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Abstract: The performance gap between the expected and actual energy performance of buildings and
elements has stimulated interest in in-situ measurements. Most research has employed quasi-static
analysis methods that estimate heat loss metrics such as U-values, without taking advantage of the
rich time series data that is often recorded. This paper presents a dynamic Bayesian-based method to
estimate the thermophysical properties of building elements from in-situ measurements. The analysis
includes Markov chain Monte Carlo (MCMC) estimation, priors, uncertainty analysis, and model
comparison to select the most appropriate model. Data from two case study dwellings is used to
illustrate model performance; U-value estimates from the dynamic and static methods are within
error estimates, with the dynamic model generally requiring much shorter time series than the
static model. The dynamic model produced robust results at all times of year, including when the
average indoor-to-outdoor temperature difference was low, when external temperatures had large
daily variation, and measurements were subjected to direct solar radiation. Further, the probability
distributions of parameters may provide insights into the thermal performance of elements. Dynamic
methods such as that presented herein may enable wider characterisation of the performance of
building elements as built, supporting work to reduce the performance gap.

Keywords: heat transfer; Bayesian statistics; in-situ measurements; inverse modelling; uncertainty
analysis; U-value; dynamic modelling

1. Introduction

Evaluating the thermophysical performance of buildings from monitoring campaigns is essential
to address the performance gap [1–4]—i.e., the observed discrepancy between the energy performance
calculated from literature values and that achieved in reality. In-situ measurements facilitate
the assessment of the energy performance of buildings in use, in their environment and state
of conservation [5]. Such measurements may be used to reduce the uncertainty in estimating
thermophysical properties by avoiding the need to infer the construction details, materials, and in-use
condition from visual inspection, then estimating thermophysical properties from year of construction
and tabulated values [6]. The characterisation of actual energy performance of a building of interest can
then be used to inform the retrofitting strategy, or for quality assurance on new builds or interventions
on existing properties, or for energy performance assurance, in addition to providing data and insight
to inform modelling studies and policy initiatives.

Interest in in-situ monitoring to understand the thermophysical performance of buildings has recently
increased in both industry and academia. However, the development of quick and robust methods is
still a priority to enable the integration of these techniques within the building process and extending
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their practical use (e.g., for diagnostic purposes, or tailored energy-efficient interventions) [1–4].
Both destructive and non-destructive techniques have been proposed for the evaluation of the
thermophysical performance of building elements. Destructive techniques require the perforation
of the building envelope to inspect and extract samples of the structure or to install interstitial
sensors [7,8]. While this method can be useful when little information on the element is available,
its invasive nature may not be suitable for occupied buildings or for buildings of historic interest;
there is therefore considerable interest in non-destructive methods. One of the most common
monitoring techniques involves the direct collection of heat flux and temperature measurements on the
building envelope [5,8–13], which allows the characterisation of potentially unknown stratigraphies
without damaging the element. Alternative non-destructive approaches (e.g., based on infrared
thermography, IRT) have been increasingly explored more recently [14–16]. The influence of climatic
(e.g., sky and air temperature, wind speed near the element, solar radiation) and operative conditions
(e.g., reflected radiation, indoor temperature, surface emissivity, characteristics of the thermocamera)
on U-value estimates obtained from IRT-based techniques are still debated, and the full potential of
such methods is yet to be widely tested in the field [14,15,17].

This paper addresses the most commonly used method for the thermophysical characterisation of
building elements, through measurements of temperature and heat flux. At present, quasi-stationary
approaches (e.g., the average method [18] or linear regression models [19]) are usually adopted for the
evaluation of the thermal resistance and thermal transmittance of building elements on the basis of such
measurements [20]. These methods are seasonally bounded to the winter months and may require long
surveying periods (e.g., two weeks) usually undertaken on north-facing building elements, as they do
not model thermal mass effects but average them out over a sufficiently long period; they also assume
constant boundary conditions and time-independent thermophysical properties of materials [21].
These requirements may play an important role in slowing down the uptake of an extensive use of
in-situ measurements for practical purposes.

To obviate the limitation of steady-state approaches, several dynamic methods have been
proposed [11,20,22–25]. Dynamic methods can shorten the length of monitoring campaigns
and provide more information about the building element, as they can be used to model the
thermal resistance and effective thermal mass of the element simultaneously. Methods involving
lumped-thermal-mass models and Bayesian statistics have been proposed, but are still relatively
new in the field; Biddulph et al. [6] were among the first authors to introduce these techniques for
the characterisation of the thermophysical properties of building elements, and interest has recently
increased [26–28].

This paper summarises and presents applications of a dynamic grey-box method combining
lumped-thermal-mass models and Bayesian analysis (both using maximum a posteriori and Markov
chain Monte Carlo estimation) for the characterisation of the thermophysical performance of building
elements from in-situ measurements. The method builds on and expands Biddulph et al. [6],
Gori et al. [29], and Gori [30]. Although the use of lumped-thermal-mass models in thermal-performance
simulation is not new [11,12,25,31–33], their combination with Bayesian optimisation provides several
advantages over the previously proposed grey-box methods. These include the combination of
the information contained in the measurements with previous knowledge of the process of interest
(e.g., the heat transfer through the element) and the case study (e.g., the building structure and
its constituent materials), the estimation of both the parameters of the model and the associated
statistical errors accounting for parameters’ correlation, the analysis of uncertainties to estimate
the systematic measurement error affecting the thermophysical estimates, and the use of statistical
evidence to objectively select the model that is most likely to describe the observations [6,29].
Consequently, this method extends the range of temperature differences (i.e., to non-winter seasons)
and orientations where the characterisation of the thermophysical properties of building elements
may be performed to acceptable and quantified uncertainty, in addition to shortening the length
of monitoring campaigns compared to the incumbent method, while ensuring robust estimates.
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This paper also presents the interpretation of results to provide insight into the thermal structure of
building elements, which can be used for design and retrofitting purposes.

2. Methodology

The dynamic Bayesian method devised for the estimation of the thermophysical properties of
building elements using in-situ measurements and physically informed models of heat transfer is
presented below (Sections 2.2 and 2.3), following a review of the static average method (Section 2.1)
to which it is compared. Model selection and validation techniques were adopted to investigate the
relative performance of different models (Section 2.4). Figure 1 provides an overview of the analysis
undertaken in this study.
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Figure 1. Flow chart of the dynamic Bayesian method developed for the estimation of the
thermophysical properties of building elements with maximum a posteriori optimisation. The Markov
chain Monte Carlo approach works in a similar fashion, with the following differences: (1) at each
iteration a new set of candidate parameters is proposed based on the Metropolis–Hastings algorithms;
and (2) the evidence is based on the reciprocal importance sampling method.

2.1. Static Model of Heat Transfer: The Average Method

In static models, the heat transfer through a building element is described assuming that the
system is time-invariant, boundary conditions are constant, and heat storage effects are negligible [21].
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The average method (AM) is one of the most common implementations of static models adopted to
analyse in-situ measurements and estimate the thermophysical properties (i.e., R-value and U-value)
of building elements [20]. According to the AM, the ratio of the mean integral heat flow rate and
the mean integral temperature difference observed over a sufficiently long period of time defines the
thermal transmittance (U-value) of the building element ([18] p. 6):

U =
τ
n ∑n

p=1 Qp
m

τ
n ∑n

p=1

(
Tp

int − Tp
ext

) =
∑n

p=1 Qp
m

∑n
p=1

(
Tp

int − Tp
ext

) , (1)

where τ is the duration of the time step between successive measurements (i.e., the recording interval
of the monitoring system); n is the number of observations; Qp

m is the measured heat flow rate density
(usually collected on the interior side of the element—i.e., Qm ≡ Qm,in in Figure 2) at each time step p;
Tp

int, Tp
ext are the measured internal and external temperatures at each time step.

