles. Therefore, in order to access the validity and robustness of the algorithm, it is tested on a 

typical low-voltage microgrid system as depicted in Figure 4. The microgrid system has different 

generation sources such as MT, FC, PV, WT and a Li-ion battery energy system. In addition, the case 

study is assumed to have highly rated conductors, and therefore the thermal constraints will not be 

considered in the dispatch analysis. Furthermore, the feeders supplying distributed loads from the 

generators have a relatively short distance which does not have a significant impact on the voltage 

profile (no reactive compensation is required), and hence the power losses are neglected in this study. 

All the coefficients and source limitations that are used in this paper are referred to [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A typical low-voltage microgrid system. 

Figures 5 and 6 show the forecasting output powers of WT and PV, respectively, both figures 

are scaled for 24 h [3]. 
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Figure 5. Forecasted power of wind turbine (WT). 

 

Figure 6. Forecasting power of photovoltaic unit (PV). 

The load demand and real forecast utility price that are used to test GWO in the low-voltage 

network are shown in Figures 7 and 8, respectively [3, 12]. 
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Figure 7. Forecasting load demand. 

 

Figure 8. Real utility market prices. 

Several factors are considered in GWO to minimize the economic dispatch of the low-voltage 

network in this paper. For instance, the OR factor is set to 5% of the load demand for each time step, 

and the maintenance and fixed labour for BESS installation and operation are set to 465 (€ct/kWh) 

and 15 (€ct/kWh), respectively. The BESS LT and IR are set to 3 and 0.06, respectively; and tax is set 

to 10%. The charging and discharging efficiencies of BESS are both set to 90%. The maximum capacity 

of the BESS is set to 500 kWh, and the minimum capacity is fixed to 10% from the maximum capacity. 

The minimization cost in this study is performed for one day (24 h). 
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The algorithms are solved using MATLAB software (2017b) and tested on a 3.6 GHz CUP and 

16 GB RAM university computer. Accordingly, in order to verify the performance of the algorithm 

the GWO iteration is set to 1000, and the number of implemented search agents is set to 100. To study 

the performance of the GWO, the simulation results are compared with various methods such as GA, 

the bat algorithm (BA), PSO, and the improved bat algorithm (IBA) [3] and different scenarios are 

conducted also, as follows: 

Scenario A: The microgrid operates without BES. 

Scenario B: The microgrid’s BES does not have an initial value (uncharged). 

Scenario C: The microgrid’s BES has an initial value equal to its size (fully charged). 

Scenario A 

Multiple sources are considered in the microgrid of this case study to compare the performance 

of the proposed algorithm with other algorithms like GA, PSO, BA and IBA. In this scenario, it is 

assumed that the microgrid does not have storage devices in its operation and all power should be 

provided from the DGs (renewable energy source (RES) and non-RES) and the utility grid to satisfy 

the load demand at any hour during the day. 

Based on the daily forecasting load demand curve and the maximum power output from 

renewable sources and non-renewable sources of this case study, we demonstrated the numerical 

outcomes of the optimal operation of generation sources under the microgrid circumstances in Figure 

9 by using the grey wolf algorithm. GWO is a random method of probability patterns, thus the 

randomness in the results of the simulation are comprehensible. The load dispatch problem is 

determined in real-time; hence, the program should approach the optimum solution over time. 

Figure 9 shows the best output power from the generation sources to satisfy the load demands 

during the day. Due to the absence of storage devices in this scenario that act as an ancillary service, 

the output power of the DGs and utility grid should be greater than the load demands to ensure the 

stability of the operation system as well as to show the need for purchasing the power from the utility 

grid for most of the day. Due to the lower bid of the FC source compared with another source (MT), 

the microgrid uses more power from FC than MT. The status of each DG and utility grid that is 

dispatched is in Table 1. 

 

Figure 9. Optimal output of the generation sources obtained by GWO for Scenario A. 
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Table 1. Corresponding status of the generation sources obtained by GWO for Scenario A. 

