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Abstract: The optimal location and sizing of distributed generation is a suitable option for
improving the operation of electric systems. This paper proposes a parallel implementation of
the Population-Based Incremental Learning (PBIL) algorithm to locate distributed generators (DGs),
and the use of Particle Swarm Optimization (PSO) to define the size those devices. The resulting
method is a master-slave hybrid approach based on both the parallel PBIL (PPBIL) algorithm and
the PSO, which reduces the computation time in comparison with other techniques commonly used
to address this problem. Moreover, the new hybrid method also reduces the active power losses
and improves the nodal voltage profiles. In order to verify the performance of the new method,
test systems with 33 and 69 buses are implemented in Matlab, using Matpower, for evaluating
multiple cases. Finally, the proposed method is contrasted with the Loss Sensitivity Factor (LSF),
a Genetic Algorithm (GA) and a Parallel Monte-Carlo algorithm. The results demonstrate that the
proposed PPBIL-PSO method provides the best balance between processing time, voltage profiles
and reduction of power losses.

Keywords: distribution system (DS); optimization techniques; PBIL algorithm; PSO algorithm;
distributed generation; parallel processing

1. Introduction

In recent years, grid operators have been forced by new regulations and incentives imposed
by grid regulators to improve the operating conditions of their electrical grids, such as power
losses, voltage profiles, line loadability and harmonic distortion index [1]. For this reason, several
works have been carried out to improve the technical conditions of electrical grids with the lowest
investment possible [2]. Some of those solutions include the reconfiguration of the Distribution
System (DS) [3], the installation of capacitor banks [4], implementation of solid-state synchronous
compensators [5], installation of voltage regulators [6], integration of energy storage systems [7] and
the installation of Distributed Generators (DGs) [8]. In particular, the integration of DGs into an
electrical grid is, nowadays, strongly discussed because it enables the combination of conventional
and non-conventional (renewable) energy sources.

The installation of DGs in a DS has been extensively discussed in literature [2,9,10].
Moreover, those works have also discussed the improvements provided by DSs into the technical
criteria of the grid and, as additional product, the reduction of the pollution caused by oil-based
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generation [11,12]: reduction of power losses (due to transmission), improvement of voltage profiles
and stability index, power factor enhancement, reduction of the harmonic distortion and increased line
loadability, among others [13]. However, incorrect location or sizing procedures may result in voltage
profiles out of conventional ranges, voltage fluctuations, line capacity violation, increased failure levels
due to intermittent generation and higher costs associated to the DGs [14].

Different methods have been developed to optimize the location and sizing of DGs.
Those methods are aimed at reducing the computation time required and to improve the technical
criteria of the grid, such as power losses, voltage profiles and power factor, among others [15,16].
For example, the work reported in [17] presents a hybrid method between the genetic algorithm
proposed by Chu and Beasley (GACB) [18] and a heuristic approach to locate, select and size the
feeders in a distributed generation environment. Such a strategy enables the reduction of the costs
associated with the feeders (DGs) and the power losses, which is achieved by reducing the peak load
using active power injection based on diesel-based DGs only. On the other hand, the work reported
in [19] describes a multi-target approach based on the Particle Swarm Optimization (PSO) technique
for locating the DGs, and an optimal flow analysis for sizing the DGs. That work considers several
generators and different load models, thus enabling high penetration levels of distributed generation.

A similar approach was presented in [20], which is a hybrid solution based on both the GACB and
PSO. The main drawbacks of such a solution were the high level of power injection requested to the DGs
and the lack of analysis of the computation time required by the proposed method. Another solution,
based on the Loss Sensitivity Factor (LSF) for location and the Bacterial Foraging Optimization
Algorithm (BFOA) for sizing was introduced in [21]. The adoption of a heuristic technique for the
generator location ensured a reduced computation burden in comparison with previous solutions,
however, the solution space is not optimally explored, and hence the method could be trapped into
a local optima. Another application of the PSO algorithm in a DGs location process was reported
in [22]. In that work the authors propose a modified PSO algorithm to locate photovoltaic generators
and capacitors in a grid, applying an additional Monte Carlo algorithm to define the generators size,
hence, its main objective is to reduce the power losses and to improve the voltage profiles.

Other optimization techniques have been used to design DGs systems. For example, the work
reported in [23] proposes a hybrid method based on the Ant Colony Optimization (ACO) and Artificial
Bee Colony (ABC) techniques to integrate renewable energy sources into the grid. In that work the
objective functions of the optimization problem were defined to reduce the power losses, to improve
the voltage profiles and to reduce the pollution. However, the work does not provide an analysis of
the computation time required by the algorithm, which is a key factor to identify the computational
cost of the proposed method [15]. Similarly, an algorithm based on Chaotic Symbiotic Organism
Search (CSOS) for the location and sizing of DGs is presented in [24]. The main drawback of this
solution is the exponential increment of the computation time when the exploration space is expanded.
Finally, the adoption of the Ant Lion Optimization Algorithm (ALOA) for integrating wind and
photovoltaic generators into the grid was reported in [25]. That solution is based on a sensitivity
indicator for locating the devices, which enables the method to reduce the power losses and improve
the voltage stability profiles by injecting power profiles close to the slack node without DGs.

The previous state-of-the-art reveals that integrating DGs into the DS requires the solution of two
main problems: a binary decision problem focused on the DGs location (installing, or not, generators
at the system buses) and a continuous problem focused on the DGs size (amount of power to be
injected by the generators). Several of the methods adopted to define the DGs size do not limit
the maximum power injected by the DGs, which often enables injection levels close to the power
generated by the Slack node [19,20,25]. This is inadequate because large generators require high
economic investments and large areas to be installed. Besides, the intermittence in generation caused
by renewable energy sources limits the injection levels of the DGs, which leads to the use of batteries
and conventional energy sources. Moreover, most of the proposed strategies exhibit computation
time that increase exponentially as the solution space expands [20,21], hence some of those methods
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are applicable to small solution spaces only. It is worth noting that, in recent years, most researchers
have focused their efforts on providing solutions to the DGs sizing problem and, in many cases,
have addressed the location problem using sensitivity indicators [21,25]. Evolutionary algorithms
have been also used to face this problem [22,23] due to the satisfactory results given by this type of
optimization techniques in non-convex mixed-integer nonlinear problems [26], which is the type of
problem describing the location of DGs in DS [27]. However, such an approach becomes ineffective
as the distribution systems grow because, as the solution space expands and the complexity of the
problem increases, the computation time becomes longer and the possibility of falling into a local
optima increases, which, in most cases, fails to provide a good solution for the system.