2.2. Dynamic Model: Lumped-Thermal-Mass Models

A family of lumped-thermal-mass models based on the electrical analogy to heat transfer was
developed to describe the dynamic thermophysical behaviour of the building element under study
(although walls were the application for this research, the approach and techniques devised can be
applied to different building elements). These models were used to predict the time series of interest
(i.e., either the heat flux through the structure or the temperatures on opposite sides) and evaluate
the thermophysical properties of the element by means of Bayesian inference (Section 2.3) [6,29,30].
Note that in this paper, the term “predict” is used in its statistical meaning of estimating the value of a
random variable rather than as a synonym of forecast, which implies making a prediction of the value
of the variable at a given time in the future.

Figure 2 illustrates a one thermal mass model (1TM) explicitly incorporating solar radiation as a
separate source of heat. The heat flow entering the internal

(
Qp

e,in

)
and leaving the external

(
Qp

e,out

)
surface at each time step can be estimated from the lumped-mass model , adopting a convention of
heat flow from the internal to the external environment; although measured temperatures are used in
this paper as driving forces, the method devised also allows the use of heat flux measurements for
the estimation of temperature profiles. For the 1TM model including solar radiation, the model is
described by Equation (2) (refer to [30] for the full derivation):

Qp
e,in =

Tp
int − Tp

C1

R1
, Qp

e,out =
Tp

C1
− Tp

ext − R3Qp
sun

R2 + R3
, (2)

where R1, R2, R3 are the lumped thermal resistances of the element; Tp
C1

is the temperature of the

effective thermal mass at each time step; Qp
sun is the incoming solar radiation at each time step.

The heat flow for the 1TM model without solar radiation is obtained from Equation (2) by setting R3 to
zero [29,30]. While either surface or air temperature can be used on the internal side for both models,
surface temperature can only be used on the external side when solar radiation is not accounted
for separately.
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Figure 2. One thermal mass (1TM) model with (top) and without (bottom) the explicit incorporation
of solar radiation as source of heat in the system. The diagram shows the equivalent electrical
circuit modelling the heat transfer and the monitoring equipment; when explicitly accounting for
solar radiation, Ts represents the surface temperature of the element. Parameters of the model are
the effective thermal mass (C1) and its initial temperature

(
TC1

)
, and up to three lumped thermal

resistances (R1, R2, R3). Measured quantities are the internal (Tint) and external (Text) temperatures,
the heat fluxes entering the internal (Qm,in) and leaving the external (Qm,out) surfaces, and the incident
solar radiation (Qsun).

More complex models can be easily devised by expanding the 1TM models in Figure 2 using an
increasing number of equivalent electrical components and extending the mathematical approach.
Lumped-thermal-mass models including between zero and four effective thermal masses—both with
and without the explicit incorporation of solar radiation—were developed in this research (refer to [6]
for a pure resistive model, to [29] for a model including two effective thermal masses and four thermal
resistances without the explicit incorporation of solar radiation (i.e., two thermal mass model, 2TM),
and to [30] for all other models). These models may provide a better description of the thermal
structure of the building element, such as in the case of more complex structures. The inclusion of a
second thermal mass from the 1TM to the 2TM models can significantly improve the characterisation
of the observed thermal performance at both the external and internal surfaces. However, in the
absence of further data streams, more complex models (e.g., three and four thermal mass models)
may provide more limited explanatory power. These latter models are being successfully applied
in complementary research where, for example, the heat transfer through the element is used to
estimate the measured temperatures. Accordingly, only the results for the 1TM and the 2TM models
are presented in this paper.

2.3. Bayesian Inference: Optimisation Phase for Thermophysical Parameter Estimation

According to Bayes theorem, the posterior probability distribution of the parameters (i.e., the
probability of the parameters θ given the observations y and the model H) can be calculated as:

P (θ | y, H) =
P (y | θ, H)P (θ | H)

P (y | H)
, (3)

where P (y | θ, H) is the likelihood function (i.e., the probability model expected to describe the process
of interest); P (θ | H) is the prior probability distribution; and P (y | H) is the evidence (or marginal
likelihood). While Bayesian approaches often consider the full posterior probability distribution,
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one may also be interested in knowing the best set of the parameters of interest (θopt; i.e., those
maximising the posterior probability distribution):

θopt = argmax
θ

P (θ | y, H) = argmax
θ

P (y | θ, H)P (θ | H)

P (y | H)
. (4)

The unnormalised posterior probability distribution of different possible lumped-thermal-mass
models was optimised to estimate the best-fit thermophysical parameters (as illustrated below),
while the full posterior probability distribution was analysed for model comparison ([34], Chapter 28)
to evaluate the relative performance of the different lumped-thermal-mass models investigated
(Section 2.4.1). Maximum a posteriori (MAP) and a Markov chain Monte Carlo (MCMC) sampling
were adopted as alternative options for parameter optimisation. While the former approach only
estimates the best-fit value of the parameters by maximising the posterior probability distribution
(i.e., identifying its mode), the latter estimates the full probability distribution of the parameters and
may provide further thermophysical insights (e.g., highlighting dependencies among the parameters).
The whole framework was implemented in Python 3.0 [35] using the Python SciPy “basinhopping”
function [36] for MAP optimisation, and the Python library “EMCEE” [37] for MCMC sampling.

2.3.1. Likelihood Function

The likelihood function was formulated using physically informed lumped-thermal-mass models
to simulate the heat transfer through the building element from in-situ measurements (according to
Section 2.2), and an error model of the discrepancies between the observed and predicted time series
(i.e., the residuals). Either the internal heat flux data stream, the external one, or both simultaneously
(Equation (2)) can be optimised during model fitting [29].

Two different error models were implemented as alternative options. The first one adopts the
common assumption of white noise residuals ([38], Chapter 5.3). Confounding physical effects such as
unaccounted for environmental conditions including the impact of wind or driving rain may break the
assumption of independent and identically distributed (iid) residuals and may require averaging the
data over longer time steps (or other methods) to remove temporal correlation in the data. To resolve
this issue and retain use of all the granularity of the dataset and minimise the loss of dynamic
information, the second method uses the Bayesian framework to relax the strong assumption of iid
residuals by introducing a prior distribution on them to account for potential autocorrelation.

Independent and Identically Distributed Residuals

Under the iid assumption, the residuals of each data stream contributing to the fit (i.e., the heat
flux(es) in this application) can be modelled as an additive white Gaussian noise [29,38], and their
probability density function is a multivariate Gaussian distribution (N ) with zero mean and diagonal
covariance matrix Σε = σ2

Φ,ε In:

rε ∼ N
(

0n, σ2
Φ,ε In

)
, (5)

where rε is the vector of the residuals of each data stream ε contributing to the fitting, with elements
rp

ε =
(

Φp
e,ε −Φp

m,ε

)
(Φp

e,ε and Φp
m,ε are respectively the estimates from the lumped-thermal-mass model

and the in-situ measurement for each data stream at each time step; i.e., the estimated
{

Qp
e,in, Qp

e,out

}
and the observed

{
Qp

m,in, Qp
m,out

}
heat fluxes in this work); σ2

Φ,ε is the variance of an additive noise
term affecting each measured data stream(s) that accounts for all sources of uncertainties affecting the
observations (see Section 3.4 for the calculation of σ2

Φ,ε in the context of this work); In is an identity
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matrix of dimension n (i.e., the number of observations for each data stream). Therefore, the likelihood
can be expressed as:

P (r | θ, H) = ∏
ε∈E

1[√
2πσ2

Φ,ε

]n exp

[
−1

2 ∑
i

r2
ε,i

σ2
Φ,ε

]
= ∏

ε∈E
(2π)−

n
2 |Σε|−

1
2 exp

(
−1

2
rT

ε Σ−1
ε rε

)
, (6)

where E is the set of data streams optimised.

