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Abstract: Data concerning actual temperatures of line conductors constitutes essential information for
the power system operator. The temperature of the power lines can be used to improve the accuracy
of the power system model, thereby increasing the accuracy of the state estimation. This article
presents a two-step algorithm for the power system state and line temperature estimation. In its
second stage, the proposed method searches for a line temperatures vector, which corrects the
uncertain power system base model and allows for further minimization of an objective function.
As a result, a more accurate estimation is obtained along with a more precise model of the estimated
system. The derived model can then be used for more accurate optimization. The presented method
enhances standard procedures of power system state estimation, and its advantage is that it does
not require direct measurements performed by phasor measurement units or measurements of line
conductor temperatures and weather conditions realized by dynamic line rating systems. The results
of simulations made on various test models have been examined, confirming the convergence of the
procedure to the point at which the average temperature of the line wires together with the voltage
values and phase angles are achieved. The algorithm’s performance and improvement method have
also been presented. An advantage of the investigated approach is the possibility to calculate the
temperature of line wires with the use of primary measurements in the power system. The presented
and examined method, however, is sensitive to the measuring device errors. Additionally, an analysis
of the method’s errors and ways of reducing them has been performed.

Keywords: power system; state estimation; temperature estimation; dynamic line rating

1. Introduction

Modern power systems should have the possibility of flexible power transmission, which is
directly related to the more extensive use of Overhead Transmission Line (OTL) capabilities, especially
when it comes to high penetration of renewable energy sources [1,2]. The factor limiting the load
of the line is the temperature and sag of the conductors. This depends on many factors, including,
among others, the type of conductor, load current, and atmospheric weather conditions [3–6]. Currently,
one of the methods for a more efficient use of the transmission capacity of Overhead Transmission Lines
(OTLs) is the installation of precise and cost-intensive Dynamic Line Rating (DLR) systems [7–14].
The aim of the presented method is to estimate the temperature of the line wires, in the absence of
weather measurements along the line and with a lack of Dynamic Line Rating (DLR) devices installed
in the analyzed system. The method presented in the article enables, in a simplified way, the estimation
of the system state and temperature of conductors on the basis of primary measurements of active
and reactive powers along with bus voltages. Determining the temperature of the conductors is an
element of identifying new parameters of the power system base model, i.e. temperature, resistance,
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and reactances of the lines. The more accurate corrected model of the power system allows for better,
more precise optimization and the obtained solution is closer to the actual optimum. In addition,
achieving estimated temperatures of line wires, and thus new parameters of the system model may
constitute an element of optimization technique proposed in [15], according to which it is possible to
achieve the strict optimum of a non-linear system only if its approximate model is available. A solution
that allows for the calculation of the actual average temperature of Overhead Transmission Line (OTL)
conductors can be the extension of the power system State Estimation (SE) method [16,17]. The SE of
an electric power system is a reasonably well recognized problem and it is often referred to as on-line
modeling [18–20]. There are many modifications of SE procedure that improve performance [21], the
accuracy of results [22] or robustness to the power system model parameter errors [23–26]. One of the
many sources of model parameter errors are the actual OTLs’ operation temperatures [16,27–32]. In [16],
the authors proposed a two-stage estimation, where at the second stage OTL resistances are updated
according to available measurements and actual weather parameters. In [17], the authors proposed a
similar algorithm, but they incorporated into the measurement vector four groups of data, where the
first group is bus voltage magnitude and branch power, the second group contains measurements from
installed Phasor Measurement Units (PMUs), the subsequent group contains the current magnitude
measurements, and the last group is comprised of weather-related environment data.

In the present article, a two-step power system state and line temperature estimation is proposed
that uses only classical measurements such as active and reactive power, bus voltage and current,
without any additional measurements such as ambient parameters from weather stations, conductor
temperatures from DLR, voltage and current magnitudes with its angles from PMUs or Wide Area
Measurement System (WAMs) [22]. The proposed method assumes a well-identified power system
topology, and the absence of bad data measurement values [18]. The accuracy of the temperature
estimation method mainly depends on measuring apparatus classes. This approach allows us to
determine the OTLs without additional measured values, but it increases the demand for computing
power. In this case, the Graphical Processing Unit (GPU) can be used to speed up the estimation
calculations. The article analyzes the accuracy of estimating temperature of OTL wires as a function
of the measuring instrument classes, along with the estimation times as a function of the size of the
power system. A modified listing of MATPOWER [33] code is also presented, one that uses a GPU for
performance improvement.

In this paper, the author contributes to analyzing and solving the problem of uncertain power
system line temperatures’ estimation, which leads to the more accurate state estimation. The main
contributions of this paper are summarized as follows.

• The inaccuracy of the power system model results mainly from the actual temperatures of the
operating conductors of the power line, which in the case of accurate measurements causes errors
in the estimation of the state. Therefore, a two-stage method for estimating the power system state
and line temperatures was proposed. The advantage of the presented algorithm is that it does not
require any additional measurement data such as the measurement of current in a line conductor,
weather information along the line from DLR systems or PMUs, which can be augmented in
measurement function h and measurement Jacobian H as proposed in [17].

• A case study based on the IEEE 39 bus New England test system was presented, in which the
power line temperatures have been calculated. Based on the achieved results, the two-step
algorithm for power system state and line temperature estimation was applied, in order to better
understand the algorithm structure and its operation.

• The performance and accuracy of the presented method have been been examined using different
test system cases.

• The speed improvement of the presented algorithm estimating a larger power system model has
been examined using graphical processing units. The example of modified MATPOWER code for
using graphical processing units has been shown.
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• The accuracy of the presented method has been examined as a function of instrument
transformers classes.

The remaining part of this paper is organized as follows: in Section 2, the classical state
estimation procedure is presented. In Section 3, a two-step algorithm for power system state and line
temperature estimation is presented, encompassing both theory and implementation. Section 4 is
focused on a practical examination of the presented method, its operation, performance and accuracy.
Finally, the article is concluded with Section 5.