This paper provides a hybrid solution based on a Parallel implementation of the Population-Based
Incremental Learning (PBIL) algorithm and the Particle Swarm Optimization (PSO) algorithm for both
locating and sizing problems, respectively. The Parallel Population-Based Incremental Learning (PPBIL)
is based on the traditional PBIL algorithm [28], which belongs to the family of Estimation of Distribution
Algorithms (EDAs) [29,30]. The PBIL algorithm uses probabilities to find the set of elements providing
the best impact on the problem, modifying the learning rate to control the exploration of the solution
space and the processing time of the algorithm. Additionally, this technique presents simplicity
in terms of memory consumption and computational complexity [31]. Those characteristics have
been exploited in sensor networks, power system controller and Multiprocessor-System-On-Chip
design, among others [32–34], to achieve satisfactory results. The previous problems exhibit similar
mathematical formulation and problem codification in comparison with the DGs location, hence this
paper proposes the PBIL algorithm as a starting point for developing a more efficient solution.

The algorithm adopted to define the location of DGs must explore a solution space that increases
with the size of the system. Moreover, such an algorithm must execute a large amount of power flow
analyses to find a good solution, hence a time-efficient approach is required [35]. Therefore, to extend
the exploration of the solution space using the PBIL algorithm, without significantly increasing the
processing time, this paper proposes a parallel implementation of the PBIL (PPBIL). The resulting
PPBIL solution provides short convergence times and satisfactory grid performance.

On the other hand, the PSO has been extensively used in literature [20,22,36] to address the DGs
sizing problem. The mathematical model, adopted in this paper, to represent the sizing problem is
based on a weighted single-objective function designed to minimize both active power losses and
voltage square error, however such a model also includes a penalty to control the penetration level of
the DGs into the DS.

The effectiveness of the PPBIL was evaluated with respect to the Genetic Algorithm (GA) [20] and
LSF [21], which are techniques commonly used in the location of DGs [25,37]. Moreover, the PPBIL
performance was contrasted with the parallel implementation of the Monte-Carlo (PMC) algorithm
presented in [38], which is applied to the location and sizing of DGs. To provide a fair comparison,
the same PSO sizing technique was used to support all the location algorithms. The tests consider
three cases: installation of one, two or three DGs into 33 and 69 bus test systems; in all the cases the
main generator remains located at the slack node. Finally, the simulation tests were carried out on
Matlab using the Matpower tool to run the load flows.

The rest of the paper is organized as follow. Section 2 presents the formulation of the problem for
the optimal location and sizing of DGs. Then, Section 3 describes the PBIL algorithm and Section 4
introduces the parallel PBIL (PPBIL) solution used to locate the DGs. Section 5 summarizes the
proposed method for optimal location and sizing of DGs into a DS, which is validated using the
simulations presented in Section 6. Finally, the conclusions given in Section 7 close the paper.

2. Problem Formulation

This section is devoted to the formulation of the problem of locating and sizing DGs. This process
is first addressed by defining the objective function, then the set of restrictions associated to the
problem are discussed.
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2.1. Optimal Location and Sizing of DGs

The problem is formulated with a weighted single-objective function that combines the objectives
of reducing active power losses and improving the voltage profiles by reducing the voltage square
error, along with a penalty for limiting the maximum level of penetration of the DGs into the DS.
Those criteria were selected on the basis of classic operating restrictions of distribution grids (power
balance and operating limits) [20].

The adopted single-objective function is a standard representation commonly used to improve
the two principal technical aspects of the electrical power systems [16,20,21,25], the only difference
being the limitation of the DGs penetration. Therefore, this type of objective-function is in agreement
with the approaches traditionally used for the locating and sizing of DGs in DS [39,40], which enables
a fair comparison with other published solutions.

The objective function Z to be minimized in this application is presented in Equation (1), which
depends on two weights (w1, w2) used to normalize the functions f1 and f2 at the same units of the
active power injection limit (PenGen).

Z = w1 f1 + w2 f2 + PenGen (1)

The function f1 represents the active power losses in the DS (2), while the function f2 is the square
error in the voltage profiles of the system in Equation (3). In those expressions Vi and Vj denote the
bus voltages at nodes i and j, Vbase represents the base voltage of the system, θij is the angle between
voltages Vi and Vj, gij is the conductance between nodes i and j, and ΩB is the set of all the branches
of the system [41].

f1 = ∑
ij∈ ΩB

(Vi
2 + Vj

2 − 2ViVjCos(θij))gij (2)

f2 =
n

∑
i∈ΩN

(Vi −Vbase)
2 (3)

Finally, Equation (4) presents the expression used to define PenGen, which affects the objective
function when the DGs maximum penetration limit is violated. In expression (4), Pgi represents the
power generated at bus i by the DGs, PgMax is the maximum level of active power allowed to be
injected into the system by the DGs, and FSGen is a normalization factor for the penalty.

PenGen =

((
∑

i∈ΩN

Pgi

)
− PgMax

)
× FSGen (4)

2.2. Constraints

In order to define the set of restrictions, all the parameters in the system are presented in Figure 1.
The diagram represents the DS composed of the output (i) and input (j) buses, the parameters of the
line (Rij, Xij) and a load assigned to the input bus (j).

� ��
� ��
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� � 	 
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 � � � 
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Figure 1. Simplified single-line diagram of the Distribution System (DS).
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The set of constraints is presented by Equations (5) to (9). The constraints (5) and (6) represent the
bus balance of active and reactive power in the system, respectively. In such expressions Qgi is the
reactive power injected into bus i, Pdi and Qdi are the active and reactive power demanded at bus i, δi
and δj represent the voltage angles at buses i and j, and Yij is the admittance of the line ij.

Pgi − Pdi −Vi ∑
j∈ΩN

VjYijcos(δi − δj + θij) = 0 ∀i ∈ ΩN (5)

Qgi −Qdi −Vi ∑
j∈ΩN

VjYij sin(δi − δj + θij) = 0 ∀i ∈ ΩN (6)

Equations (7) and (8) represent the limits of bus voltage and current capacity of the system feeders.
In those equations Vi

max and Vi
min are the maximum and minimum limits of the nodal voltage in the

system, iij is the current of the line ij, and imax
ij is the maximum current limit allowed in that line.

