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Abstract: Microgrid is a community-based power generation and distribution system that interconnects
smart homes with renewable energy sources (RESs). Microgrid efficiently and economically generates
power for electricity consumers and operates in both islanded and grid-connected modes. In this study,
we proposed optimization schemes for reducing electricity cost and minimizing peak to average ratio
(PAR) with maximum user comfort (UC) in a smart home. We considered a grid-connected microgrid
for electricity generation which consists of wind turbine and photovoltaic (PV) panel. First, the problem
was mathematically formulated through multiple knapsack problem (MKP) then solved by existing
heuristic techniques: grey wolf optimization (GWO), binary particle swarm optimization (BPSO), genetic
algorithm (GA) and wind-driven optimization (WDO). Furthermore, we also proposed three hybrid
schemes for electric cost and PAR reduction: (1) hybrid of GA and WDO named WDGA; (2) hybrid of
WDO and GWO named WDGWO; and (3) WBPSO, which is the hybrid of BPSO and WDO. In addition,
a battery bank system (BBS) was also integrated to make our proposed schemes more cost-efficient
and reliable, and to ensure stable grid operation. Finally, simulations were performed to verify our
proposed schemes. Results show that our proposed scheme efficiently minimizes the electricity cost
and PAR. Moreover, our proposed techniques, WDGA, WDGWO and WBPSO, outperform the existing
heuristic techniques.

Keywords: microgrid; heuristic algorithm; energy management; demand side management; demand
response

1. Introduction

Recently, increasing energy consumption has been observed around the globe. Presently, most
power is produced from fossil fuels that increase carbon emissions. To minimize carbon emissions
and fulfill the inevitably increasing electricity demand, scientists have explored the alternative sources
of energy generation, i.e., renewable energy sources (RESs). Moreover, complexity of power system
is significantly increased due to the penetration of RESs. However, the large-scale installation of
RESs to the existing conventional power system will increase the vulnerability of already heavily
loaded power system [1]. For this purpose, the transform of the current electric power system to
the smart grid, i.e., the unification of advanced information and communication technologies (ICTs)
with conventional power grid, is one of the best solutions [2]. These technologies not only exploit the
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stability and reliability of the power system but also enable the smart grid to efficiently incorporate the
RESs and DG.

RESs have gained prominence over traditional and fossil fuel-based energy sources, which also
contribute to environmental degradation. Therefore, policy makers and researchers are being compelled
to think about changing the form of energy generation. The DG emerges with the emergence of RESs [3].
A microgrid is considered as a lower layer of the smart grid, and is an independent small scale power
generation system that supplies power to the electricity consumers [4]. Microgrid operates in three
different modes: grid-connected mode, where it is needed to sell power back or purchase to/from main
grid; off-grid mode, where power is not available from the utility grid; and isolated mode, where utility
grid is in far and remote areas.

Numerous articles have been published about isolated microgrid.The authors discussed stand-alone
microgrid consisting of photovoltaic (PV) source, wind turbine and storage that are mathematically
formulated to design voltage regulation policy and control-based load tracking system. They proposed a
control and energy management policy. According to this strategy, the storage can be charged by constant
current and voltage which increases its lifespan. It was also considered in this study that the power
demand is less than the generated power [5].

The burgeoning population continuously increases the use of electric appliances which results in
increasing power demand. To fulfill this increasing demand of electricity, RESs become lucrative for
scientists because the conventional sources of electricity generation are costly and cause high carbon
emissions. Hence, it is necessary to generate more power locally from RESs. In addition, we have to
optimize the existing power sources to create alternative methods of power generation. To achieve this
end, researchers are working on the utilization of renewable energy generation in power sector to make it
more efficient. A smart grid is a simple conventional electric grid with the use of ICTs integrated, while
microgrid is part of a smart grid. According to the concept of a microgrid, the power could be used
in a reliable and optimized way and more energy will be locally generated. The power of a microgrid
will fulfill the energy requirement along with the considerable reduction in cost and peak-to-average
ratio (PAR).