2. Power System State Estimation

The present-day development of computer technologies makes it possible to perform real-time
SE of large and advanced power systems. SE determines the most probable vector of complex
voltages using a system model and measured values of bus voltages, active and reactive power of the
generation, transmission and loads [18,20,34–36]. Additionally, the SE can use current measurements,
but their application sometimes causes problems of a mathematical nature [18,19,37], especially when
line current is very small. The calculated most probable vector of phase angles and nodal voltages
of the estimated system with its model constitutes a basis for the determining of all dependent
variables, i.e. power flows and line currents together in metered and non-metered parts of the network.
The measured values of the active and reactive power as well as of the voltage and current are
characterized by measurement uncertainty [18,37]. That uncertainty mainly follows from the errors
of the measuring devices installed in the system. Measurement uncertainty can also result from the
resolution of analog-to-digital converters used for signal processing and transmitting the measurement
values to Supervisory Control and Data Acquisition (SCADA) computers. Instrument transformers
are the source of the greatest measurement errors, but their operating uncertainty is well defined
by their classes. Power system SE is most often realized using the iterative Weighted Least Squares
(WLS) method. That process takes into consideration the uncertainty of all measured values using
the covariance matrix. In an ideal case, when the measured values and the model parameters are not
encumbered with any errors, the iterative SE algorithm converges to a strictly optimal point, where the
deviation between the estimated and measured values defined as (1) is equal to zero ε = 0

zi − hi(x) = ε (1)

where zi-i-th measurement in the PS, hi(x)—measurement function which is the static model of PS,
x—vector of the PS state consisting of voltage magnitudes and angles, ε—deviation between the i-th
measurement and the model value. Errors of both the measured values and of the model affect the
estimation quality defined by the value of ε. The State Estimation (SE) uses a static model of the power
system, where line resistance values are calculated on the basis of line length and conductor per-length
resistances provided by the manufacturer, usually given for the temperature of 20 ◦C. Differences
between actual parameters of an operating power line and parameters of a static power system model
as a rule pertain to resistance and reactance values and are related to temperature changes in the
conductors [16,27–32]. Those temperature variations result from the heating effect produced by the
current flow and the cooling influence of weather conditions [3,4,38,39].

The theory of the power system State Estimation (SE) [18,20,34–37] assumes that measured values
are characterized by the uncertainty σi which is defined by Equations (2)–(4) and stands for a standard
deviation of the measurement zi. The measurement uncertainty σi is the statistically recognized error,
consistent with the Gaussian distribution where the function Φ(u) assumes the form:

Φ(u) =
1√
2π
· e−

u2
2 (2)

defined by:
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f (z) =
1√
2πσ

· e−
1
2 ·(

z−µ
σ ) (3)

The function f(z) varies depending on the parameters µ and σ, and, furthermore, its shape can
become standardized with the application of the transformation

u =
z− µ

σ
(4)

where: z—random variable, µ—mean or expected value of variable z = E(z), σ—standard deviation
of the variable z.

It is worth noting that the measurement function h is a static model of a power system, where the
parameters of its elements such as lines, transformers or shunts can carry an unknown level of
uncertainty [18,24]. The SE can be considered as an optimization procedure searching for such a power
system’s state vector x that makes it possible to obtain the minimum value of the objective function
defined as Equation (5):

J =
N

∑
i=1

Wii[zi − hi(x)]2; and Wii =
1
σ2

i
(5)

where: J—objective function, Wii—diagonal weight matrix, while the σi—covariance of the i-th
measurement. The minimum determination of the function J can be verified using the basic first order
optimality condition (6):

g(x) =
∂J(x)

∂x
= 0 (6)

By expanding g(x) (6) into the Taylor series around x(k) and neglecting further terms of the series,
a basis for iterative calculations is defined (7):

g(x(k)) +
∂g(x(k))

∂x
(x− x(k)) = 0 (7)

The Gauss-Newton method [18,37] can be applied to obtain a solution for the state vector x that
minimizes the J function. By transforming Equations (5) and (7) to the differential form, the following
formulas can be obtained, respectively:

G(x(k))∆x(k+1) = HT(x(k)) ·W · [z− h(x(k))] (8)

G(x) =
∂2 J(x)

∂x2 = HT(x) ·W ·H(x) (9)

where: G(x(k))—gain matrix, ∆x(k+1)—solution change in the k-th iteration whereas x(k+1) = x(k) +
∆x(k+1), H(x)—Jacobian determinant of the measurement function is defined as Equation (10):

H(x) =
∂hi(x)

∂x
(10)

The SE solution, defined by the vector x, can be calculated by solving the G(x(k)) for ∆x(k+1) and
performing iteration until the condition ∆x(k+1) < ε is fulfilled. Newton’s iteration converges to an
ideal solution, that is where J = 0, when both the model and the measured values applied to the SE
were achieved by solving the task of power system load flow. State estimation of large power systems
is computationally demanding because of frequent inversion of the sparse and large matrix H(x).
The efficiency of H(x) processing can be improved using GPUs.



Energies 2018, 11, 1005 5 of 20

3. The Concept of the Two-Step Method for Power System State and Line Temperature Estimation

In practical applications of the power system state estimators, the measured values and the static
parameters of the power system model contain inaccuracies. These mainly result from the errors
in determining the conductor length in the power line, inaccurate manufacturer data concerning
conductor resistance as well as resistance vs. temperature dependence [18]. Additionally, the unsteady
cooling effect of variable weather conditions along the line route means that the modeled resistance
of a line in the power system model does not reflect its actual resistance [25,29–31,38]. Furthermore,
the variable temperature of the conductors in the line spans brings about variations of the conductor
length in spans. This in turn causes changes in the total reactance of the line [30,40], which in some
circumstances can be neglected [32,39]. In such a case, the error part of Equation (5) assumes the
form where the measurement function depends both on the vector of state variables x and on the
vector of model parameters p. In a typical State Estimation (SE), the vector of the model parameters p
remains constant:

zi − hi(x, p) = ε (11)

where: zi—i-th measurement in the power system (PS), hi(x, p)—measurement function, x—vector
of the PS state, p—parameters of the PS model, ε—deviation between the i-th measurement and the
model value or absolute accuracy [18].