Vi
min ≤ Vi ≤ Vi

max ∀i ∈ ΩN (7)∣∣iij∣∣ ≤ iijmax ∀i ∈ ΩN (8)

Finally, the restriction (9) models the capacity limits of the DGs. Such a restriction enables the
solution of the model without considering generators outside of those ranges. In expression (9), Pgi

max

and Pgi
min correspond to the maximum and minimum limits of active power injection allowed for the

DGs, which constrain the injection levels (penetration) of the DGs.

Pgi
min ≤ Pgi ≤ Pgi

max ∀i ∈ ΩN (9)

3. Overview of Population-Based Incremental Learning (PBIL)

The PBIL algorithm [28] belongs to the family of EDAs, which have been successfully applied
to combinatorial optimization problems [42–44], which is the type of problem this paper is facing.
Instead of using the classic genetic operators, the EDAs implement automatic learning techniques
to estimate a probability distribution associated with the best solution presented by the population,
and such a probabilistic model is used to create new candidate solutions [45]. Moreover, the control
of the learning rate in each iteration enable to modify the size of the solution space to be explored
affecting the processing time [46].

This optimization technique is based on a matrix arrangement that represents all the solution space
and stores the probabilities of occurrence of the best solutions to the problem. Such a matrix, known as
probability matrix (P), is used to generate the population of individuals, from which the best option
should be selected by the objective function. Subsequently, P is updated at each iteration. The main
feature of the PBIL algorithm concerns the ability to control the solution space and convergence times
by manipulating the learning rate (LR) and the stopping criterion [47]. According to the requirements
of the problem, it is possible to select the type (linear, exponential, sigmoidal and bell-shaped) and
the maximum and minimum limits of the LR. As stopping criterion, the PBIL algorithm adopts
the entropy (E), which is responsible for indicating how disperse the data in the probability matrix
are. The entropy can be selected to expand the search space, since a small tolerance value forces the
algorithm to extend its exploration. The following is a simple and practical way of implementing the
PBIL algorithm:

Step 1. Assign initial conditions: First, the algorithm is set with the initial conditions to carry
out the iterative process. The following is a description of each condition.

• Population size (N): Number of individuals generated at each iterative cycle of the algorithm.
This number depends on the size of the solution space and the desired evaluation spectrum.
Then, the initial population is randomly constructed.
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• Initial probability: Provides the probability matrix for the initial parameters. In this step the
same probability 1/m is assigned to each element to be considered in the solution of the problem,
providing in this way a fair initial condition. For the binary case discussed here, the initial
probability is 0.5 since there are only two options (locate or not a generator in the node).

• Learning rate (LR) type and maximum-minimum limits: LR can be defined in multiple forms,
e.g., linear, exponential, sigmoidal and bell-shaped. The assignment of minimum and maximum
limits in the range (0–1) enable to control the convergence time and the size of the solution space
to be explored [47].

• Stopping criterion (ETOL): Defines the stopping condition of the algorithm. For this purpose,
an assigned entropy tolerance is in charge of ending the iterative process, i.e., when the entropy
reaches that value the algorithm stops. The search intensity of the algorithm depends on the
selection of this tolerance; a small tolerance will result in a wider exploration of the solution space.

Step 2. Initialize the probability matrix (P): To construct the probability matrix, the total number
of elements to be considered in the solution defines the number of columns (n) of P, as it is depicted
in Figure 2. The number of rows of P corresponds to the number of options (m) available for each
element. Therefore, each element of P represents the probability of selecting a given option (row) for
each element (column). For a binary case there are only two options (m = 2), hence each element
could be considered, or not, to be present into the problem solution. Instead, for a problem in which
more options are available for each individual the value of m will be different [34].

� �� �� �

� �� �� �

� �� �� �

� �� �� �

������������

������������
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 � �
 �� �

���
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Figure 2. Probability matrix [P].

At the beginning of the iterative process, all the probabilities are set to the same value (1/m)

to enable the exploration of the complete solution space. Moreover, the probability matrix must to
satisfy constraint of Equation (10), in which P(j,k) is the probability of the option j to be selected for the
element h. Therefore, the expression (10) ensures that the sum of all the probabilities of a given option
is equal to 1, i.e., avoiding an accumulative probability higher that 100 %.

m

∑
j=1

P(j,h) = 1 ∀ 1 ≤ h ≤ n (10)

Step 3. Generate the population according to the probability matrix: At each iteration of the
algorithm, a new population of N individuals is generated based on the information stored in matrix
P. The goal is to create a new population that incorporates the probability of each option into each
element of the solution.

Step 4. Evaluate the objective function for the new population: Each individual in the
population is evaluated using the objective function of the problem, storing the resulting value
in a vector of N size. Such a vector is used to compare the optimality of the individuals.

Step 5. Select the best individual in the population: Based on the comparison of objective
function values for all the individuals in the population, the fittest individual presenting the most
appropriate solution is selected. The lowest value is selected when a minimization problem is being
addressed; in the case of a maximization problem, it is selected the highest one.
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Step 6. Update the probability matrix based on the knowledge about the best individual and
learning rate: Based on the information provided by the selected solution, the P values are updated.
This increases the probability of occurrence of the element presented in the selected solution and,
consequently, reduces the probability of the other possible solutions [34,47]. The latter is achieved by
applying the updating processes described by Equations (11) and (12) to the probability matrix.

P(i,j)Act
= P(i,j)Old

+
(

1− P(i,j)Old

)
× LR (11)

P(i,j)New
=

 P(i,j)Act
i f i = k(

1− P(i,j)Act

)
×

P(i,j)Old
1−P(i,j)Old

i f i 6= k
(12)

In the previous equations P(i,j)Act
is the update of the probability of position (i, j); P(i,j)New

is the
new value of the probability at position (i, j); and P(i,j)Old

is the non-updated probability of position
(i, j). The index k refers to the option associated with the best solution found for the element j.
As a result, the probability associated with row k increases and the probabilities of the other rows
decrease, thus maintaining the ratio given in Equation (10). The size of the probabilities incremented in
P depends on factor LR, which is updated at each iteration, thus enabling control of the convergence
rate of the PBIL algorithm.

Step 7. Calculate the learning rate (LR): The type and limits of the learning rate were selected
in Step 1. The calculation of the learning rate depends on the established limits and the entropy of
the probability matrix, as shown in Equation (13), which is a suitable function introduced in [47].
The selection of the limits depends on the convergence and desired computation times of the algorithm,
since it affects the updating of the probability matrix as previously reported in Equation (11).