Time (hour) MT FC PV WT Utility Grid 

1 0 1 0 1 1 

2 0 1 0 1 1 

3 0 1 0 1 1 

4 1 1 0 1 1 

5 1 1 0 1 1 

6 1 1 0 1 1 

7 1 1 0 1 1 

8 1 1 1 1 1 

9 1 1 1 1 1 

10 1 1 1 1 1 

11 1 1 1 1 0 

12 1 1 1 1 0 

13 1 1 1 1 0 

14 1 1 1 1 0 

15 1 1 1 1 1 

16 1 1 1 1 1 

17 1 1 1 1 1 

18 1 1 0 1 1 

19 1 1 0 1 1 

20 1 1 0 1 1 

21 1 1 0 1 1 

22 1 1 0 1 1 

23 1 1 0 1 1 

24 1 1 0 1 1 

Table 2 shows the optimal, average, and worst-cost solutions obtained from GWO compared 

with other algorithms, which emphasizes the robust performance of GWO. The agents in the GWO 

algorithm always update their positions according to alpha, beta and delta behaviour. Thus, the GWO 

algorithm gives the best results and those results continue to improve with each iteration during the 

simulation. Due to that, the optimal dispatch cost of this scenario with the absence of the storage 

device is 813.6850 €ct, and the worst-solution dispatch cost of GWO in this scenario is significantly 

less than the best solution using other methods. Therefore, the grey wolf algorithm shows a significant 

reduction in cost compared with the GA, PSO, BA and IBA algorithms. The cost saving obtained by 

comparing the GWO operational cost with other methods is presented in Figure 10. 

 

Figure 10. Cost saving of GWO compared with other algorithms in Scenario A. 
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Table 2. Demonstration of operation dispatch costs of the microgrid in Scenario A. 

Methodology Best operation Cost (€ct) Mean Operation Cost (€ct) Worst Operation Cost (€ct) 

GA 1041.8376 1196.3251 1361.2437 

PSO 968.0190 1081.8351 1241.7459 

BA 933.8145 989.3718 106.9860 

IBA 825.8849 825.8849 825.8849 

GWO 813.6850 815.5231 816.8512 

Scenario B 

In this scenario, the battery-storage devices are added to the microgrid system with the initial 

battery charge value set to zero. The battery-storage system is an essential source in the microgrid 

that helps to maintain system stability, enhance the power quality and mitigate the transit period of 

the microgrid between the grid-connected mode and islanded mode. Furthermore, the difference 

between the peak and off-peak of the real market prices gives an opportunity to the BES to be 

economically beneficial by purchasing the power from the utility grid overnight (off-peak) and 

selling that power back to the utility grid during peak demand. 

All DGs, either renewable or traditional energy sources, should work to fulfil the load demands 

and operation constraints until the storage devices are charged and can contribute to a microgrid load 

demand based on how much it is charged in previous hours. The robustness of the proposed 

algorithm is apparent from its capability to satisfy all the constraints and create reliable results. 

Figure 11 demonstrates the numerical outputs of the MT, FC, PV, WT, BES and utility grid by 

utilizing the GWO. It is obvious from the figures that the first five hours from the day the BES is not 

utilized as a power supply for load demands, whereas for the rest of the day it is used as one of the 

microgrid-generation sources. Based on Figure 11 and the input data used, the variation in the market 

price of the utility grid gives the opportunity to the storage device to participate in minimizing the 

operational cost and to gain some benefits by selling the power back to the utility grid whenever the 

market price of power is high (peak load) and buying the power from the utility grid overnight due 

to the low price (off-peak). The status of each DG and utility grid dispatched is shown in Table 3. It 

is clear that the optimal size of BES in this scenario is 140 kWh. 

 

Figure 11. Optimal output of the generation sources obtained by GWO for Scenario B. 
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Table 3. Corresponding status of the generation sources obtained by GWO for Scenario B. 