In practice, measurement values acquired by the SCADA systems which constitute the basis for the
estimation, are never ideally synchronized and are encumbered with measurement errors. Assuming
that the measurements are realized in the steady state condition, the question of non-synchronous
measurements can be neglected. In such a case, it can be stated that a static model of a power system is
encumbered with errors following the modeling inaccuracies and from the actual operating conditions.
As described above, the classical SE [18] assumes that the system model is well recognized and does
not need any adjustments, which can eventually yield incorrect estimation results, even if the applied
measured quantities are accurate [30,41].

The state of the power system and selected model parameters, e.g., line temperature or resistance,
can be estimated in a two-stage process, where the objective function assumes the form:

J =
N

∑
i=1

Wii[zi − hi(x, p)]2 (12)

and in the first stage the classical power system SE takes place, whose aim is to minimize J (12)
incorporating the p = const condition. The solution of the first estimation stage produces a xest vector.
In the second stage, the objective function J gets the form:

J =
N

∑
i=1

Wii[zi − hi(xest, p)]2 (13)

and is further minimized where for the searched vector p, the xest is calculated minimizing J. In the
second stage, the model parameter vector is finally achieved pest if the minimum condition of the J
function is met. At the end of the presented procedure the power system state vector xest and model
parameter vector pest is obtained. In such a situation, it can be assumed that the model parameter vector
p is equal to the vector T, which stands for temperatures of lines in the power system. The Equation (13)
assumes the final form:

J =
N

∑
i=1

Wii[zi − hi(xest, T)]2 (14)
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where, analogously, the minimization of J as a function of T leads to the estimation of the vector of line
temperatures Test and xest. The illustrative example of the two-stage method for power system state
and line temperature estimation has been presented in Figure 1.

Figure 1. The idea of the two-stage method for power system state and line temperature estimation.

3.1. Incorporation of Estimated Line Temperatures into Power System Model

In the models of an electric power system that are used for the load-flow and estimation
calculations, a power line is usually modeled in the form of a π quadripole (Figure 2), where the
line resistance RL(T) and reactance XL(T) are lumped parameters. In the present article, it has been
assumed that the parameters RL(T) and XL(T) vary with conductor temperature. The base values
of RL and XL are calculated using the well-known dependences [18–20] and are determined on the
basis of the actual length of the line and its per-unit length parameters. Conductors resistance per
length unit is given by their manufacturer and it is usually specified for the temperature of 20 ◦C [41],
while the per-unit length reactance is determined as a function of the pole geometry, voltage levels
and other acknowledged parameters [19,20,31]. The temperature of the conductors affects conductor
resistance while thermal expansion affects their length, which implies changes in total line reactance.
In such a case, it can be stated that the line reactance XL becomes temperature-dependent XL(T),
as shown in Figure 2 [16,30].

Figure 2. Transmission line model in the form of a four terminal network of the π type.

In the case of a 110 kV line, the total line conductance G and susceptance B (Figure 2) can be
considered to be constant at low humidity of the atmospheric air and in some cases can be neglected.
Furthermore, it has been assumed that the values B and G are constant. Following [30,38,39], equivalent
resistance and reactance of an overhead transmission line can be written as follows:
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RL(T) = R20(1 + α(T − T0)) (15)

and

XL(T) = X20(1 + β(T − T0)) (16)

where: R20, X20—equivalent line resistance and reactance calculated for the temperature of 20 ◦C,
respectively; α—temperature coefficient of the conductor resistance changes dependent on the
conductor type assumed that α = 0.00403 for ASCR 7/26; β—temperature coefficient of the line
reactance change, considering the line expansion effect, according to [30], it has been assumed that
α = β, T—actual temperature of the conductor, T0 = 20 ◦C—base temperature used to determine R20

and X20. In the case of the High Temperature Low Sag (HTLS) conductors, the assumption that α = β

is invalid and should be corrected [31]. The temperature of the overhead line conductors according
to [3,4,31] depends on the conductor design, geometry and the applied materials, which mainly
translates into conductor resistance given by the manufacturer as the R20 parameter. Resistance also
depends on the atmospheric conditions such as air temperature, wind direction and speed, along with
solar radiation.

3.2. Implementation of the Two-Step Algorithm of Power System State and Line Temperature Estimation

According to the theory of power system SE [18,19,34–36], the iterative Newton-Raphson
procedure applied to minimize objective function (5) leads to a strictly optimal solution of xest,
where the objective function (5) J = 0, when there are no errors in either the model or the measured
values. In an ideal case, the model and measurement values are taken from the load flow solution.
In practice, however, both the measured values and the model of the estimating system contain
errors. In such a situation, the SE usually yields the result where the objective function (14) J > 0.
The calculated state vector xest is a suboptimal solution with respect to the real state of the power
system (e.g., power line conductor temperatures are different than 20 ◦C) [41]. The estimation quality
can be intensified by the application of a more accurate measuring apparatus coupled with the accuracy
improvement of the power system static model. The impact of the power system model accuracy
on the results of the power system SE has been analyzed in [16,18,41]. Assuming that accurate and
error-free measurements in the power system are available, and in order to meet the J = 0 condition,
it is necessary to update the base model with line conductor temperatures. At the same time, conductor
temperature influences the mechanical condition of the lines, such as the sag which translates into
total line reactance [30,40,42,43]. In such a case, in order to improve the estimation quality and thereby
determine the most probable state of the power system together with the estimation of the actual line
conductor temperatures, a two-step algorithm for the state and temperature estimation of the power
system model can be applied. The method theoretically presented in Section 3 can be implemented as
shown in Figure 3, where Pi, Qi—total active/reactive power of the generation and loads in the i-th
node of the network , Vi—voltage in the i-th node of the network, Pij, Qij—measured power flows in
the network branches between the i-th and the j-th nodes. The steady-state condition of the observed
power system is assumed, which implies that thermodynamic heating of the conductors and their
sagging proceeds slowly.