Discrete Cosine Transform

Applying the Bayesian framework, the iid assumption of the residuals for each data stream can
be relaxed by assuming that their probability density function is a multivariate Gaussian distribution
with zero mean and unknown covariance matrix Σε accounting for correlation between observations.
Given the temporal structure of the residuals, it is reasonable to assume that the random process
generating rε is weakly stationary (i.e., the covariance between any two residuals only depends on
the time elapsed between the two observations). Since the covariance matrix of a weakly stationary
discrete-time random process is a symmetric Toeplitz matrix, this distinctive structure can be accounted
for in the analysis by imposing a prior distribution on the unknown covariance matrix Σε.

The covariance matrix of a weakly stationary discrete-time random process can be asymptotically
diagonalised by the application of a discrete cosine transform (DCT) [39,40], representing a finite signal
as a sum of cosine functions at different frequencies. Expressing the DCT as a matrix multiplication
with the ortho-normal DCT basis matrix D, the decorrelation property of the DCT can be stated as:

rε ∼ N (0n, Σε) with Σε = DTΞεD , (7)

where Ξε is a diagonal matrix. Replacing Ξε from Equation (7) in Equation (6), the likelihood of the
residuals can be rewritten in terms of the matrix Ξε and its diagonal elements. Placing a prior on Ξε

indirectly places a prior on Σε that accounts for the desired asymptotic Toeplitz structure, which is
typical of stationary signals. The likelihood function can therefore be calculated by marginalising
out the unknown covariance matrix Σε (defined in Equation (7)). Specifically, a bounded and tapered
inverse gamma distribution P(ξ) ∝ ξ−α−1e−β/ξ(1− ξδ) for ξ ∈ (0, δ−1) was placed on each diagonal
element ξi,i of Ξε [30].

2.3.2. Prior Probability Distributions on the Parameters of the Model

Prior information, introduced through the Bayesian method, may be used to reduce the number of
observations needed to estimate the thermophysical properties of in-situ building elements compared
to methods that do not include such information (e.g., the maximum likelihood method). This may
extend the survey period to non-winter seasons, as it may reduce the required duration of monitoring
campaigns, which can minimise the disruption for the occupants, meet the tight timescales of building
constructions, and provide a method to investigate the time variance of estimated thermophysical
properties due to environmental changes.

Both uniform and non-uniform (i.e., log-normal) priors on the parameters and the estimates
(e.g., the U-value) of the model were implemented [30]; Section 3.2 discusses the definition of the
priors used in this paper for the case studies analysed. To avoid imposing a correlation structure
of the parameters (which may not be known a priori), the priors were assumed independent
(i.e., P (θ | H) = ∏j P

(
θj | H

)
). However, this choice does not prevent the model from the identification

of correlations in the estimates, should the data support it.
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Uniform Priors

Uniform priors were adopted when limited initial knowledge about the parameters of the model
was available:

P
(
θj | H

)
=
(
∆Lj

)−1 , (8)

where ∆Lj is the width of the prior on the j-th parameter. Care was taken to ensure that any reasonable
value the parameters may assume was included in the uniform prior range.

Log-Normal Priors

Log-normal priors were adopted when more information on the parameters (or the estimates) of
the model were available. Log-normal priors were selected in this application, as their distribution
over the positive reals reflects the strictly positive property of the parameters such as the thermal
resistance and the effective thermal mass of the element; this requirement is also satisfied for the initial
temperature of the effective thermal mass(es) once the temperature observations are transformed
from degrees Celsius to Kelvin. The log-normal scale also provides a more realistic description of the
knowledge on the degree of magnitude of the random variable (i.e., the parameter) compared to a
linear scale [41] as, for example, it assigns equal probability to values smaller than half the median and
to those larger twice the median. Another advantage of selecting log-normal priors is represented by
the distinctive property that imposing a log-normal distribution on a parameter implicitly implies a
log-normal prior on its inverse (which is not necessarily true for other families of distributions). This is
particularly interesting in this application given that building elements may be either modelled in
terms of thermal resistance or thermal conductance.

A non-canonical parametrisation of the location parameter of the log-normal distribution ([34],
Chapter 23) was adopted, where the median of the distribution of each parameter

(
Lθj

)
was used

instead of the commonly used mean of the natural logarithm of the distribution of the parameters:

P
(
θj | H

)
=

1√
2π θjDθj

exp

− ln2
(

θj/Lθj

)
2D2

θj

 , (9)

where Lθj and Dθj are respectively a measure of location and dispersion of the log-normal distribution
of the j-th parameter, based on prior knowledge. The use of the median instead of the mean is a more
robust measure of location (e.g., to outliers) in case the prior distribution of the parameters is estimated
from observations. Additionally, it allows the model and the corresponding location parameter to
have the same units, easing the interpretation of results.

2.4. Model Selection and Validation

The six criteria for model selection and validation identified by Norlén [42] (as cited by
Jiménez et al. [11]) were considered in this work. In particular, simplicity was tested using Bayesian
model comparison (Section 2.4.1) to identify the simplest theory explaining the heat transfer through
the building element in light of the observations; internal validity was investigated by means
of cross-validation techniques (Section 2.4.2) to ensure that the performance of the best model
is generalisable to new data, trustable, and replicable ([43], Chapter 7). Tests on the residuals
(e.g., autocorrelation function or cumulated periodogram ([38], Chapter 6.6)) were not required
after the model-fitting process, as the DCT likelihood allows the model to account for potential
autocorrelation of the residuals.
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2.4.1. Model Comparison

The odds ratio ([34], Chapter 28) (incorporating the Occam’s razor principle, or principle
of parsimony) was used to compare the plausibility of different models fitted to their optimal
parameters [6,29]:

P (H1 | y)
P (H2 | y)

=
P (y | H1)P (H1)

P (y | H2)P (H2)
, (10)

where H1, H2 are the models to be compared; P (H1 | y), P (H2 | y) are the posterior probability
distribution of each model; P (y | H1), P (y | H2) are the evidence of each model (whose ratio is known
as “Bayes factor”); P (H1), P (H2) are the priors of each model (in case one of the two models is known
to be more probable than the other). Depending on the optimisation framework adopted (i.e., MAP or
MCMC), different methods were used to marginalise over the parameters and calculate the evidence.

For MAP estimation, the evidence of each model was calculated by marginalising over the
parameters and approximating the integral by means of the Laplace method [29,34]:

P (y | H) ≈ P (y | θMAPH)P (θMAP | H) [det (2πA)]1/2 , (11)

where P (y | θMAPH) is the best-fit likelihood (i.e., the likelihood calculated for θopt ≡ θMAP);
P (θMAP | H) [det (2πA)]1/2 is the Occam’s factor, where P (θMAP | H) is the prior probability and
[det (2πA)]1/2 is a coefficient depending on the curvature of the posterior probability distribution
around the global optimum.