LR = LRmax −
LRmax − LRmin

1 + e−10×(En−0.5)
(13)

Step 8. Calculate entropy (E): This is a measure of how distributed the values of P are, and it
must be updated at each iteration of the algorithm. The maximum value of E is 1, which indicates
that the probabilities in P are completely disperse; the minimum value of E is 0, which indicates that
the probability matrix converges to an optimal solution. Equation (14) describes the mathematical
formulation to calculate the entropy, which has been normalized to obtain the previously described
range [47]. E < ETOL was implemented as the stopping criterion of the iterative process of the
PBIL algorithm.

E =

−
m
∑

i=1

n−1
∑

j=1
P(i,j) × log

[
P(i,j)

]
n

(14)

Steps 9. Select and evaluate the solution based on matrix P: When the PBIL algorithm
converges, it provides the probability matrix with the information about the solution exhibiting
the best conditions. Hence, the best solution is obtained by means of the selection and evaluation of
the individual based on P.

Finally, Figure 3 presents the flowchart of the PBIL algorithm, which illustrates the iterative
process and each step of the algorithm.
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Figure 3. Flowchart of the Population-Based Incremental Learning (PBIL) algorithm.

4. Parallel PBIL Algorithm (PPBIL)

Nowadays, engineers must to take advantage of the processors and graphics cards parallel
capability to extract the higher value possible from those devices [48,49]. Moreover, parallel processing
devices also enable us to significantly decrease the calculation time needed by optimization techniques,
such as the PBIL algorithm. The parallelization of the PBIL algorithm takes place in the evaluation of
each individual of the population, i.e., Step 4 of the PBIL algorithm. Such a step was selected since
that is the stage requiring higher computational effort. Moreover, the variation of the population size
depends on the problem being solved, thus enabling evaluation of different individuals in parallel will
shorten the computation time with respect to the serial PBIL implementation.

The parallelization limit is defined by the number of workers (W) available in the processor.
This is why, when the number of individuals of the population (N) is selected, the equipment to be
used should be carefully analyzed, so that the number of individuals is not higher than the number
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of workers. Otherwise, the computation times would increase, approximately, the number of times
such a value is exceeded. When each individual is analyzed by a worker, as a result, the population
is analyzed in groups of up to W. In addition, the number of iterations (B) for evaluating all the
individuals of the population is calculated as B = N/W. Therefore, with the use of parallel processing,
the number of iterations to evaluate the population is significantly reduced in comparison with the
traditional (serial) implementation. The flowchart presented in Figure 4 shows the PPBIL algorithm,
in which the parallelization only affects the evaluation of the objective function of different individuals
in the population, the rest of the algorithm is the same of the serial PBIL.
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Figure 4. Flowchart of the Parallel PBIL (PPBIL) algorithm.
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5. Sizing and Location of DGs Using PPBIL-PSO

In order to develop the strategy for optimal location and sizing of DGs, the mathematical model
described in Section 2 is solved. This is achieved by adopting a master-slave approach between the
PPBIL and PSO algorithms as it is illustrated in Figure 5. For this application the PPBIL is assigned in
the master role, locating the generators, and the PSO algorithm [50] is the slave responsible for sizing
the generators and evaluating the objective function of the individuals in the population. Such a PSO
function was selected due to the satisfactory results reported in literature concerning the sizing of
DGs [8,20,22,36].
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Figure 5. PPBIL-Particle Swarm Optimization (PPBIL-PSO) master-slave approach.
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Both stages use a vector of (|ΩN | − 1) elements for their codification, except for the Slack node,
which is always occupied by the main generator of the grid. Moreover, a binary codification is used
for the location: if a position of the vector has a 1, it means that the associated generator is proposed
for installation, otherwise, it has a 0 (no installation of the generator). Figure 6 presents an example of
such a codification, in which generators are installed at buses 2, 4 and (|ΩN | − 1). In order to size the
DGs, it is necessary to propose a continuous codification that enables to assign the power values to be
injected by each generator. Such values should be within the allowed ranges of generation for each DG
(maximum and minimum values). Figure 6 presents an example of the sizing codification, in which
the maximum power allowed to be injected by the generators is 1.1 MW (assigned to bus 4) and the
minimum is 0 MW (assigned to buses 3 and (|ΩN | − 2)).

1 0 1 ……… 0 1

2 3 4 ……… IΩΝI-2 IΩΝI-1

(a)

0.93 0 1.1 ……… 0 0.14

2 3 4 ……… IΩΝI-2 IΩΝI-1

(b)

Figure 6. Configuration for locating and sizing Distributed Generators (DGs): (a) location of distributed
generation; (b) sizing of distributed generation.

6. Performance Evaluation and Practical Tests

To evaluate the performance of the proposed solution, test systems with 33 and 69 buses were
implemented [51] due to their widespread use as benchmarks for this problem [4,8,21,24,25]. Those test
systems exhibit high power losses levels and square error in the voltage profiles, providing two
different sizes for the solution space. Is worth noting that the test system with 69 buses was derived
from a portion of the Pacific Gas and Electric Company’s (PG&E) distribution system based in
California (USA) [52], hence it is considered as a mono-phase equivalent circuit of a real system.

In those test systems, all the buses, except for the Slack node, were considered as candidates
for DGs installation. Therefore, the probability matrix of the PPBIL algorithm used for locating the
DGs has two options: Option 1 indicates that a generator will be installed in the corresponding node,
while Option 2 indicates that the generator will not be installed in that node. Besides, the maximum
and minimum injection power limits for each generator were defined as 0 W and 1.2 MW, respectively.
Such values are selected following the case analyzed in [20], however those limits depend on the
application and power system under study [53].

The mathematical model described in Section 2 was implemented for both 33 and 69 bus systems.
In both test systems the aim is to reduce active power losses and voltage square error, also constraining
the level of penetration of the DGs. The weighting factors of the objective function (1) used for both
systems were (w1 = 0.1461) and (w2 = 0.2052), which have been tuned by successive iterations of the
method. Moreover, three test scenarios were implemented for each test system: the installation of 1,
2 and 3 DGs. In all cases, the maximum penetration allowed for distributed generation was 40% of
the power injected by the Slack node under non-distributed generation conditions. This limit was set
to control the level of penetration following the recommendation given in [54]. Therefore, the main
generator is always present at the Slack node.