Energies 2018, 11, 1005 8 of 20

Figure 3. Algorithm of the two-step power system state and line temperature estimation.

The realization of the proposed estimation algorithm (Figure 3) is being processed in two stages,
as presented schematically in Figure 1. In the first stage, classical estimation of the power system is
performed based on the available system model and the measurement data, according to (14). The base
system model is where the resistance R20 and reactance X20 parameters of all the power lines are
determined for the temperature of 20 ◦C, as [18,20,37,44] argue.

The second stage of the algorithm realization (Figure 3) includes the iterative Newton-Raphson
procedure loop, searching for a vector T composed of the temperature values of individual power lines
to be used to adjust the R and X parameters in the model. It starts from the vector T, where all
temperature values are equal to 20 ◦C and then performs a sequential estimation-optimization
procedure to find such a vector T for which the J indicator is minimal. Next, the objective function J’s
value is analyzed to check whether the condition J < ε is met. If the condition J < ε is not met, it means
that the power system model parameters should be corrected with new power line temperature
values different from 20 ◦C in order to minimize J (trying to minimize J more). The determined
temperature of the power system lines is the average line temperatures Tavg determined on the basis
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of the values of electrical quantities measured at the line ends. Furthermore, it can be observed that
such an approach makes it possible to estimate the line conductor operating temperature without
performing any additional meteorological measurements along the line, such as conductor temperature
resulting from weather conditions and the current flow [10,17,45], which directly affects the measured
electrical quantities. One disadvantage of this approach is that it does not offer any information on the
temperature of individual sections of a power line, whose cooling by the wind can vary due to their
varied position with respect to wind direction [3,4].

4. Test System Simulation and State with the Line Temperatures Estimation

For the purpose of method testing, the IEEE 39-Bus New England Test System, has been used [33].
The length of all lines had been estimated on the basis of specific resistance for 795 kcmil 26/7 Drake
ACSR conductor connected as two-bundle, resulting line resistance 0.03585 Ω/km at temperature
Tre f = 20 ◦C. For specific weather conditions used for calculation of conductor temperatures in summer
and winter case, the author refers to data presented in Appendix A and in Table A1. The power
flow calculations using Electro-Thermal Overhead Line (ET-OHL) model have been performed as
in [32]. Next, from the power flow results, the values of active and reactive powers along with bus
voltages (P, Q,V) have been used for the power system state and line temperature estimation method.
As described in Section 3.2, these values represent the actual measurements acquired by SCADA
from Remote Terminal Units (RTUs) and Intelligent Electronic Devices (IEDs). At the first stage of
the presented method, the classical SE uses actual measurements with power system base model,
containing line resistances calculated for Tc = 20 ◦C, as presented in Table A1. The first step of the
presented estimation method leads to the J = 94,693.7034 value, assuming that σi = 0.001 for every
single measurement available. The IEEE 39 Bus New England Test System state estimation results
compared to the available measurements, after the first step of the processing method, have been
presented in Tables A2–A4, where PFrom, QFrom – stands for active and reactive powers at the beginning
of the line, analogously PTo, QTo – stands for active and reactive powers at the end of line as well as
PGen, QGen – which are the active and reactive powers produced by generators. The following second
stage of the presented methods uses previously measured values. At the second stage, we perform
further minimization of the J function, searching for line temperature vector T. The upper and lower
bounds for every element of vector T have been set to −40 ◦C and 250 ◦C, respectively. The line
temperature estimation results and values of the objective function J after 10, 20, 50, 100, 134 iteration
have been presented in Table A5 and in Figure 4.
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Figure 4. Objective function J minimization at the second step of two-step power system state and line
temperature estimation method.
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4.1. Algorithm Performance Testing and Timing Results

The testing of the two-step algorithm presented in Figure 3 for its performance and convergence
has been performed based on the available power system test models IEEE 9, 14, 30, 39, 57, 118 and 300,
with the application of the MATPOWER (version 6.0, PSERC, Tempe, AZ, USA) [33]. For performance
testing of the presented method, the lines’ resistances and reactances of used test systems have been
calculated for 80 ◦C.

The proposed method makes it possible to determine average temperatures of power lines,
but with the increasing number of nodes and power lines the procedure realization time gets
significantly longer. The notable elongation of temperature estimation time results from several
features. The growing complexity of the power system model entails an increased number of iterations
in a single system state estimation and calculation of objective function J. The growing number of lines
increases the number of elements in the temperature vector T, and thus the number of estimations per
one change of the T vector increases exponentially. The state and line temperatures estimation needs
to be performed as soon as possible for the purpose of the usability of results. During the simulation
tests, it turned out that the three most computationally costly operations in the estimation process
are: (1) Jacobian calculation J = H′ ·Rinv ·H, where H-measurement Jacobian, Rinv-covariance matrix;
(2) Calculation F = H′ ·Rinv · (z− zest); (3) Calculation of step change dx = J/F. In order to speed up
the estimation calculations, the above matrix operations have been implemented to perform using the
GPU. An example of a modified MATPOWER R©software code for performing Graphical Processing
Unit (GPU) calculations is shown in Algorithm 1.

The simulations and estimations have been performed using a benchmark machine Fujitsu
PRIMERGY TX300 R© Server (version S6, Fujitsu Technology Solutions GmbH, Munchen, Germany)
equipped with two Intel Xeon R©E5-2690v2 3.0 GHz processors (acting as 20-core CPU) (Intel,
Santa Clara, CA, USA) and 192 GB RAM (Fujitsu Technology Solutions GmbH, Munchen, Germany),
operating under Microsoft Windows 2012 R2 with and without the Graphical Processing Unit (GPU)
(NVIDIA Tesla K40, Santa Clara, CA, USA) support for estimation purposes. The results have been
presented in Table 1 and Figure 5. All the tested cases have shown the algorithm’s convergence to a
strictly optimal point using the complete and correct set of measured data, which is a set of values
obtained from the load-flow solution. In the case of small systems, transferring the matrixes Rinv and
H many times from RAM to GPU and vice versa (dx), as shown in Algorithm 1, effects in a more
extended total temperature estimation time. The performance improvement is noticeable in the case of
larger systems, where Rinv and H have a larger dimension and computing of J, F and dx is faster on
GPU than on CPU.