For the MCMC approach, the evidence was calculated from the posterior density function
at each step of the chain [30]. An estimator of the evidence was defined based on the reciprocal
importance sampling method, which uses samples of the unnormalised posterior generated during
model fitting [44]. Specifically, the estimator of the evidence was calculated as:

Ẑ =

{
1
m ∑

θ∈B

1/v
h (θ | y)

}−1

, (12)

where m is the number of samples used to define the estimator; B is an ellipsoid centred at the
MAP with shape factor according to the Hessian and radius so as to contain only the points with
unnormalised posterior greater than half the value at the mode; v is the volume of the ellipsoid
containing the samples from the unnormalised posterior; h (θ | y) is the unnormalised posterior of the
parameters at each time step of the chain.

2.4.2. Cross-Validation

The best model selected was validated to test its predictive performance ([43], Chapter 7) on an
independent data set to that used for model fitting. Cross-validation analysis (e.g., k-fold) is generally
difficult to perform in time series analyses and intrinsically ordered data, due to the requirement of
independence of the test and training sets. In the context of this research, an additional difficulty in
performing cross-validation arises from the fact that the initial temperature of the thermal mass is one
of the parameters of the model, and consequently the initial part of the time series cannot be used for
testing purposes.

A revised k-fold cross-validation method is proposed to account for the aforementioned
limitations. The requirement of independence of the training and test sets was mitigated by subdividing
the time series into 24-h-long folds (under the assumption that autocorrelation is negligible after a
full-day period), and leaving out the training set one fold before and one fold after the test set
(as a buffer). Additionally, to obviate the issue with the estimation of the initial temperature of the
thermal mass, the whole time series was used in the simulation phase but only the training set was
used for optimisation purposes (i.e., parameters were estimated maximising the posterior probability
on the training set only). Once the best-set parameters were identified, the cross-validation prediction
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error (i.e., the mean square root error of the residuals) was estimated on the test-set fold only. To enable
the estimation of the initial temperature of the thermal mass, the first fold was never used as a test set.

3. Experimental Data Collection and Analysis

The case studies used to test the dynamic method are presented below. This is followed by a
discussion on the definition of priors, the stabilisation criteria applied, and the uncertainties and
systematic errors associated with the measurement campaigns in the context of this study.

3.1. Case Studies

Two case-study buildings of solid brick and cavity wall construction were used to test the
performance of the dynamic grey-box method presented. The solid brick element (SWall) constituted
the external north-west-facing wall of a detached office building in central London, UK (Figure 3).
The office was occupied during the data collection and no control of the heating pattern was imposed
as part of the experiment, to reflect the real use of the space. The wall was (370± 7) mm thick in
total, and consisted of a (20± 5) mm layer of plaster (expected to be lime) on the inside followed
by (350± 5) mm of exposed solid brick masonry. Pairs of heat flux plates (HFPs) [45] and type-T
thermocouples were installed in-line with each other on opposite sides of the wall (refer to [29] for
full details on the fixing method). The data were collected using a Campbell Scientific CR1000 [46]
datalogger, averaging 5-s samples over 5-min intervals.

Figure 3. Internal (left) and external (right) view of the solid brick wall (SWall) case study. Circled in
blue are the pair of sensors analysed.

Two walls of nominal full-fill cavity construction (one east-facing, CWall_E, and one north-facing,
CWall_N) were monitored on a 1970s detached house in Cambridgeshire, UK (Figure 4). The dwelling
was unoccupied during the monitoring period and the indoor ambient was constantly heated by
means of the incumbent heating system, with a set-point temperature of 20 ◦C. The CWall_E wall
was (283± 10) mm thick while the CWall_N was (275± 10) mm. Detailed visual inspection showed
that the walls were made of (from the inside) a layer of plaster ((10± 5) mm), followed by a layer of
aerated concrete blocks ((100± 5) mm), a cavity originally fully filled with insulation (likely to be urea
formaldehyde foam; the insulating material was assumed both from visual inspection and the year of
installation (1979) reported on an original certificate of the post-built cavity-insulation intervention),
and a layer of exposed brick ((100± 5) mm). Visual inspection suggested that the insulation layer may
have shrunk inside the cavity, and the thermal resistance of the walls is expected to have been decreased
accordingly. Pairs of HFPs [45] and thermistors (both measuring surface and air temperature) were
mounted on the two walls, and a pyranometer [47] was fixed on the CWall_E to record the incident
vertical solar radiation. Data were sampled every 5 s and averaged over 5-min intervals using Eltek
451/L and 851/L dataloggers [48] for the HFPs and thermistors, while an Eltek RX250AL logger [49]
sampling every 30 s and averaging over 5-min intervals was used for the pyranometer.
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Figure 4. Internal (left) view of the north- and east-facing walls (with the north-facing one on the left
side of the corner), external north-facing wall (middle), and external east-facing wall (right) for the
cavity wall (CWall) case study. The pair of sensors analysed are circled in blue.

3.2. Definition of Priors

Log-normal priors on the parameters of the model were defined for the solid wall, while uniform
priors were used for the cavity walls due to unavailability of readily available distributions in the
literature for the thermophysical properties of some of the materials constituting this structure.
Although it would be in principle possible to build the missing distributions by collecting a large sample
of tabulated thermophysical properties for the relevant materials, this possibility was excluded due
to potential theoretical issues. Since the source of tabulated values is generally omitted, the merged
data may end up accounting as independent pieces of information that actually come from the
same source (i.e., redundant dataset) and be affected by higher uncertainties [50]. For this reason,
the thermophysical property distributions in [51] were not used in this work, as the data set in [52]
used to extrapolate them did not investigate the redundancy (and consequently the reliability) of the
sources [50].

Uniform Prior Distributions on the Parameters of the Model

Large uniform priors were adopted for the CWall_N and CWall_E to cover all physically
plausible properties and reduce the possibility of selecting ranges that exclude rare but possible
events. The thermal resistances ranged in [0.01, 4.00] m2 K W−1, the effective thermal mass(es) ranged
in
[
0.1, 2.0× 106] J m−2 K−1, and their initial temperature between [−5, 40] ◦C.

Log-Normal Prior Distributions on the Parameters of the Model

Log-normal priors were defined for the SWall as follows. For the R-values and effective thermal
mass(es), the location and dispersion of the log-normal prior distributions were calculated from the
mean and standard deviation of the normal distributions in [50] for the thermophysical properties of
the materials constituting the wall. For the initial temperatures of the thermal mass(es), the location of
the log-normal priors for each month were defined from the hourly air temperature observations in
the test reference year for London [53], while the dispersion was chosen to cover a range of reasonable
values for this application.

Since all the thermophysical parameters involved are a function of two (or more) measured
quantities (i.e., the R-value and effective thermal mass are calculated from the thermophysical
properties of each layer as the SWall is a multi-layer element, while the initial temperature of the
thermal mass is calculated aggregating hourly air temperature observations over one-month periods),
the mean and variance of the resulting Gaussian distributions can be determined according to linear
propagation of error theory [54]. Assuming that in first approximation the measurements taken to
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build the distribution of the thermophysical properties are independent, the mean (µy) and variance
(vy) of the combined function of interest can be computed as:

µy = E [y (x1, . . . , xn)] ≈ y (µx1 , . . . , µxn) , vy = E
(
y− µy

)2 ≈
n

∑
i=1

(
∂y
∂xi

)2
vxi , (13)

where µy is the mean of the combined distribution of the measured quantities xi, and vy is its variance.
The location (ln LY) and dispersion (DY) of the log-normal prior can be then obtained as:

DY =

√√√√ln

(
1 +

vy

µ2
y

)
, ln LY = ln µy −

1
2

D2
Y . (14)

In this work, the mean and variance of the R-value (R) and effective thermal mass(es) (κ) for the
multi-layer element are calculated applying Equation (13) to their definitions:

R =
n

∑
i=1

di
λi

, κ =
n

∑
i=1

(diρici) , (15)

where for each layer i: di is its thickness; λi its thermal conductivity; ρi its density; ci its specific
heat capacity.