Time 

(hour) 

Microturbine 

(MT) 

Fuel Cell 

(FC) 

Photovoltaic 

(PV) 

Wind Turbine 

(WT) 

Battery-Energy 

Storage (BES) 

Utility 

Grid 

1 1 1 0 1 1 1 

2 1 1 0 1 1 1 

3 1 1 0 1 1 1 

4 1 1 0 1 1 1 

5 1 1 0 1 1 1 

6 1 1 0 1 1 1 

7 1 1 0 1 1 1 

8 1 1 1 1 1 1 

9 1 1 1 1 1 1 

10 1 1 1 1 1 1 

11 1 1 1 1 1 1 

12 1 1 1 1 1 1 

13 1 1 1 1 1 1 

14 1 1 1 1 1 1 

15 1 1 1 1 1 1 

16 1 1 1 1 1 1 

17 1 1 1 1 1 1 

18 1 1 0 1 1 1 

19 1 1 0 1 1 1 

20 1 1 0 1 1 1 

21 1 1 0 1 1 1 

22 1 1 0 1 1 1 

23 1 1 0 1 1 1 

24 1 1 0 1 1 1 

Table 4 shows the comparison of the operation cost of the microgrid optimal, average, and worst 

solutions obtained from GWO compared with other algorithms. From this table, it is clear that the 

significant performance of GWO in minimizing the microgrid dispatch cost to 445.3254 €ct is better 

than the dispatch cost in Scenario A due to the existing storage devices. The worst-solution dispatch 

cost of GWO in this scenario is significantly less than the other methods. Therefore, the GWO 

technique is remarkably more efficient than the other existing methods. The cost saving obtained by 

comparing the GWO outputs with other methods is presented in Figure 12. 

Table 4. Demonstration of operation dispatches cost of the microgrid (MG) of Scenario B. 

Methodology Best Operation Cost (€ct) Mean Operation Cost (€ct) Worst operation Cost (€ct) 

GA 615.9034 623.4835 638.6436 

PSO 567.5185 575.1266 592.8787 

BA 520.2354 532.1278 550.6589 

IBA 497.0082 - - 

GWO 445.3254 450.6587 465.2154 

 

Figure 12. GWO cost saving compared with other algorithms in Scenario B. 
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Scenario C 

In this scenario, the initial value for a storage device is set to the maximum size capacity of the 

battery and utilized to complicate the system test and judge the effectiveness of the GWO method 

with non-linear constraints, and to show the feasibility of the proposed method for the dispatch cost 

and sizing BES. Figure 13 shows the optimal outputs of the MT, FC, PV, WT, BES and utility grid by 

utilizing the GWO. It is clear that from the figure that the BES participates in satisfying the load 

demands during the day and minimizes purchasing power from the upstream power grid. The status 

of each DG and utility grid dispatched is in Table 5. 

 

Figure 13. Optimal output of the generation sources obtained by GWO for Scenario C. 

Table 5. Corresponding status of the generation sources obtained by GWO for Scenario C. 

Time (hour) MT FC PV WT BES Utility Grid 

1 0 0 0 1 1 1 

2 0 0 0 1 1 1 

3 0 0 0 1 1 1 

4 0 0 0 1 1 1 

5 0 0 0 1 1 1 

6 1 1 0 1 1 1 

7 1 1 0 1 1 1 

8 1 1 1 1 1 1 

9 1 1 1 1 1 1 

10 1 1 1 1 1 1 

11 1 1 1 1 1 1 

12 1 1 1 1 1 1 

13 1 1 1 1 1 1 

14 1 1 1 1 1 1 

15 1 1 1 1 1 1 

16 1 1 1 1 1 1 

17 1 1 1 1 1 1 

18 1 1 0 1 1 1 

19 1 1 0 1 1 1 

20 1 1 0 1 1 1 

21 1 1 0 1 1 1 

22 1 1 0 1 1 1 

23 0 1 0 1 1 1 

24 0 0 0 1 1 1 
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Table 6 shows the optimal dispatch cost obtained by the proposed GWO method. The simulation 

results clearly prove that GWO creates feasible solutions. The statistical results from that simulation 

are compared with other methods, namely, GA, BA, PSO and IBA [3]. Considering this scenario with 

optimal BES size (220 kWh), the dispatch cost by the GWO with BES fully charged is the best (297.5429 

€ct) among other algorithms. However, the best cost of the other algorithms is IBA (424.1339 €ct), 

which is significantly higher than the worst cost of the GWO, as illustrated in Table 6.  