Algorithm 1: Modified code of MATPOWER [33] State Estimation (SE) function doSE.m for
performance improvement using Graphical Processing Unit (GPU).

...
% –-compute inverse R matrix on GPU
R_inv = gpuArray(diag(1./sigma_square));
...
%–-construct H matrix on GPU
H = gpuArray(H);
%–-compute update step on GPU
J = H’*R_inv*H;
%–-evaluate F(x) on GPU
F = H’*R_inv*(z-z_est);
%–-compute dx on GPU
dx = (J / F);
%–-get matrix from GPU
dx = gather(dx);
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It is worth noting that the presented method can be used to analyze operating system state and
line average temperatures ex-post, due to the long calculation time for large systems as shown in
Table 1. Similar calculation times can be found for power systems optimization with the application
of heuristic methods. In [17] the Authors proposed state and line temperature estimation method
that finished calculations of IEEE 57 bus test system in 3.29 seconds in single estimation, while the
presented technique needs 201.04 seconds. It is inducted by the fact that presented method runs as two
iterative steps. The second step, which is a classical state estimation occurs many times because it does
not include any additional measurements incorporated into measurement function h and measurement
Jacobian H as in [17].

Table 1. Time of the two-step algorithm realization depending on the power system size.

IEEE Number of Mean Single Line Temperatures Mean Single Line Temperatures

Test Case Branches Estimation Time (s) Estimation Time (s) Estimation Time (s) Estimation Time (s)
Graphical Processing Unit (GPU) Supported Graphical Processing Unit (GPU) Supported

9 9 0.050 3.19 0.0087 3.35
14 20 0.051 13.89 0.0115 15.09
30 41 0.031 43.46 0.0172 47.28
39 46 0.095 45.82 0.0269 36.27
57 80 0.056 201.04 0.0757 223.69
118 186 0.186 7308 0.6721 3684
300 411 4.231 165,680 2.6332 72,028

Figure 5. Line temperatures estimation time as a function of increasing branch number in the power
system model.

4.2. Temperature Estimation Error Analysis Using Complete and Incomplete Sets of the Noise-Containing
Measured Data

The convergence, errors and sensitivity of the algorithm have been analyzed for the case of an
incomplete and noise-containing set of measurement data with the application of a modified IEEE 9
bus test system presented in (Figure 6) where all line temperatures have been assumed as 80 ◦C.
The relative error and mean relative error of the presented method have been calculated according to
Equation (17).

erri,% =
Ti,est − 80 ◦C

80 ◦C
× 100 (17)
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The algorithm testing has been performed for two different cases. The first one assumes the
availability of a complete set of measurement data in the test system, which means that the measured
values of the bus voltage V in all the nodes as well as the measured values of active P and reactive
power Q in each line and at generator circuit breaker cubicle are available. Noise has been added
to the measured values obtained from the load-flow solution in accordance with the statistically
assumed normal error distribution σ following from the instrument transformer classes (0.1, 0.2
and 0.5) [18,20,37]. In the test system, ten thousand samples have been produced. For each of the
measurement sets, the two-step algorithm for the system state and line temperature estimation has
been realized. The testing objective has been to check the procedure’s operation in the conditions where
measurement errors occur that simulate the real system operating conditions. In general, the accuracy
of the method is conditioned by the accuracy of the deployed measuring apparatus. Preliminary
analysis of the gathered results shows that the discussed method of the estimation of line conductor
temperature is very sensitive to measurement errors. Even small errors produced by the measuring
apparatus can cause considerable temperature value deviations from the real values. Thus, single
measurements (singular snapshots of the system) can yield unreliable results.

Figure 6. Modified IEEE 9 bus test system with the marked available measurement data to be used for
state and line temperature estimation.

The accuracy of the method can be significantly improved by averaging measured or estimated
values over an adequate time interval, e.g., over one minute at a varied sampling frequency, that is
the frequency of taking snapshots. The time constant for the heating of power line conductors varies
between 5–15 min depending on the actual weather conditions [3,4]. Therefore, the averaging interval
of 1 min has been assumed. Tables 2–4 present data on the method accuracy obtained for the case using
a complete measurement data set of the test system shown in Figure 6. An analysis of the results makes
it possible to assess the accuracy of the system’s state and line conductor temperature estimation in the
case when a complete measurement data set is available.



Energies 2018, 11, 1005 13 of 20

Table 2. Mean relative error of the line temperature estimation method resulting from various
classes of the applied measuring apparatus and obtained for a complete set of noise-containing
measurement data.

Instrument Transformer Classes Maximal Mean Relative Error

0.1 0.69%
0.2 0.42%
0.5 1.05%

Table 3. Maximal relative error of the line temperature estimation method for a complete set of
noise-containing data.

Class Sampling Sampling Sampling Sampling
τ = 30 s τ = 10 s τ = 5 s τ = 2 s

0.1 14.97% 6.64% 4.30% 2.11%
0.2 28.45% 8.82% 8.11% 4.34%
0.5 52.54% 21.81% 20.72% 10.20%

Table 4. Mean relative error of the line temperature estimation method for a complete set of
noise-containing data.

Class Sampling Sampling Sampling Sampling
τ = 30 s τ = 10 s τ = 5 s τ = 2 s

0.1 4.32% 2.02% 1.14% 0.53%
0.2 8.29% 4.25% 2.86% 2.44%
0.5 20.73% 10.15% 5.41% 2.55%

The results of the algorithm’s application show that the discussed temperature estimation method
is very sensitive to the measurement errors of the active P and reactive Q power. Even small
measurement errors can yield high mean errors in the estimated line conductor temperature values,
even up to 52.5% in the case of single snapshots.