The estimators of the log-normal distribution of the lumped thermophysical parameters were
identified by fixing the position of the effective thermal mass(es) first, according to the effective
thickness method described in the EN ISO 13786 ([55], Appendix A) Standard. Once the thermal
mass(es) were fixed, the Gaussian mean and variance of each lumped parameter (and consequently
the location and dispersion of the log-normal distributions) were calculated accounting for the
thermophysical properties of the material(s) contributing to it. Similarly, the location and dispersion of
the air temperature for the month when the monitoring campaign started was calculated as a proxy
for the log-normal prior(s) on the initial temperature of the thermal mass.

3.3. Stabilisation Criteria and Monitoring Campaign Length

The appropriate length of monitoring campaigns was determined to ensure that the parameters
estimated are robust and representative of the actual thermophysical behaviour of the case study.
Two contrasting requirements have to be balanced, as the time series needs to be sufficiently long to
ensure that the estimates have small variability, but short enough to ensure that the assumption
of a unique model to explain the data (i.e., constant parameters over the monitoring period)
holds [56]. Practically, short monitoring campaigns are preferable to minimise inconvenience to
the occupants, ease the integration of in-situ monitoring within building practices (e.g., for compliance
and certification purposes), and constrain survey costs.

The concept of “stabilisation” is used below to refer to the identification of the minimum number
of observations that must be analysed to obtain robust estimates [30,56]. The stabilisation time
is the duration after which the parameter estimate is considered representative of the long-term
estimate. Parameter estimates therefore avoid overfitting data to noise, while the supplement of new
observations does not enhance the parameter prediction significantly; the values stabilise around a
final value.

A number of stabilisation criteria are listed in the ISO 9869-1 ([18], p. 9) Standard to
ensure that the assumptions underlying steady-state approaches hold for the period surveyed.
Conversely, no standardised criteria are available (to the authors knowledge) for dynamic methods.
Therefore, the criteria in [18] were imposed as a conservative approach to determine also the length of
the time series to be analysed with the dynamic framework, although the test may be too conservative
in this case [30].
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To evaluate the performance of the dynamic method and test its ability to overcome the limitations
of the incumbent method (discussed in Section 1), the stabilisation criteria were also applied to
long-term monitoring campaigns to extract shorter time series replicating the case where surveys were
performed at different times of the year (referred to as “hypothetical monitoring campaigns” [56]).
Specifically, each time series started one week apart and lasted until the stabilisation criteria were
met [56] according to the following scenarios. The first scenario fixed the survey length according to
the minimum number of days required by the AM to stabilise, and used the time series so obtained to
compare the performance of the average and dynamic method (using different lumped-thermal-mass
models) in terms of parameter estimates and Bayesian model comparison. The second scenario fixed
the length of each hypothetical monitoring campaign according to the number of days required by
each method to stabilise. This approach investigated the ability of the dynamic method to shorten the
survey period while ensuring robust estimates.

3.4. Quantification of Uncertainties on in-Situ Observations

The analysis of measured data requires the identification of all quantifiable sources of uncertainties
affecting the observation to estimate how these combine and propagate to the analysis estimates.
Within the dynamic method, the combination of the uncertainties affecting all data streams involved in
the optimisation phase is required to define the additive noise term for the calculation of the likelihood
function and consequently the evidence (Sections 2.3.1 and 2.4.1), while the combination of all data
streams involved in the analysis (i.e., both simulation and optimisation phase) is needed for the
quantification of the systematic measurement error affecting the estimates of the model (Section 3.5).

Several sources of measurement error on the heat flux and temperature observations were
identified [57] for the experimental analysis performed, based on the declared accuracy of monitoring
equipment [45,46,48,49] and the quantification of errors listed in the incumbent Standard for in-situ
measurements ([18], p. 13). Specifically, a 5% error was applied to account for the effect of random
variations caused by imperfect thermal contact between the sensor and the wall, and a 3% error to
account for modification of the isotherms due to the presence of the HFP. The 10% error caused by
variations of the temperatures and heat flow over time was only considered for the AM analysis
because the dynamic method characterises such variations through the thermal mass(es), while the 5%
error accounting for temperature variations within the space and differences between radiant and air
temperature ([18], p.13) was omitted owing to the use of surface temperature measurements [29].

As the measurement errors above were considered independent (in line with expectations), these
were combined in quadrature sum. The additive noise term in the likelihood function and the evidence
was calculated considering the errors affecting the heat flux measurement, as these were the only data
streams optimised in the parameter inference phase (Section 2.3). Although in principle the errors
affecting temperature observations should also be considered during optimisation, our assumption is
not uncommon [11,12,22] and is supported by the BS ISO 9869-1 [18] Standard, where the errors on heat
flux measurements were identified as the main source of errors on the estimates. Measurement errors
on all data streams (i.e., heat flux and temperature observations) were considered for the estimation of
the systematic measurement error (Section 3.5).

3.5. Quantification of Systematic Measurement Errors

A method for the quantification of the systematic measurement error affecting the estimates
of the thermophysical parameters obtained with the dynamic method was developed to reflect
its mathematical description of heat transfer [56]. Since the dynamic analysis calculates the
interior-to-exterior temperature difference at each time step instead of averaging them over the
monitoring period (like the AM), its error estimates are smaller and more robust, even in periods
where the average temperature differences are close to zero or present considerable diurnal swings.
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The relative systematic error on the U-value estimation for the average method can be calculated
as a first-order Taylor expansion of the U-value definition:

σU

U
=

√√√√σ2
Qm

Q2
m

+
σ2

T,ε

(Tint − Text)
2 , (16)

where σQm , σT,ε are the systematic measurement errors on the observed heat flux and temperature
data streams, respectively (characterised according to Section 3.4). Conversely, a similar approach
cannot be used for dynamic methods, where the thermophysical parameters are estimated by
means of optimisation techniques minimising a given cost function (e.g., Equation (4)). In this case,
the systematic measurement error on the thermophysical estimates can be quantified analysing the
global optimum of the unnormalised posterior probability distribution. According to the rules for error
propagation, the absolute systematic measurement error on the U-value can be formally expressed
as [56]:

σU =

√
∑

ε

(
dUopt

dyε
σε

)2

=

√√√√∑
ε

(
− 1

R2
tot,opt

∇T
f

dθopt

dyε
σε

)2

, (17)

where Rtot,opt is the total R-value of the element; σε is the systematic measurement error on each data
stream (characterised according to Section 3.4).

4. Results and Discussion

The three walls presented in Section 3.1 were used to investigate the performance and robustness
of the dynamic models and Bayesian analysis under different conditions. Firstly (Section 4.1), it was
tested according to current best practice for in-situ measurement (i.e., on north-facing elements
exposed to a high temperature difference, preferably above 10 ◦C [58]). The analysis was then extended
to warmer seasons, initially for the two north-facing walls (Section 4.2) and subsequently for the
east-facing one (Section 4.3).