Table 6. Demonstration of operation dispatches cost of the microgrid (MG) of Scenario C. 

Methodology Best Operation Cost (€ct) Mean Operation Cost (€ct) Worst Operation Cost (€ct) 

GA 499.0665 506.4029 523.5212 

PSO 459.8236 466.6086 485.2675 

BA 436.7845 446.3267 456.2547 

IBA 424.1339 - - 

GWO 297.5429 299.3274 312.8742 

The economic cost saving achieved by this scenario is notably higher than that of Scenarios A and B 

when the initial value of the BES is fully charged, which helps to minimize importing power from the 

utility grid and at the same time cut down relying on the MT and FC, as presented in Figure 14. 

 

Figure 14. GWO cost saving compared with other algorithms in Scenario C. 

The crucial role of the storage devices in minimizing the cost in the microgrid, balancing the 

operation during the transit period, and identifying the solidity of the proposed grey wolf algorithm 

can clearly be seen in all scenarios compared with the other algorithms. In addition, the charging and 

discharging techniques of the storage devices played a crucial role in minimizing the total operation 

cost of the microgrid as shown by the numerical results of the analysis in the scenarios. 

6. Conclusions 

In this paper an intelligent energy-management method and a new algorithm named GWO is 

proposed to solve the load dispatch problems based on finding the optimal size of the microgrid 

sources. The GWO method satisfies the load demands and constraints in the microgrid based on the 

smart use of storage devices among other sources in the network. Different scenarios are employed 

to illustrate the GWO’s applicability. GWO shows a superior performance with storage device 

charging and discharging techniques by reducing the dispatch cost of the microgrid operation in all 

scenarios. The storage device technique operates based on tracking the local generation cost of the 

microgrid and the total cost of the storage device. Charging prices are generated to increase the 

chance of charging the battery with low prices and increase the opportunity of having cheaper 

microgrid operation cost during the storage device’s lifetime. 

The numerical results are tested with other existing methods, namely, GA, BA, PSO and IBA, to 

validate GWO performance. The GWO algorithm shows superior results over other algorithms, 

considering robustness, minimum computational efforts, and aversion of premature convergence. 
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Furthermore, the simulation results show that smart utilization of the BES by GWO helped to 

minimize the operational costs by 33.185%. Moreover, the proposed method helped to cut down the 

amount of the imported power from the utility grid, and at the same time reduce dependency on 

fossil fuel (MT and FC) which has a significant impact on the operational cost reduction in all the 

microgrid scenarios. GWO outperforms other competing methods in battery sizing and energy 

management in microgrids and, therefore, it has a significant potential to be implemented in a wide 

range of microgrids in the future. 
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results and to the writing of the manuscript. 
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Nomenclature 

Indices 

ADNs Active distribution networks 

ASO Adaptive storage operation 

BA Bat algorithm 

BBO Biogeography- based optimisation 

BES, grid Battery energy storage and grid indices, respectively 

BESS Battery energy storage system 

DE Differential evolution 

DG Distribution generation 

DP Dynamic programming 

ESS Energy storage system 

FC, MT Fuel cell and micro-turbine indices, respectively 

GA Genetic algorithm 

GHG Greenhouse gas 

GWO Grey wolf optimizer 

HBB-BC Hybrid big bang–big crunch 

t time index 

T Operation time horizon (h) 

TLBO Teaching-learning based optimisation 

TPC Total present cost 

TS Tabu search 

iter iteration index of the GWO algorithm 

MAS Multi-agent system 

MGCC Microgrid central controller 

MILP Mixed-integer linear programming 

NOA Number of agents 

PSO Particle swarm optimization 

PV, WT Photovoltaic and wind turbine indices, respectively 

SD Storages devices 

SDO Simulink design optimization 

IBA Improved bat algorithm 

IR Interest rate for financing the installed BES 

RES Renewable sources  

Constants 

Bgrid,t, BBES,t, BMT,t, BFC,t, BPV,t, BWT,t Bid of utility, BES, MT, FC, PV and WT, respectively, at time t (€ct/kWh). 