We also tested the method’s accuracy for an incomplete set of the measured values. Figure 6
presents the measurement data that are available in the test system, for which the observability
condition is met. In the case of a complete dataset, 57 values of P, Q and U are available, while the
incomplete case offers 34 values, which makes almost 60% (exactly 59.65%) of the measurement data
available in the complete case. Tables 5 and 6 present the results of conductor temperature estimation
as a function of the deployed instrument transformer classes and sampling frequencies at the 1-min
averaging interval for the case of a limited availability of the measurement data. However, in the case
of multiple sequence measurements and estimations performed and followed by the determination
of an average line temperature value, the mean error of temperature determination is reduced to
below 5% (with the application of the 0.5 class measuring apparatus), which for the power line design
temperature values yields the limiting values given below in Table 7 and mean values listed in Table 8.

Table 5. Maximal relative error of the line temperature estimation method for an incomplete set of
noise-containing data.

Class Sampling Sampling Sampling Sampling
τ = 30 s τ = 10 s τ = 5 s τ = 2 s

0.1 53.45% 26.25% 19.27% 12.85%
0.2 106.47% 52.70% 38.92% 12.85%
0.5 198.69% 74.59% 65.47% 19.68%
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Table 6. Mean relative error of the line temperature estimation method for an incomplete set of
noise-containing data.

Class Sampling Sampling Sampling Sampling
τ = 30 s τ = 10 s τ = 5 s τ = 2 s

0.1 15.91% 11.54% 9.48% 3.21%
0.2 31.84% 17.67% 10.74% 3.31%
0.5 60.12% 30.92% 16.32% 4.92%

Table 7. Maximal absolute error for standard design temperatures of power lines at the sampling rate
of 30 samples/min.

Line Design Method Limiting Relative Estimated Temperature
Temperature Error (Class 0.1–0.5) Maximal Error

40 5.14–7.87 ◦C
60 12.85–19.68% 7.71–11.80 ◦C
80 10.28–15.74 ◦C

Table 8. Mean absolute error for standard design temperatures of power lines at the sampling rate of
30 samples/min.

Line Design Method Limiting Relative Estimated Temperature
Temperature Error (Class 0.1–0.5) Maximal Error

40 1.28–1.97 ◦C
60 3.21–4.92% 1.93–2.95 ◦C
80 2.57–3.94 ◦C

5. Conclusions

Based on the performed testing of the two-step power system state and line temperature
estimation algorithm and the gathered results, the following conclusions can be drawn. State estimation
of an electric power system is performed based on measurement data encumbered with errors. A power
system model that is used for the estimation purposes also deviates from real parameters, because of
the applied simplifications and modeling errors. However, the main source of parameter deviations
are operating factors, such as heating of line conductors, which affects the resistance and reactance
of power lines. The power line monitoring is mainly realized in specific spots, which in the case
of vast power systems does not work well as weather conditions may vary along long power lines.
The advantages of the proposed method are as follows: the convergence of the algorithm to a strict
optimum and the fact that the measurements of meteorological quantities are not needed. Furthermore,
it means that the presented calculation procedure that is based only on measured electrical quantities
available in the power system yields the actual state of all the voltages and angles in the system
as well as the actual temperature of the lines. The estimated temperatures of line conductors can
constitute important information for the system operator. Knowing average values of line conductor
temperatures, it is also possible to determine the mechanical state of the lines. In other words, with the
known design conditions, distances and spans, it is possible to estimate sags and stresses for the
obtained conductor temperature value, which will be the objective of further research.
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for the realization period from 1 June 2014 to 31 May 2016.
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Appendix A

Environmental conditions have been applied uniformly for all lines. The conditions for the
summer case have been assumed as follows: ambient temperature Tamb = 35 ◦C, wind speed
Vw = 0.6 m

s , sun radiation Qse = 900 W
m2 , solar absorptivity αS = 0.8, conductor emissivity ε = 0.8 [32].

Table A1. Power Lines’ Parameters and Conductor Temperatures of IEEE 39 Test Case [32].

From Bus To Bus
Line Length Summer Case Winter Case Line Resistance Line Reactance

km Tc(◦C) Tc(◦C) Tc = 20 ◦C Tc = 20 ◦C

1 2 116.206 43.991 −9.768 4.166 48.919
1 39 33.194 43.991 −9.768 1.19 29.756
2 3 43.152 62.503 −6.852 1.547 17.973
2 25 232.413 47.015 −9.278 8.332 10.236
3 4 43.152 48.738 −8.998 1.547 25.352
3 18 36.513 42.912 −9.948 1.309 15.830
4 5 26.555 43.059 −9.926 0.952 15.235
4 14 26.555 48.046 −9.119 0.952 15.354
5 6 6.639 45.576 −9.52 0.238 3.095
5 8 26.555 47.77 −9.16 0.952 13.331
6 7 19.916 50.7 −8.695 0.714 10.950
6 11 23.236 60.716 −7.137 0.833 9.760
7 8 13.278 43.293 −9.885 0.476 5.475
8 9 76.374 44.541 −9.684 2.738 43.206
9 39 33.194 44.172 −9.744 1.19 29.756

10 11 13.278 59.993 −7.246 0.476 5.118
10 13 13.278 44.698 −9.663 0.476 5.118
13 14 29.874 44.085 −9.759 1.071 12.022
14 15 59.749 43.712 −9.815 2.142 25.828
15 16 29.874 57.385 −7.637 1.071 11.188
16 17 23.236 45.084 −9.588 0.833 10.593
16 19 53.110 62.316 −6.885 1.904 23.210
16 21 26.555 51.01 −8.644 0.952 16.068
16 24 9.958 43.465 −9.855 0.357 7.022
17 18 23.236 45.84 −9.476 0.833 9.760
17 27 43.152 42.768 −9.973 1.547 20.591
21 22 26.555 70.323 −5.688 0.952 16.664
22 23 19.916 42.768 −9.971 0.714 11.426
23 24 73.054 51.471 −8.572 2.619 41.659
25 26 106.248 43.282 −9.892 3.809 38.445
26 27 46.471 48.877 −9.001 1.666 17.497
26 28 142.762 43.944 −9.777 5.118 56.418
26 29 189.233 44.982 −9.608 6.784 74.391
28 29 46.471 50.298 −8.757 1.666 17.973
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Table A2. Comparison of Measurements and their Estimations of IEEE 39 Test System for the Summer
Case after the First Step of the Presented Method using Base Model Calculated for 20 ◦C.