To illustrate the effectiveness of the proposed method, a comparison was made with three
different strategies traditionally used to locate DGs. The first location strategy is the Loss Sensitive
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Factor (LSF) [21], which is a heuristic technique based on determining the most sensitive buses in the
system suitable to install the DGs. It starts with the bus that presents the worse scenario. Then, in the
descending order, it selects from this list the total number of generators to be installed. This method
presents relatively short computation times, but it can be trapped into a local optima. Finally, it is
worth noting that this method does not use any exhaustive or evolutionary process to move forward.
The second technique used for comparison purposes is the Genetic Algorithm (GA) [20], which is
a population-based metaheuristic method that allows for a quality solution by means of a process of
selection, recombination and mutation of the individuals [55–57]. The third strategy is the Monte-Carlo
method [38], which is a non-deterministic algorithm aimed at solving computational problems using
repeated random sampling of possible solutions. Those solutions are statistically analyzed to determine
the one with higher rate occurrence. In this algorithm the error decreases almost proportionally to
the number of iterations selected for the implementation. The work reported in [38] describes a PMC
algorithm designed to locate and size DGs, with the aims of reducing the power losses and providing
short computation times.

The four location approaches (LSF, GA, PMC and PPBIL) are supported by the same PSO for
the DGs sizing process. This strategy enables a fair comparison between those location techniques.
The parameters of the GA, PMC and PPBIL location algorithms are listed in Table 1, while the
parameters of the PSO sizing algorithm are listed in Table 2. It is worth noting that LSF is a sensitivity
indicator, hence it does not require initial conditions and optimization parameters as reported in [21,25].

Table 1. Parameters of location techniques.

Method Population Size Selection Method Rate Learning Mutation Stopping Criterion

GA 12 Tournament Cross over:
simple Binary simple Maximum generational

cycles (40)

PMC 12 Repeated random
sampling

- - - -
- - - -

- - - -
- - - -

Maximum iterations
(10)

PPBIL 12 Initial probability:
0.5

Sigmoidal
LRmin: 0.25,
LRmax: 0.50

Random
Population

Entropy:
(0.1)

Table 2. Parameters of the sizing technique.

Method Population Size Selection Method Rate Learning Mutation Stopping Criterion

PSO 30
Congnitive and

social component:
1.4

Speed (Max-Min)
(0.1–0.1)

Inertia (Max-Min)
(0.7–0.001)

R1 = R2:
Random

Maximum iterations:
(200)

The characteristics of the DGs sizing problem changes for every individual generated by the
location algorithms, hence the stopping criterion and the size of the population of particles of the
PSO algorithm were tuned by successive iterations: the GA/PSO, PMC/PSO and PBIL/PSO were
consecutively executed, modifying the maximum number of iterations of the PSO into the range
of (0–1000) and the size of population into (20–50). The best convergence rate was achieved for
a population size of 30 particles and a maximum number of iterations equal to 200 for all cases as it is
reported in Table 2.

The values of the stopping criterion for the GA and PBIL algorithms were obtained by evaluating
100 times each optimization technique. This process was performed using the 69 bus system because it
exhibits a larger solution space. Figure 7 reports the averaged number of iterations needed to reach
eight different values of entropy within the range of (0.025–0.2) in steps of 0.025: points A, B, C and
D corresponds to the objective function of the best individual. Point A is generated by the entropy
values 0.200, 0.175 and 0.150; point B is generated by the entropy values 0.0125 and 0.100; point C
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is generated by the entropy values 0.075 and 0.050; and point D is generated by the entropy value
0.025. Points C and D show that reducing the entropy does not necessarily produce a reduction of the
objective function value. Therefore, point B provides a satisfactory trade-off between the objective
function value and the number of iterations. Then, the entropy value select for this application is 0.100.
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Figure 7. Selection of the stopping criterion for the PBIL algorithm.

Figure 8 reports the average number of iterations and objective function values obtained after
running the GA 100 times. Those results put into evidence that generational cycles higher than 34 do
not improve the objective function value. Therefore, the stopping criterion for the GA was fixed at
40 generational cycles.
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Figure 8. Selection of the stopping criterion for the Genetic Algorithm (GA).

To provide a fair comparison between the PPBIL and the PMC, the maximum number of iterations
for both parallel algorithms must be the same. Hence, the stopping criteria of the PMC was set equal
to 10 iterations as reported in Figure 7 (point B). Under the previous considerations, the stopping
criteria for the GA, PBIL and PMC are equivalent: all the location algorithms have the opportunity
to execute an adequate exploration of the solution space, it taking into account the different nature
of the algorithms. Therefore, the parameters given in Table 1 enable a fair comparison between the
performance of those location algorithms.
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The algorithms were implemented in Matlab (2015a, MathWorks, Natick, MA, USA) using the
Matpower tool to evaluate the load flows. The simulations were carried out on a Dell Precision T7600
Worstation that enables to fragment the processor into 12 cores. The simulation results of the test cases
for both the 33 and 69 bus systems are summarized in Tables 3 and 4. Those tables present the average
reduction of both the power losses and voltage error, the average worse bus voltage profile and the
average processing time of each technique after 20 executions.

6.1. 33 Bus Test System

This test system is formed by 33 buses and 32 lines. The line diagram of this system is presented
in Figure 9, and the data of the line and bus demand were taken from [51]. This system has only one
(main) generator with a total active and reactive power demand of 3.72 MW and 2.3 MVAr, respectively,
and a voltage level of 12.66 kV. When the initial operating state of the system was analyzed, the power
losses were found to be 0.2110 MW and the voltage square error was 0.1338 p.u. Those values were
taken as reference to analyze the impact of the integration of DGs using the techniques under test.
The detailed information of the branches and power demanded by the buses for this test system is
reported in the Appendix A.1.
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 ����������

��

��
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Figure 9. Line diagram of the 33 bus system.

Table 3 reports the performance of the methods in the reduction of active power losses and
the improvement of voltage profiles for the three cases: installation of one, two or three DGs.
For comparison and analysis purposes, Table 3 presents the following information from left to right:
adopted method, location of the generators (buses), size of the generators (MW), power losses (MW),
reduction of active power losses compared to the reference case (Without DGs), voltage square error
(p.u.), reduction of the voltage square error compared to the reference case, worse bus voltage in the
system and, finally, processing time of the algorithm.

Figure 10 shows that PPBIL becomes the best solution as the exploration space grows. For Case 1,
The PPBIL algorithm presents a minimum reduction of active power losses equal to 38.62%, which is
the same obtained by the PMC, and just 1.69% lower than the best solution (GA). For Case 2, the PPBIL
algorithm presents the second best solution, with a reduction of 57.20%, i.e., 0.73% higher than GA
and 11.46% above LSF; in this case PMC is the best solution just by 0.03%. For Case 3, the PPBIL
provides the best solution, with a reduction of 56.60%, i.e., 0.03% and 0.11% higher than PMC and GA,
respectively, and 6.87% above LSF. Finally, it is noted that LSF provides a satisfactory performance
for a small solution space, but it is outperformed by the optimization techniques as the solution
space grows.
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Table 3. Results of optimal location and sizing of Distributed Generators (DGs) for the test system with
33 buses.