CBES,min, CBES,max Minimum and maximum size of BES (kWh) 

CSD_Max Maximum capacity of storage device 

CSD_Min Minimum capacity of storage devices 

FCBES, MCBES Fixed and maintenance cost for BES, respectively (€ct/kWh) 

Iter_max Maximum number of iteration for the GWO algorithm 

LT Lifetime of the installed BES (year) 

OMDG Fixed operation and maintenance cost of distributed generators (DGs; €ct) 
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OMMT, OMFC OMPV, OMWT 
Fixed operation and maintenance cost of MT, FC, PV and WT, 

respectively (€ct/kWh) 

ORt Minutes operating reserve requirements (kW) 

PBESmax,t PBESmin,t Maximum discharge and charge rates of BES, respectively, at time t (kW) 

ηd, ηc Discharge and charge efficiencies of BES, respectively 

SDCMT,t, SDCFC,t Shutdown cost for MT and FC, respectively, at time t (€ct) 

SDMT, SDFC Shutdown cost coefficient for MT and FC, respectively (€ct) 

SUCMT,t, SUCFC,t Startup cost for MT and FC, respectively, at time t (€ct) 

SUMT, SUFC Startup cost coefficient for MT and FC, respectively (€ct) 

tax Tax rate of utility power grid 

Δt Time interval duration 

Pgrid,max, Pgrid,min 
Maximum/minimum limits of power production for utility, respectively 

(kW) 

PMT,max, PFC,max, PPV,tmax, PWT,t max, 

PBES,max 

Maximum producible power of MT, FC, PV, WT and BES respectively 

(kW) 

PMT,min, PFC,min, PPV,tmin, PWT,t min, 

PBES,min 

Minimum producible power of MT, FC, PV, WT and BES respectively 

(kW) 

PSD_Max Maximum power of storage device 

Variables 

CostDG,t, CostBES,t Cost of fuel and operating power of DGs and BES, respectively, at time t (€ct) 

F Total costs (€ct) 

Pgrid,t, PBES,t, PMT,t, PFC,t PPV,t, PWT, t Power of utility, BES, MT, FC, PV, and WT, respectively (kW) 

PSD_min Minimum power of storage device 

TCPDBES Total cost per day of BES (€ct) 

Up Utility price 

X Position vector of a grey wolf in GWO algorithm 

XP Position vector of the prey in GWO algorithm 

Gp Gas price 

Costgrid,t Cost of trade with the upstream grid at time t (€ct) 

CSD_Max Maximum capacity of storage device 

PD,t Electrical load demand at time t (kW) 

CBES,t Energy stored in BES at time t (kWh) 

uBES,t, uMT,t, uFC,t Status (on or off) of BES, MT, and FC, respectively, at time t 

Sg Dispatch of storage device  
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Appendix A 

Table A1. Selected optimization methods. 

Method 
Method Mode Generation SOURCE 

Analysis Objective Function CONSTRAINTS Ref. 
Single Hybrid PV WT DG FC MT HB Wave SD 

Adaptive Storage 

Operation 
√  √ √     √ √ 

Techno-

Economic 
Forecast accuracy Energy balance [7] 

PSCAD/EMTDC  

Software 
√  √  √ √ √   √ Techno 

Primary frequency 

control 

Overloading characteristics 

and limitations of the state of 

charge (SOC) of SD 

[8] 

Mixed Integer  

Linear 

Programming 

√  √       √ Economic 
Microgrid operation 

cost 
Non-linear loads [9] 

√  √ √ √     √ Economic 

Minimization of the 

levelized cost of 

energy (LCOE) 

Renewable sources 

intermittency 
[10] 