4.1. Thermophysical Performance of North-Facing Walls Exposed to High Temperature Differences

The thermophysical properties of the two north-facing walls (SWall and CWall_N) were estimated
according to both the average and dynamic (with the 1TM (1HF), 1TM (2HF), and 2TM models)
methods using surface temperature data, and compared to the expected values from literature
calculations (refer to [30] for details on the calculation of literature U-values). MCMC sampling
was adopted as the optimisation framework; the mean of each parameter distribution was also
calculated to ease the comparison of the results from the dynamic analysis with those from the AM and
the literature. These results were cross-checked against those derived using MAP parameter estimation
and were within the statistical error estimates.

4.1.1. Thermophysical Performance of the Solid Wall

Three full days of data (between 29 November and 4 December 2014, starting at 16:30 [59]) were
required by the AM to meet the stabilisation criteria for the SWall. This is the shortest possible
stabilisation time within the ISO 9869-1 ([18], p. 9) Standard (Section 3.3) and reflects the good
conditions for such monitoring, with stable weather conditions and an average temperature difference
between the two sides of the wall of 9.6 ◦C (the “average temperature difference between the two
sides of the element” will be referred to as “average temperature difference” in the following for
conciseness). The U-values obtained from in-situ measurements were 1.69± 0.25 W m−2 K−1 with
the AM, 1.75± 0.18 W m−2 K−1 for the 1TM (1HF) model, 1.72± 0.16 W m−2 K−1 for the 1TM (2 HF)
model, and 1.69± 0.16 W m−2 K−1 for the 2TM model. All values were within the margin of systematic
measurement error (statistical error is significantly lower and not quoted here for clarity; see Table 1).
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A summary of the thermophysical parameter estimates and the expected values from literature
calculation is reported in Table 1. The R-values and U-value estimates for the average and dynamic
methods fell within the ranges calculated from the literature, while the internal and external effective
thermal mass estimates obtained from the 2TM model were comparable with the calculation using
tabulated values.

Table 1. Thermophysical properties for the SWall for the average (AM) and dynamic (using the 1TM
(1HF), 1TM (2HF), and the 2TM models) method. Only the statistical error is shown, and the number
of significant figures was chosen to illustrate the level of the error.

Parameters Literature AM 1TM (1 HF) 1TM (2 HF) 2TM Units

R1 0.071± 0.001 0.075± 0.001 0.075± 0.001 m2 K W−1

R2 0.344± 0.002 0.350± 0.003 0.314± 0.003 m2 K W−1

R3 0.044± 0.002 m2 K W−1

C1 [1.08, 1.80]× 105 2.25± 0.05× 105 2.28± 0.06× 105 2.24± 0.04× 105 J m−2 K−1

C2 [1.01, 1.92]× 105 0.56± 0.03× 105 J m−2 K−1

T0
C1

18.24± 0.05 18.27± 0.06 18.21± 0.06 ◦C
T0

C2
12.66± 0.08 ◦C

R-value [0.29, 0.73] 0.42 0.415± 0.001 0.425± 0.002 0.433± 0.002 m2 K W−1

U-value [1.11, 2.16] 1.69 1.747± 0.007 1.717± 0.012 1.694± 0.011 W m−2 K−1

The full distribution of the thermophysical parameters of the 2TM model is shown in Figure 5.
The corner plot shows a negative relationship among the thermal resistance estimates, as the principal
axis of the contours representing the posterior probability distribution are rotated with respect to the
Cartesian axes [60]. This suggests that the model derived a constant total R-value (and consequently
U-value) of the wall, while the relative magnitude of each lumped thermal resistance could vary
(e.g., a decrease in R1 tended to be compensated for by an increase in R2). Such relationships
may be used to provide valuable insight into the thermal structure of the element; here the solid
wall construction strongly constrains the total thermal mass and resistance, whilst the comparable
thermophysical properties of the materials in the wall only weakly constrain the position of two
effective thermal masses in thermal resistance space [60].

Model selection was performed to investigate the relative plausibility of the 1TM (2HF) and 2TM
models fitted to their most probable parameters. The 2TM model was identified as that more likely
to describe the underlying physical process (the natural logarithm of the odds ratio was −7633 in
favour of the 2TM model). Cross-validation was performed on the best model to ensure that it was also
robust, generalisable, and replicable [43]. Figure 6 shows the measured and cross-validated time series,
with an initial one day of training data (Section 2.4.2). The modelled and observed data match well,
although the survey only lasted for three days. This result shows that the model was able to estimate
the heat flux accurately on out-of-sample data using only one full day of training data.
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Figure 5. Corner plot of the distribution of the thermophysical properties of the SWall using the 2TM
model. The turquoise crossed lines indicate the maximum a posteriori (MAP) estimation used as
starting point for the Markov chain Monte Carlo (MCMC) walk.
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Figure 6. Measured and cross-validated (using the 2TM model) heat flux time series for the SWall.
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4.1.2. Thermophysical Performance of the Cavity Wall

Seven full days of data (between 12 and 19 March 2015, starting at 14:00 [61]) were required by
the AM to meet the stabilisation criteria for the cavity wall (CWall_N), and the average temperature
difference was 10.0 ◦C. A summary of the thermophysical parameter estimates and the expected values
from literature calculation is reported in Table 2. The U-value estimates from in-situ measurements
(0.61± 0.08 W m−2 K−1 for the AM, 0.63± 0.06 W m−2 K−1 for the 1TM (1HF), 0.61± 0.04 W m−2 K−1

for the 1TM (2HF), and 0.63± 0.05 W m−2 K−1 for the 2TM model) were all comparable but higher
than the range of calculated values from literature. This is expected following visual inspection of an
adjacent cross-section of the wall that indicated significant shrinkage of the insulation (Section 3.1).
The internal and external effective thermal masses estimated with the 2TM model were in good
agreement with the literature values. Specifically, the internal effective thermal mass was within the
literature range, while the external one was slightly lower.

The full distribution of the thermophysical parameters of the 2TM model is shown in Figure 7.
Unlike the SWall case study, no correlation is apparent between the lumped thermal resistances,
as the principal axes of the contours representing the posterior probability distribution are not rotated
with respect to the Cartesian axes [60]. Specifically, the model found the thermal resistances to be
independent of each other, and consequently their position in thermal resistance space is not correlated.
This can be interpreted in light of the known physical structure of the wall: the distinct thermophysical
properties of the constituent materials (i.e., a layer of aerated solid brick and a layer of aerated blocks
separated by a layer of insulation) is reflected in the model solution, which identified two thermal
masses that are constrained in thermal resistance space, and not correlated to each other.

Table 2. Thermophysical properties for the CWall_N for the average (AM) and dynamic (using the
1TM (1HF), 1TM (2HF), and the 2TM models) method. Only the statistical error is shown, and the
number of significant figures was chosen to illustrate the level of the error.