Method DG
Location

DG Size
(MW)

Plosses
(MW)

%Plosses
Reduction

Verror
(p.u)

%Verror
Reduction

Vworst
(p.u)

Processing
Time (s)

Without DGs —– —– 0.2110 —– 0.1338 —– 0.9037 —–

Case 1: Location of a single DG

LSF 6 1.2 0.1387 34.21 0.0803 39.94 0.9221 31.22

GA 12 1.2 0.1259 40.31 0.0426 68.15 0.9347 639.04

PMC 13 1.2 0.1294 38.62 0.0384 71.28 0.9347 674.79

PPBIL 13 1.2 0.1294 38.62 0.0384 71.28 0.9347 441.34

Case 2: Location of two DGs

LSF 6
28

0.4739
1.0964 0.1180 44.04 0.0598 55.27 0.9277 120.19

GA 16
32

0.7984
0.7719 0.0954 54.77 0.0254 80.99 0.9603 2972.95

PMC 15
30

0.7989
0.7714 0.0938 55.53 0.0275 79.44 0.9552 2073.12

PPBIL 14
32

0.8721
0.6982 0.0938 55.50 0.0258 80.70 0.9590 1654.34

Case 3: Location of three DGs

LSF
6

28
8

0.0001
0.6343
0.9355

0.1060 49.73 0.0472 64.66 0.9400 119.40

GA
14
30
32

0.3203
0.5258
0.2404

0.0917 56.49 0.0276 79.31 0.9572 4075.07

PMC
12
18
31

0.4993
0.3966
0.6744

0.0916 56.57 0.0266 80.08 0.9578 2154.28

PPBIL
12
15
31

0.4035
0.5245
0.6422

0.0915 56.60 0.0265 80.16 0.9570 1794.32

LSF GA PMC PPBIL LSF GA PMC PPBIL LSF GA PMC PPBIL
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Figure 10. Reduction of power losses in the test system with 33 buses.

Similarly, Figure 11 illustrates the impact of each method in the reduction of the voltage square
error. In all the test cases, LSF produced the lowest impact on the reduction of the voltage square error.
The PMC tied with the PPBIL in Case 1 for the best solution, but it is behind PPBIL in cases 2 and 3:
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in Case 2 PPBIL is superior by 1.26% and in Case 3 PPBIL provides an additional reduction of 0.08%.
The GA presents the best solution in Case 2, but it is behind PBIL in cases 1 and 3: in Case 1 PPBIL
provides a 3.13% higher reduction, and in Case 2 PPBIL is 0.85% better. Based on the previous results,
the PPBIL algorithm provides the best average results in terms of power losses reduction and voltage
profile improvement.
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Figure 11. Reduction of square error voltage in test system with the 33 buses.

The effectiveness of the PPBIL algorithm in reducing the computation time is illustrated in
Figure 12, which shows that PPBIL outperforms both PMC and GA in all the testing cases. It is
worth noting that a comparison with the LSF technique is not made because it does not contain an
iterative convergence process, which would make a comparison with the optimization techniques
unfair. The PPBIL presents a reduction in the computation time of: 30.94% with respect to GA and
34.60% with respect to PMC for Case 1, 44.35% with respect to GA and 20.20% with respect to PMC for
Case 2, and 55.97% with respect to GA and 16.71% with respect to PMC for Case 3. Therefore, the PPBIL
solution provides shorter processing times in all the cases.
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Figure 12. Processing time of the 33 bus test system: GA, PMC and PPBIL.

The techniques adopted in literature are traditionally aimed to force all the bus profiles to be
as close as possible to the nominal voltage (1 p.u.) [4]. Therefore, the PPBIL, PMC, GA and LSF
techniques must also comply such an objective. This is illustrated in Figure 13, which presents the
voltage profiles for Case 3, where those techniques introduce a positive impact on the voltage profiles.
Moreover, the figure also put into evidence that the PPBIL algorithm exhibits the best voltage profiles.
It is worth mentioning that Figure 13 is a classical representation of a power system that depicts the
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voltage profiles of the buses in the order defined by the line diagram of Figure 9. This is the reason
of the strong difference between the voltage profiles of buses 18 and 19: bus 19 is much closer to the
main generator (Slack node 1), therefore it exhibits a lower voltage error in comparison with bus 18,
which is at the end of the line diagram, i.e., it is subjected to larger distribution losses.
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PPBIL

Figure 13. Voltage profiles of the test system with 33 buses.

The voltage losses in each node depicted in Figure 13 depend on the distance of the bus to the
Slack node and on the power transmitted in the path leading to the node. Therefore, two nodes at
the same distance could exhibit different voltage losses. To illustrate better the impact of the DGs
designed by the solutions under tests, Figure 14 shows the voltage profiles of the test system with
the buses ordered from best to worst voltages without accounting for DGs. This means that, for the
reference case (without DG), the voltage profiles are always in descending order of voltage values.
Hence, buses 19 and 18 are in opposite sides of Figure 14, third position for bus 19 and last position
for bus 18.
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(0.6744)

PPBIL

(0.6422)

PPBIL

(0.5245)

  LSF

(0.6343)

  LSF

(0.9355)

Figure 14. Voltage profiles of test system with the 33 buses ordered from best to worst bus voltage
without accounting for DGs.
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Figure 14 confirms that buses located far from the Slack node, or in the path of a high power
demand (reported in Appendix A.1), exhibit higher voltage losses. Figure 14 also reports the voltage
profiles of the system accounting for the DGs designed by the four solutions under test, describing also
the buses in which the DGs have been located and the size of each generator. The figure puts into
evidence the improvement on the voltage profiles provided by each solution: the LSF is the technique
with the worst performance, while both PMC and GA exhibit improvement on the 93.94% of the
buses, finally PPBIL provides improvement on the 96.96% of the buses. Both parallel solutions (PPBIL
and PMC) outperform GA, where PMC improves 72.72% of the buses voltage with respect to GA,
and PPBIL improves 75.75% of the buses voltage also with respect to GA. Finally, PPBIL exhibits the
best performance, since such an algorithm improves 66.66% of the buses voltage with respect to PMC.

In conclusion, the PPBIL solution provides the best average voltage profiles, the lowest average
power losses and the shorter processing times for this test system.