From To Meas. PFrom Est. PFrom Meas. PTo Est. PTo Meas. QFrom Est. QFrom Meas. QTo Est. QTo

Bus Bus p.u. p.u. p.u. p.u. p.u. p.u. p.u. p.u.

1 2 −1.7623 −1.7168 1.7733 1.7264 −0.3657 −0.3563 −0.2658 −0.2851
1 39 0.7863 0.7581 −0.7855 −0.7575 −0.0763 −0.0812 −0.7082 −0.7007
2 3 3.1477 3.1794 −3.1325 −3.1660 0.8935 0.8939 −0.9937 −1.0135
2 25 −2.4210 −2.4340 2.4687 2.4779 0.8656 0.8668 −0.9688 −0.9730
2 30 −2.5000 −2.5000 2.5000 2.5000 −1.4932 −1.4923 1.6400 1.6405
3 4 0.3562 0.3436 −0.3540 −0.3417 1.0830 1.0816 −1.2751 −1.2769
3 18 −0.4437 −0.4075 0.4439 0.4076 −0.1133 −0.1054 −0.1098 −0.1171
4 5 −1.9747 −2.0160 1.9782 2.0193 −0.1024 −0.1082 0.0228 0.0260
4 14 −2.6712 −2.6383 2.6777 2.6440 −0.4625 −0.4642 0.4282 0.4170
5 6 −5.3730 −5.3785 5.3794 5.3843 −0.5029 −0.5071 0.5424 0.5390
5 8 3.3948 3.3807 −3.3844 −3.3714 0.4801 0.4696 −0.4800 −0.4858
6 7 4.5132 4.5354 −4.4990 −4.5227 0.8362 0.8309 −0.7321 −0.7490
6 11 −3.1658 −3.2026 3.1739 3.2098 −0.3715 −0.3848 0.3262 0.3281
6 31 −6.7268 −6.7268 6.7268 6.7268 −1.0071 −1.0078 2.3198 2.3205
7 8 2.1610 2.1723 −2.1590 −2.1704 −0.1079 −0.1069 0.0549 0.0518
8 9 0.3233 0.3656 −0.3196 −0.3622 −1.3408 −1.3329 1.0064 0.9944
9 39 0.2546 0.2827 −0.2545 −0.2825 −0.3404 −0.3279 −0.9390 −0.9437
10 11 3.2164 3.2358 −3.2115 −3.2315 0.7360 0.7376 −0.7578 −0.7659
10 13 3.2836 3.2637 −3.2788 −3.2595 0.4746 0.4674 −0.4989 −0.4965
10 32 −6.5000 −6.4998 6.5000 6.4998 −1.2106 −1.2089 2.1814 2.1823
12 11 −0.0373 −0.0445 0.0376 0.0448 −0.4235 −0.4270 0.4315 0.4351
12 13 −0.0480 −0.0408 0.0484 0.0411 −0.4565 −0.4530 0.4658 0.4622
13 14 3.2305 3.1857 −3.2204 −3.1767 0.0331 0.0181 −0.0957 −0.0930
14 15 0.5427 0.5038 −0.5421 −0.5033 −0.3325 −0.3406 −0.0328 −0.0258
15 16 −2.6579 −2.6752 2.6671 2.6833 −1.4972 −1.5059 1.4154 1.4133
16 17 2.2627 2.2471 −2.2589 −2.2437 −0.4464 −0.4522 0.3529 0.3548
16 19 −4.5075 −4.5124 4.5437 4.5436 −0.5257 −0.5552 0.6387 0.6101
16 21 −3.2138 −3.2616 3.2227 3.2697 0.1921 0.1813 −0.3116 −0.3113
16 24 −0.4986 −0.4782 0.4989 0.4785 −0.9583 −0.9564 0.8927 0.8906
17 18 2.0269 2.0044 −2.0239 −2.0018 0.0857 0.0791 −0.1902 −0.1867
17 27 0.2319 0.2490 −0.2318 −0.2488 −0.4386 −0.4327 0.0977 0.0939
19 20 1.7473 1.7473 −1.7452 −1.7451 −0.1076 −0.1074 0.1507 0.1510
19 33 −6.2910 −6.2905 6.3200 6.3198 −0.5312 −0.5268 1.1194 1.1216
20 34 −5.0548 −5.0544 5.0800 5.0799 −1.1807 −1.1771 1.6838 1.6856
21 22 −5.9627 −6.0169 5.9955 6.0449 −0.8384 −0.8921 1.1366 1.1079
22 23 0.5045 0.4715 −0.5042 −0.4712 0.4259 0.4162 −0.6230 −0.6118
22 35 −6.5000 −6.4997 6.5000 6.4997 −1.5626 −1.5579 2.1725 2.1747
23 24 3.6148 3.4951 −3.5849 −3.4701 0.0564 −0.0051 0.0293 0.0165
23 36 −5.5856 −5.5850 5.6000 5.5995 −0.2794 −0.2740 1.0604 1.0631
25 26 0.6747 0.6433 −0.6732 −0.6420 −0.1637 −0.1729 −0.4119 −0.3988
25 37 −5.3834 −5.3829 5.4000 5.3997 0.6605 0.6655 −0.0197 −0.0171
26 27 2.5887 2.5739 −2.5782 −2.5646 0.7017 0.6927 −0.8527 −0.8532
26 28 −1.4001 −1.4061 1.4087 1.4141 −0.2137 −0.2125 −0.5525 −0.5521
26 29 −1.9054 −1.8993 1.9266 1.9186 −0.2460 −0.2515 −0.6567 −0.6610
28 29 −3.4687 −3.4718 3.4861 3.4875 0.2765 0.2685 −0.3629 −0.3709
29 38 −8.2476 −8.2468 8.3000 8.2996 0.7506 0.7571 0.2704 0.2737
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Table A3. Comparison of Measurements and their Estimations of IEEE 39 Test System for the Summer
Case after the First Step of the Presented Method using Base Model Calculated for 20 ◦C.