Parameters Literature AM 1TM (1 HF) 1TM (2 HF) 2TM Units

R1 0.066± 0.001 1.411± 0.004 0.067± 0.001 m2 K W−1

R2 1.361± 0.007 0.062± 0.001 1.299± 0.008 m2 K W−1

R3 0.061± 0.001 m2 K W−1

C1 [0.51, 0.90]× 105 0.82± 0.01× 105 0.94± 0.01× 105 0.80± 0.01× 105 J m−2 K−1

C2 [0.96, 2.08]× 105 0.92± 0.01 J m−2 K−1

T0
C1

17.56± 0.03 11.39± 0.05 17.52± 0.03 ◦C
T0

C2
11.41± 0.05 ◦C

R-value [2.36, 3.01] 1.47 1.427± 0.007 1.473± 0.004 1.427± 0.008 m2 K W−1

U-value [0.32, 0.40] 0.61 0.631± 0.003 0.613± 0.002 0.631± 0.004 W m−2 K−1

Similarly to the SWall, model comparison favoured the 2TM as the most representative of the
heat transfer observed in-situ; the natural logarithm of the odds ratio was −7694. Cross-validation
for the best model showed a good match between the measured and estimated time series (Figure 8),
suggesting that the 2TM model is appropriate in this case and able to provide robust, generalisable,
and replicable estimates.
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Figure 7. Corner plot of the distribution of the thermophysical properties of the CWall_N using the
2TM model. The turquoise crossed lines indicate the maximum a posteriori (MAP) estimation used as
starting point for the Markov chain Monte Carlo (MCMC) walk.
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Figure 8. Measured and cross-validated (using the 2TM model) heat flux time series for the CWall_N.



Energies 2018, 11, 802 19 of 27

4.2. Reducing the Required Monitoring Length and Temperature Difference

Two key limitations of the incumbent method for estimating the in-situ thermal performance of
building elements were discussed in Section 1: the length of monitoring campaign, and the requirement
for a high average internal-to-external temperature difference during the surveyed period. The ability
of the dynamic grey-box method presented here to overcome these limitations is explored in this
section using long-term time series collected over different seasons and a hypothetical monitoring
campaign approach (described in Section 3.3).

In-situ measurements starting on 2 November 2013 and ending on 29 November 2014 were used
for the SWall [59]; two weeks of data (between 16 and 30 May 2014) were excluded due to repeated
missing data for the internal thermocouple. The monitoring period spanned between 12 March 2015
and 30 August 2015 for the CWall_N [61]. Initially, hypothetical monitoring campaigns whose length
were determined according to the minimum number of days required by the AM to stabilise were
extracted from the long-term time series. This allowed both model comparison of the different thermal
mass models at different times of the year, and the estimation of the thermophysical properties of the
two walls according to the AM (Section 3.3). Then, the hypothetical monitoring campaign approach
was applied to extract the data according to the minimum number of days required by the best model
to stabilise. This allowed the investigation of the potential of the dynamic method to shorten the
monitoring period while ensuring reliable and robust estimates.

For the hypothetical monitoring campaigns determined according to the AM, 52 out of the 55
possible for the SWall met the stabilisation criteria in ([18], p. 9), while all 24 did so for the CWall_N.
Model comparison selected the 2TM model as the best one at all times of the year for both walls,
and all possible hypothetical monitoring campaigns stabilised for this model (for conciseness, in the
following the estimates obtained from the hypothetical monitoring campaigns determined according
to the minimum number of days required by the AM to stabilise will be referred to as AM estimates;
similarly, for the dynamic method using the 2TM model). Figure 9 shows that for both walls the
dynamic method generally considerably reduced the length of the monitoring period compared to
the AM, especially during the warmer months. The number of days required by the 2TM model to
stabilise spanned between 3 and 20 days for the SWall, and in the range of 3 to 30 days for the AM.
For the three hypothetical monitoring campaigns where the AM did not meet the ISO 9869-1 Standard
criteria (in grey in Figure 9), the minimum duration of either the number of days before missing data
or a 30-day limit were considered. For the CWall_N, the 2TM model required between 3 and 8 days to
stabilise, while 3 to 28 days of observations were needed for the AM. Note that a minimum of three
full days is required by the ISO 9869-1 ([18], p. 9) Standard, although this may potentially overestimate
the minimum number of observations needed for the dynamic method to stabilise (Section 3.3) [30].

Figure 9. Difference between the length of the hypothetical monitoring campaign required by
the 2TM model and the average method to stabilise for the SWall (left) and the CWall_N (right).
The crosses mark a period of missing data, while the grey bars indicate the periods where only the
2TM model stabilised.
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Table 3 shows a summary of the U-value estimates and the associated relative systematic
measurement errors obtained from the 2TM model and the AM across the hypothetical monitoring
campaigns. For both case studies, the mean U-value obtained using the dynamic method and
shorter time series was comparable to the AM estimates and within the margin of the systematic
measurement error, although the variability of the dynamic U-value estimates was considerably
reduced. The 2TM model also decreased both the mean (by 25% for the SWall and by 33% for the
CWall_N) and the standard deviation of the relative systematic error estimates compared to the
AM (Table 3). Besides summary statistics, it is interesting to investigate whether for each pair of
hypothetical monitoring campaigns (i.e., surveys starting on the same day and lasting until both the
2TM model and the AM stabilised) the use of a different amount of observations affects the final
U-value estimates. Figure 10 illustrates that the probability density of the relative discrepancy between
U-values estimated with the two methods was generally smaller than ± 5% in both case studies.

Table 3. Minimum, maximum, mean, and standard deviation of U-value and relative systematic
measurement error estimates for the SWall and the CWall_N, using the average and dynamic
(2TM model) method and hypothetical monitoring campaigns of different length.

Method Min Max Mean St Dev Units

SWall

AM 1.28 1.92 1.71 0.14 W m−2 K
AM error 14 50 22 8 %

2TM 1.43 1.87 1.72 0.08 W m−2 K
2TM error 8 32 15 6 %

CWall_N

AM 0.59 1.00 0.71 0.08 W m−2 K
AM error 13 21 16 3 %

2TM 0.64 0.82 0.70 0.05 W m−2 K
2TM error 7 14 10 2 %

Figure 10. Kernel density estimation of the relative discrepancy between the U-value estimates from
the 2TM model and average method, for the SWall (solid line) and the CWall_N (dashed line).

To investigate the robustness of the two methods to changes of the boundary conditions to
which the elements are exposed, the U-value estimates from the average and dynamic methods were
compared as a function of the coefficient of variation of the temperature differences observed during
each hypothetical monitoring campaign (Figure 11); differences in campaign length correspond to
differences in the stabilisation time. The coefficient of variation enumerates the variability of the
temperature differences observed in relation to their mean, providing insight into the impact of the
changeability of the conditions upon U-value estimation and error (the “coefficient of variation
of the temperature differences” will be referred to as “coefficient of variation” in the following
for conciseness). Figure 11 shows that U-value estimates generally presented a higher dispersion
around their mean as the coefficient of variation increased, in line with increases in the estimated
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relative systematic error. The dynamic method provides more robust estimates both in terms of
U-value and associated relative systematic measurement error, even for periods where large daily
swings or small average temperatures may have occurred (i.e., high coefficient of variation values).
Similarly, the modelled thermal mass distribution within the walls did not generally vary considerably
throughout the measurement campaigns.

Figure 11. U-value and relative systematic measurement error estimates for the 2TM model
(black x-crosses) and average method (grey crosses) as a function of the coefficient of variation of
the temperature differences, for the SWall (top) and CWall_N (bottom).

4.3. Thermophysical Performance of an East-Facing Wall

An additional limitation of the incumbent monitoring method is the requirement to undertake
in-situ measurements on north-facing elements in order to avoid the dynamic effects of direct solar
radiation. Given the ability of the dynamic method to deal with periods of low average temperature
difference and high variability of the conditions (shown in the previous section), the analysis was
extended to an east-facing element (CWall_E).