6.2. 69 Bus Test System

This test system is formed by 69 buses and 68 lines following the line diagram presented in
Figure 15. The data about the line and bus demand for this example were taken from [51]. This system
includes only one generator with a total active and reactive power demand of 3.80 MW and 2.69 MVAr,
respectively, and a voltage level of 12.66 kV. The initial operating state of the system was analyzed to
find power losses equal to 0.2421 MW and a voltage square error equal to 0.1379 p.u. The detailed
information of the branches and power demanded by the buses for this test system is reported in the
Appendix A.2. Table 4 summarizes the results of applying all the methods under test to the same three
cases: installation of one, two or three DGs.
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Figure 15. Line diagram of the 69 bus test system.

Figure 16 shows the performance of those techniques in the reduction of power losses. In the figure
it is observed that, as the exploration space grows, the PPBIL becomes the best solution: this algorithm
presents a minimum reduction of active power losses of 55.33%, just 0.37% less than the best solution
for Case 1 (GA). Instead, for both Case 2 and Case 3 the PPBIL solution provides the best global solution,
e.g., 2.34% and 0.12% more than PMC and GA in Case 3, respectively. Moreover, PPBIL outperforms
LSF in the three cases. Finally, PPBIL is the best solution in terms of averaged power losses reduction.

The impact of each method on the reduction of the voltage square error is illustrated in Figure 17.
Again, the PPBIL provides the averaged best performance: its lowest reduction was produced in Case
1 (66.57%), while the highest reduction was produced in Case 3 (82.89%), being the best solution for
that case. In Case 2 the PPBIL was outperformed by the PMC in 1.93% and by the GA in 0.35%. Finally,
it is worth mentioning that the difference between PPBIL and LSF is noticeable in all cases.
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Table 4. Results of optimal location and sizing of DGs for the test system with 69 buses.

Method DG
Location

DG Size
(MW)

Plosses
(MW)

%Plosses
Reduction

Verror
(p.u)

%Verror
Reduction

Vworst
(p.u)

Processing
Time (s)

Without DGs —– —– 0.2421 —– 0.1379 —– 0.9028 —–

Case 1: Location of a single DG

LSF 57 1.2 0.1482 38.79 0.0682 50.52 0.9322 43.35

GA 61 1.2 0.1072 55.70 0.0474 65.61 0.9493 1253.97

PMC 64 1.2 0,1112 54.07 0,0434 68.50 0.9512 953.71

PPBIL 63 1.2 0.1081 55.33 0.0460 66.57 0.9512 696.06

Case 2: Location of two DGs

LSF 57
58

0.4531
1.2 0.1161 52.05 0.0416 69.80 0.9495 165.72

GA 6
62

0.4531
1.2 0.0915 62.20 0.0258 81.26 0.9512 4744.58

PMC 24
63

0.4531
1.2 0.0947 60.85 0.0281 79.57 0.9540 1878.36

PPBIL 61
65

1.2
0.4531 0.0889 63.25 0.0263 80.91 0.9681 1530.75

Case 3: Location of three DGs

LSF
57
58
61

0.0041
0.4490

1.2
0.0914 62.22 0.0308 77.66 0.9620 161.77

GA
53
61
66

0.0001
0.9184
0.7345

0.0872 63.95 0.0247 82.08 0.9681 7511.46

PMC
63
68
69

1.2
0.0577
0.3954

0.0926 61.73 0.0253 81.62 0.9681 2137.64

PPBIL
26
61
66

0.1789
1.0532
0.4209

0.0869 64.07 0.0245 82.89 0.9648 2028.91

LSF GA PMC PPBIL LSF GA PMC PPBIL LSF GA PMC PPBIL

R
ed

uc
tio

n 
of

 p
ow

er
 lo

ss
es

 (
%

)

0

10

20

30

40

50

60

70

Case 1
Case 2 Case 3

Figure 16. Reduction of power losses in the test system with 69 buses.

The effectiveness of the PPBIL algorithm in reducing the computation time for the 69 bus test
system is illustrated in Figure 18, which makes evident that PPBIL outperforms both PMC and GA
in all the cases. In particular, the PPBIL provides a reduction of the computation time in Case 1
equal to 27.02% in comparison with PMC, and equal to 44.49% in comparison with GA. For Case 2,
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the improvement of the PPBIL is equal to 18.51% (PMC) and 67.74% (GA), and for Case 3 the
improvement of the PPBIL is equal to 5.43% (PMC) and 72.99% (GA). Therefore, the proposed PPBIL
solution provides the shorter processing times.
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Figure 17. Reduction of voltage square error in the test system with 69 buses.
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Figure 18. Processing time of the 69 bus test system: GA, PMC and PPBIL.

Figure 19 presents the voltage profiles for Case 3. As in the previous test system, all the techniques
provide a positive impact on the operational aspects of the grid. However, the PPBIL algorithm
provides superior voltage profiles for a larger number of buses.

Following the same analysis discussed for the test system with 33 buses, Figure 20 presents the
voltage profiles of test system with the 69 buses ordered from best to worst bus voltage without
accounting for DGs (reference case). The figure shows that LSF improves the lowest impact on the
system voltages, while GA, PMC and PPBIL outperform LSF by 15.94%,15.94% and 82.60% of the
buses voltage, respectively. Similarly, the PMC and PPBIL outperform GA in 7.24% y 73.91% of the
buses voltage, respectively. Finally, the PPBIL solution improves the voltage profiles in the higher
number of buses in comparison with the PMC, 73.91% in this case. In conclusion, the PPBIL algorithm
is the one providing the best performance to the system in terms of voltage profiles.
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Figure 19. Voltage profiles of the test system with 69 buses.
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Figure 20. Voltage profiles of test system with the 69 buses ordered from best to worst bus voltage
without accounting for DGs.

7. Conclusions

This document has presented a parallelization of the PBIL algorithm, named PPBIL, to develop a
hybrid PPBIL-PSO method for optimal location and sizing of DGs in electrical systems. The performance
of the proposed method was evaluated with two test systems: 33 and 69 buses accounting for the
installation of 1, 2 or 3 generators. The new technique was compared with the LSF, GA and PMC
solutions, by using the same PSO for the sizing of the four location methods. Such a testing strategy has
demonstrated the robustness and efficiency of the method proposed in this paper.