Bus
Measured V Estimated V

Bus
Measured V Estimated V

Bus
Measured V Estimated V

p.u. p.u. p.u. p.u. p.u. p.u.

1 1.0393 1.0354 14 1.0079 1.0073 27 1.0352 1.0317

2 1.0481 1.0428 15 1.0104 1.0098 28 1.0492 1.0442

3 1.0274 1.0248 16 1.0285 1.0256 29 1.0493 1.0442

4 0.9991 0.9995 17 1.0306 1.0276 30 1.0499 1.0448

5 1.0017 1.0020 18 1.0279 1.0252 31 0.9820 0.9820

6 1.0044 1.0044 19 1.0496 1.0437 32 0.9841 0.9828

7 0.9932 0.9944 20 0.9907 0.9852 33 0.9972 0.9918

8 0.9927 0.9939 21 1.0276 1.0249 34 1.0123 1.0069

9 1.0383 1.0350 22 1.0492 1.0432 35 1.0494 1.0436

10 1.0154 1.0140 23 1.0437 1.0381 36 1.0636 1.0582

11 1.0103 1.0095 24 1.0345 1.0311 37 1.0275 1.0214

12 0.9976 0.9966 25 1.0578 1.0516 38 1.0265 1.0216

13 1.0117 1.0107 26 1.0514 1.0461 39 1.0300 1.0271

Table A4. Comparison of Measurements and their Estimations of IEEE 39 Test System Generators for
the Summer Case after First Step of the Presented Method using Base Model Calculated for 20 ◦C.

Bus
Measured PGen Estimated PGen Measured QGen Estimated QGen

p.u. p.u. p.u. p.u.

30 250.0000 249.9972 164.0020 164.0519
31 681.8818 681.8766 236.5753 236.6509
32 650.0000 649.9837 218.1425 218.2277
33 632.0000 631.9840 111.9433 112.1604
34 508.0000 507.9868 168.3800 168.5595
35 650.0000 649.9733 217.2478 217.4728
36 560.0000 559.9549 106.0431 106.3141
37 540.0000 539.9658 −1.9722 −1.7094
38 830.0000 829.9622 27.0394 27.3742
39 1000.0000 1000.0021 85.2824 85.5680

Table A5. Estimated Line Temperatures and Objective Function Values j of IEEE 39 Test System for
Summer Case performed at the second stage of presented method.

F. Bus T. Bus Line Temp.
Iter. 1

Iter. 10 Iter. 20 Iter. 50 Iter. 100 Iter. 134

Line Temp.
Estimated Estimated Estimated Estimated Estimated

Line Temp. Line Temp. Line Temp. Line Temp. Line Temp.

1 2 43.991 20 14.625 33.445 43.051 44.022 43.9909
1 39 43.991 20 17.459 19.269 36.558 44.227 43.9905
2 3 62.503 20 32.562 45.176 61.917 62.487 62.5029
2 25 47.015 20 22.477 23.162 45.581 47.022 47.0149
3 4 48.738 20 20.384 27.938 48.730 48.868 48.7378
3 18 42.912 20 19.044 21.168 28.442 36.045 42.9134
4 5 43.059 20 21.794 25.524 43.339 43.070 43.0587
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Table A5. Cont.

F. Bus T. Bus Line Temp.
Iter. 1

Iter. 10 Iter. 20 Iter. 50 Iter. 100 Iter. 134

Line Temp.
Estimated Estimated Estimated Estimated Estimated

Line Temp. Line Temp. Line Temp. Line Temp. Line Temp.

4 14 48.046 20 20.324 23.780 47.934 47.995 48.0457
5 6 45.576 20 22.403 27.878 44.888 45.554 45.5758
5 8 47.77 20 23.647 38.265 48.195 47.776 47.7697
6 7 50.7 20 25.736 40.611 50.876 50.700 50.6997
6 11 60.716 20 26.207 37.559 60.395 60.654 60.7157
7 8 43.293 20 20.211 24.453 43.211 43.285 43.2927
8 9 44.541 20 17.570 26.175 41.429 44.694 44.5408
9 39 44.172 20 21.439 20.205 19.412 44.900 44.1716
10 11 59.993 20 27.715 31.951 60.957 59.970 59.9927
10 13 44.698 20 13.863 17.236 45.640 44.677 44.6977
13 14 44.085 20 17.871 29.703 43.872 44.088 44.0847
14 15 43.712 20 18.441 21.827 43.472 45.327 43.7113
15 16 57.385 20 25.390 37.607 57.552 57.240 57.3850
16 17 45.084 20 17.350 21.965 46.028 45.291 45.0838
16 19 62.316 20 35.958 58.923 62.336 62.318 62.3160
16 21 51.01 20 23.561 55.300 50.920 51.015 51.0099
16 24 43.465 20 17.616 43.561 45.301 43.582 43.4644
17 18 45.84 20 16.529 21.828 50.047 46.451 45.8397
17 27 42.768 20 19.614 18.483 40.271 41.448 42.7681
21 22 70.323 20 53.461 71.710 70.344 70.326 70.3230
22 23 42.768 20 17.981 41.226 40.889 42.644 42.7686
23 24 51.471 20 31.756 53.886 51.502 51.478 51.4709
25 26 43.282 20 18.976 23.207 39.777 44.348 43.2816
26 27 48.877 20 17.963 32.390 49.235 48.930 48.8769
26 28 43.944 20 20.540 23.285 43.769 43.872 43.9438
26 29 44.982 20 20.608 29.907 44.914 44.931 44.9819
28 29 50.298 20 22.630 42.332 50.363 50.272 50.2980

J 94,693.7 4456.05 713.72 1.286 0.0152 9.0× 10−8
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