As the 2TM model was found to perform well in conditions with high coefficients of variation
and low indoor-to-outdoor temperature differences (Section 4.2), it was also adopted for this analysis.
The relative performance of a model explicitly including solar radiation as an additional source of heat
(2TM_sun) was compared to that without (2TM) (Section 2.2, Figure 2), given the expected higher solar
radiation on an east-facing wall than on a north-facing one. Similarly to the case above for north-facing
walls, hypothetical monitoring campaigns of equal length and determined according to the minimum
number of days required by the AM to stabilise using surface temperature measurements were adopted
for this purpose.

In-situ measurements starting on 16 April 2015 and lasting until 30 August 2015 were analysed [62];
about two weeks of air temperature data (between 30 April and 15 May 2015) were excluded due
to repeated missing data. Of the 19 possible hypothetical monitoring campaigns, only 13 met
the stabilisation criteria according to the AM. Model comparison selected the one using surface
temperatures as the best in all cases compared to the one using air temperatures and incident solar
radiation as an additional heat source in the system. The result suggests that surface temperature
measurements were already able to account for solar radiation, and that the additional parameter of
the 2TM_sun model did not improve the fit enough to justify the extra complexity.
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The hypothetical monitoring campaign approach was subsequently adopted to investigate the
minimum number of days required by the best 2TM model to stabilise at different times of the year,
and the robustness of the parameter estimates. Of all possible hypothetical monitoring campaigns,
only two did not stabilise according to the ISO 9869-1 ([18], p. 9) Standard criteria. The monitoring
length was comparable to the commonly accepted duration of winter-time monitoring campaigns
using steady-state approaches on north-facing walls, spanning between 3 and 22 days. A larger number
of days was required in June and July.

A summary of the U-value and relative systematic error estimates obtained across hypothetical
monitoring campaigns is shown in Table 4. The estimates are within the margin of error of those
obtained for the CWall_N (U-value: (0.70± 0.05) W m−2 K; relative systematic measurement error:
(10± 2)%, Table 3) for hypothetical monitoring campaigns performed during the same period the
CWall_E was surveyed (i.e., hypothetical monitoring campaigns starting on the same day and
running until each had stabilised using the 2TM model). Although the values are not directly
comparable (e.g., due to the slightly different thickness of the walls, and potential differences in
boundary conditions and moisture content), the result suggests that the 2TM model may be able
to extend the analysis to characterise the performance of building elements subject to direct solar
radiation, even in the summer, while providing robust thermophysical estimates.

Table 4. Minimum, maximum, mean, and standard deviation of U-value and relative systematic
measurement error estimates for the CWall_E, using the 2TM model and hypothetical monitoring
campaigns of different length.

Model Min Max Mean St Dev Units

2TM 0.68 0.92 0.77 0.05 W m−2 K−1

2TM error 5 37 16 9 %

To investigate the robustness of the estimates to highly variable boundary conditions, the U-value
and the relative systematic measurement error estimates were analysed as a function of the coefficient
of variation of both the temperature differences and the average diurnal solar radiation (Figure 12).
The “average diurnal solar radiation” (referred to as “incident solar radiation” in the following for
conciseness) was calculated using a 5 W m−2 threshold, corresponding to the pyranometer’s zero
offset [47]—i.e., the amplitude of spurious readings observable even in the absence of solar radiation
caused by temperature changes. Neither the coefficient of variation of the temperature differences nor
the incident solar radiation exhibit a clear correlation with the U-value estimates, whilst the systematic
error exhibits no clear relationship with the coefficient of variation of the incident solar radiation,
but as expected becomes more variable and larger as the coefficient of variation of the temperature
differences decreases.
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Figure 12. U-value and relative systematic measurement error estimates for the 2TM model as a
function of the coefficient of variation of both the temperature differences (top) and the incident solar
radiation (bottom) for the CWall_E.

5. Conclusions

A Bayesian grey-box dynamic method for the estimation of the thermophysical properties of
building elements from in-situ-measurements was presented, and its performance was tested on walls
of different construction and orientation monitored long-term. The Bayesian framework facilitated
the inclusion of several features in the analysis that can improve both the robustness of estimates
and the potential physical insights from interpreting the results. Firstly, the dynamic heat transfer
through the structure was characterised by combining in-situ measured data and prior knowledge
of the thermophysical properties of the elements surveyed by means of uniform and log-normal
priors. Secondly, the probability distribution of the parameter estimates obtained from Markov chain
Monte Carlo sampling provided useful insights into the thermal structure of the element in light of its
actual stratigraphy. Thirdly, a discrete-cosine-transform-based prior on the residuals of the model was
included in the likelihood function to account for their potential autocorrelation, obviating the common
strong assumption of independent and identically distributed residuals. Finally, model comparison
and cross-validation techniques allowed the identification of the best model of heat transfer among
several, and tested its ability to generalise to out-of-sample data sets.

The robustness and performance of the Bayesian grey-box dynamic method was initially tested
according to best practice. Two north-facing walls exposed to a high average temperature difference
were analysed with the commonly used quasi-static average method (AM) [18] and the dynamic
method using lumped-thermal-mass models of different complexity. The estimates obtained from the
two methods were comparable, and in line with those expected from the literature and visual inspection
of the case studies. Model comparison selected a model with two lumped effective thermal masses
and three lumped thermal resistances (2TM model) as the most representative of the measurements.

The proposed dynamic method was tested to investigate its ability to overcome key limitations of the
steady-state methods generally adopted for the analysis of in-situ measurements. Specifically, the dynamic
method’s performance was tested for reducing the length of the monitoring period compared to the
steady-state approach and extending the external conditions from which data may be successfully
analysed. The number of days required by the 2TM model to produce a stable U-value estimate
(according to the criteria in [18]) was generally lower than the AM. The 2TM model was also able
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to meet the stabilisation criteria in cases where the AM did not do so within a thirty day period.
The dynamic method performed well in periods with low internal-to-external temperature gradients
and when large daily swings in external temperature were apparent, with little variation in U-values
and considerably lower systematic error than the average method. This performance extended to
periods with significant direct solar radiation. Bayesian model comparison selected the 2TM model
using surface temperatures above that with solar radiation explicitly included as an additional heat
source, suggesting that surface temperature measurements were already accounting for solar radiation.

The 2TM model of the dynamic method, with MCMC sampling, provided useful insights into the
thermophysical structure of the elements surveyed by interpretation of the probability distributions of
the parameters. Specifically, covariance was observed between the three thermal resistances estimated
for the 2TM model of a solid wall (with constant total resistance), while no covariance was observed
for a cavity wall, highlighting the different thermal characteristics of a wall with relatively continuous
properties (loose internal constraints) to one comprising layers of distinct properties (strong internal
constraints). This feature of the method may be useful for the characterisation of thermal elements of
unknown structure (such as some historic walls), and could be developed with additional thermal
models for specific applications in the future.

The Bayesian grey-box dynamic method presented and the analysis undertaken show its potential
to shorten the length of the required monitoring period compared to the incumbent steady-state
method, while also decreasing the systematic error on U-value estimates. The dynamic method
performed well at all times of the year, including times when the element was exposed to high incident
solar radiation. A rapid and robust method to characterise the thermophysical structure of buildings
may have a wide range of applications as a tool for diagnosis and performance evaluation (e.g., tailored
retrofitting interventions, quality assurance, energy performance guarantee) and open new regulatory
and business opportunities towards closing the performance gap.
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