√  √ √ √     √ 
Techno-

Economic 

Optimal design of 

standalone microgrid 

Uncertainty of the generation 

sources 
[11] 

√  √ √  √ √   √ Economic 

Optimal size of 

storage device based 

on cost-benefit 

Unit commitment problem 

with spinning reserve of 

microgrid 

[12] 

√    √      Economic 

Minimizes the 

annualized 

investment and 

operation costs 

Optimal type, size and 

allocation of distributed 

generators in radial 

distribution system 

[13] 

√    √      
Techno-

Economic 

Non-convex economic 

dispatch (ED) 

Ramp rate constraints, valve-

point effect (VPE), prohibited 

operating zones (POZs), 

transmission loss, and 

spinning reserve constraints. 

[14] 

Linear Programing √  √   √ √ √   
Techno-

Economic 

Maximizing the 

economic and 

minimize the annual 

cost 

energy prices, ambient 

conditions, energy demand, 

units’ characteristics, 

electricity grid constraints 

[15] 

Cuckoo Search √  √ √      √ Economic 
Minimize the 

operational costs 
System reliability [16] 

Inventory Models √  √       √ Economic 
Minimize the 

operational costs 

Energy source cost and 

availability 
[17] 
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Self-Adaptive 

Mutation Strategy 
√  √ √  √ √   √ Economic Cost minimization 

Ramp rate of generation 

sources 
[18] 

Distributed 

Economic Model 

Predictive Control 

√  √       √ Economic Cost minimization System stability [19] 

Multi-Objective 

Evolutionary 

Algorithm 

√    √     √ 
Techno-

Economic 

Decreasing switching 

operation 
System stability [20] 

Dynamic 

Programming 

Algorithm 

√  √  √     √ 
Techno-

Economic 

Maximize the power 

rating 

Reliability and system 

efficiency 
[21] 

Self-Adaptive 

Dynamic 

Programming 

√  √       √ Economic Cost minimization System stability [22] 

Genetic Algorithm 

√  √   √    √ 
Techno-

Economic 

Maximize the power 

rating 
System stability [23] 

√  √ √ √     √ Economic 

minimization of life-

cycle cost of the 

generation sources 

Limitation of battery state of 

charge 
[24] 

Particle Swarm 

Optimization 

√  √  √     √ 
Techno-

Economic 
Cost minimization System stability [25] 

√  √  √     √ 
Techno-

Economic 

Improve system 

stability and 

performance 

System frequency control [26] 

Particle Swarm–

Nelder–Mead 
 √        √ 

Techno-

Economic 
Cost minimization System stability [27] 

Big Bang–Big 

Crunch algorithm 
 √ √ √      √ Economic Cost minimization System reliability [28] 

Non-Linear 

Programming 

Optimization 

√  √ √      √ Economic 

Maximize the 

revenues of the 

renewable farm 

System stability [29] 

Alternating 

Direction Method 

of Multipliers 

√  √  √     √ 
Techno-

Economic 

Minimize network 

losses and energy cost 
Network voltage limitation [30] 

Differential 

Evolution 

algorithm 

√  √ √      √ 
Techno-

Economic 

Reducing power 

losses, improving 

voltage stability of the 

Network voltage limitation [31] 
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system and reducing 

charging costs 

Fuzzy Logic–

Genetic Algorithm 
 √  √      √ Economic 

Predicting storage 

device lifetime and 

minimize the costs 

Unit commitment problem [32] 

Photovoltaic-

Trigeneration 

Optimization 

Model 

 √ √       √ Economic 
Minimize operational 

costs and emissions 

Renewable sources 

intermittency 
[33] 

Simulink Design 

Optimization 
√  √   √    √ Economic Cost minimization 

Renewable sources 

intermittency 
[34] 

Fuzzy Logic–

Particle Swarm 

Optimization 

 √ √ √ √     √ Economic 
Minimize operational 

costs and emissions 
System stability [35] 

Fuzzy Logic–Multi 

Agent System 
 √ √ √ √     √ Economic Cost minimization System stability [36] 
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