To evaluate the impact of the proposed method, three criteria were analyzed: reduction of active
power losses, voltage square error and computation time. The results put into evidence that the PPBIL
provides the best balance between processing time, voltage profiles and reduction of power losses in
comparison with the PMC, GA and LSF solutions. In particular, the PPBIL provides shorter processing
times, which enables to explore large solution spaces within practical times. However, the computation
time of the PPBIL algorithm is closely related to the number of workers the processor can be fractionated
into. This can be addressed by adopting GPUs as processing units, which allow hundreds of processes
in parallel. Such an approach will reduce the convergence time and enable to expand the solution
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space by increasing the number of individuals in the population, thus making possible to find better
solutions to the problem under analysis.
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Appendix A. Data of the Test Systems

Appendix A.1. 33 Bus System

Table A1. Impedance and power of the 33 bus system.

Branch
Number

Sending
Bus

Receiving
Bus

Resistance
(Omega)

Reactance
(Omega)

Active Power
in Receiving Bus

(kW)

Ractive Power
in Receiving Bus

(kVAR)

1 1 2 0.0922 0.0477 100 60
2 2 3 0.4930 0.2511 90 40
3 3 4 0.3660 0.1864 120 80
4 4 5 0.3811 0.1941 60 30
5 5 6 0.819 0.7070 60 20
6 6 7 0.1872 0.6188 200 100
7 7 8 1.7114 1.2351 200 100
8 8 9 1.0300 0.7400 60 20
9 9 10 1.0400 0.7400 60 20

10 10 11 0.1966 0.0650 45 30
11 11 12 0.3744 0.1238 60 35
12 12 13 1.4680 1.1550 60 35
13 13 14 0.5416 0.7129 120 80
14 14 15 0.5910 0.5260 60 10
15 15 16 0.7463 0.5450 60 20
16 16 17 1.2890 1.7210 60 20
17 17 18 0.7320 0.5740 90 40
18 2 19 0.1640 0.1565 90 40
19 19 20 1.5042 1.3554 90 40
20 20 21 0.4095 0.4784 90 40
21 21 22 0.7089 0.9373 90 40
22 3 23 0.4512 0.3083 90 50
23 23 24 0.8980 0.7091 420 200
24 24 25 0.8960 0.7011 420 200
25 6 26 0.2030 0.1034 60 25
26 26 27 0.2842 0.1447 60 25
27 27 28 1.0590 0.9337 60 20
28 28 29 0.8042 0.7006 120 70
29 29 30 0.5075 0.2585 200 600
30 30 31 0.9744 0.9630 150 70
31 31 32 0.3105 0.3619 210 100
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Appendix A.2. 69 Bus System

Table A2. Impedance and power of the 66 bus system.

Branch
Number

Sending
Bus

Receiving
Bus

Resistance
(Omega)

Reactance
(Omega)

Active Power
in Receiving Bus

(kW)

Ractive Power
in Receiving Bus

(kVAR)

1 1 2 0.0005 0.0012 0 0
2 2 3 0.0005 0.0012 0 0
3 3 4 0.0015 0.0036 0 0
4 4 5 0.0215 0.0294 0 0
5 5 6 0.366 0.1864 2.6 2.2
6 6 7 0.3810 0.1941 40.4 30
7 7 8 0.0922 0.047 75 54
8 8 9 0.0493 0.0251 30 22
9 9 10 0.8190 0.2707 28 19

10 10 11 0.1872 0.0619 145 104
11 11 12 0.7114 0.2351 145 104
12 12 13 1.0300 0.3400 8 5
13 13 14 1.0440 0.3400 8 5
14 14 15 1.0580 0.3496 0 0
15 15 16 0.1966 0.0650 45 30
16 16 17 0.3744 0.1238 60 35
17 17 18 0.0047 0.0016 60 35
18 18 19 0.3276 0.1083 0 0
19 19 20 0.2106 0.0690 1 0.6
20 20 21 0.3416 0.1129 114 81
21 21 22 0.0140 0.0046 5 3.5
22 22 23 0.1591 0.0526 0 0
23 23 24 0.3463 0.1145 28 20
24 24 25 0.7488 0.2475 0 0
25 25 26 0.3089 0.1021 14 10
26 26 27 0.1732 0.0572 14 10
27 3 28 0.0044 0.0108 26 18.6
28 28 29 0.0640 0.1565 26 18.6
29 29 30 0.3978 0.1315 0 0
30 30 31 0.0702 0.0232 0 0
31 31 32 0.3510 0.1160 0 0
32 32 33 0.8390 0.2816 10 10
33 33 34 1.7080 0.5646 14 14
34 34 35 1.4740 0.4873 4 4
35 3 36 0.0044 0.0108 26 18.55
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Table A3. Impedance and power of the 66 bus system (Cont.).

Branch
Number

Sending
Bus

Receiving
Bus

Resistance
(Omega)

Reactance
(Omega)

Active Power
in Receiving Bus

(kW)

Ractive Power
in Receiving Bus

(kVAR)

36 36 37 0.0640 0.1565 26 18.55
37 37 38 0.1053 0.1230 0 0
38 38 39 0.0304 0.0355 24 17
39 39 40 0.0018 0.0021 24 17
40 40 41 0.7283 0.8509 102 1
41 41 42 0.3100 0.3623 0 0
42 42 43 0.0410 0.0478 6 4.3
43 43 44 0.0092 0.0116 0 0
44 44 45 0.1089 0.1373 39.22 26.3
45 45 46 0.0009 0.0012 39.22 26.3
46 4 47 0.0034 0.0084 0 0
47 47 48 0.0851 0.2083 79 56.4
48 48 49 0.2898 0.7091 384.7 274.5
49 49 50 0.0822 0.2011 384.7 274.5
50 8 51 0.0928 0.0473 40.5 28.3
51 51 52 0.3319 0.1140 3.6 2.7
52 9 53 0.1740 0.0886 4.35 3.5
53 53 54 0.2030 0.1034 26.4 19
54 54 55 0.2842 0.1447 24 17.2
55 55 56 0.2813 0.1433 0 0
56 56 57 1.5900 0.5337 0 0
57 57 58 0.7837 0.2630 0 0
58 58 59 0.3042 0.1006 100 72
59 59 60 0.3861 0.1172 0 0
60 60 61 0.5075 0.2585 1244 888
61 61 62 0.0974 0.0496 32 23
62 62 63 0.1450 0.0738 0 0
63 63 64 0.7105 0.3619 227 162
64 64 65 1.0410 0.5302 59 42
65 65 66 0.2012 0.0611 18 13
66 66 67 0.0047 0.0014 18 13
67 67 68 0.7394 0.2444 28 20
68 68 69 0.0047 0.0016 28 20
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