In smart grid, the common goals of different demand response (DR) and demand side
management (DSM) strategies are the reduction in electricity bill and PAR. Load shifting schemes are
used to achieve balance energy consumption. To design an effective home energy management system
(HEMS), different algorithms are used by research community, e.g. mixed integer linear programming
(MILP) [6], dynamic programming (DP), multi parametric programming (MPP) [7], integer linear
programming (ILP) [8], etc. However, these algorithms have unpredictable energy consumption
patterns and cannot handle a large range of different home appliances. Furthermore, authors in [9–14]
focused on electricity cost reduction and PAR minimization through stochastic, mathematical and
heuristics techniques.

The work presented in [9–14] either focused on specific area (cost reduction, PAR minimization, etc.)
or failed to gain full benefit from the smart grid technologies to present efficient HEMS. The motivation
for this work was to reduce the deficiencies of existing HEMSs. This work introduced an optimized
HEMS. The proposed HEMS minimized the consumer’s electricity cost and PAR with maximum user
comfort (UC) while integrating battery bank system (BBS) and RESs simultaneously in the residential
sector. Moreover, the RTP tariff was used for electricity cost calculation and we implemented four
heuristic techniques, grey wolf optimization (GWO), binary particle swarm optimization (BPSO), genetic
algorithm (GA), and wind-driven optimization (WDO), to achieve aforesaid objectives. We also proposed
three hybrid optimization algorithms: wind-driven GA (WDGA), wind-driven GWO (WDGWO) and
wind-driven BPSO (WBPSO). Part of this work was already published in [15]. The main contributions of
this work are as follows:

• We proposed three hybrid schemes: WDGA, WDGWO and WBPSO.
• This work considered the grid-connected microgrid system with multiple appliances.
• Our proposed work minimized the electricity cost and PAR.
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• By implementing our proposed schemes, user can enjoy maximum comfort.
• Imported electricity was also reduced by integrating microgrid.

The reminder of the paper is organized as follows: literature review is provided in Section 2.
Motivation and problem statement is discussed in Section 3. Section 4 explains the mathematical
formulation of the problem using a mathematical technique called MKP. Energy generation using
PV, wind and BBS charging and discharging are discussed in Sections 4.1–4.3, while Sections 4.4–4.8
discuss the energy consumption, energy pricing and electricity cost, PAR, appliances waiting time
(AWT) and objective function, respectively. Section 5 presents the proposed system model, while the
optimization techniques, GWO, GA, BPSO, WDO, WDGA, WDGWO and WBPSO, are described in
Section 6. In Section 7 simulation results and discussion are provided. Section 8 presents conclusion
and future work.

2. Literature Review

In the literature, significant amount of work has been done in smart grid, microgrid, macrogrid and
hybrid energy generation to optimize energy consumption, energy consumption cost and PAR. Researchers
are further working to introduce alternative methods for local energy generation that are less expensive,
easy to generate and environment friendly. Some research work indicated that the combination of RESs
into residential sector provides the most cost effective solutions. This hybridization of RESs and use of
distributed energy resources (DERs) make energy more flexible, reliable, and sustainable and removes
redundancies. Some related work has been cited below and a summary of the cited work is presented
in Table 1.

The authors proposed a residential microgrid consisting of RESs in [9]. To obtain an efficient
and realistic management, the domestic load was divided into three different types. They introduced
the anxiety range concepts for consumers behavior. The designed model generates a schedule for
all components of the microgrid when operating day-ahead and results show daily cost saving of
10%. The authors discussed the time-of-use (TOU) based energy management system along with
ESS integration in [10]. The economic and technical evaluation is carried out using different battery
technologies. Their experimental results show that the integration of ESS with TOU significantly
reduce the cost.

In [11], a controller strategy was proposed that acts as a controller between grid and PV or wind
generators with battery storage system. The connection device provided the ancillary services. In this
paper, the authors proposed a three-steps control strategy. The methodology managed the collaboration
between RESs and DERs, keeping in view the use of domestic energy. The main objectives of this study
were: user comfort, peak shaving and forming virtual power plants [12].

This work proposed a new decision support and management system (DSEMS) keeping in
view the residential load consumption [13]. The designed system acts as finite state machine (FSM).
The FSM consists of different scenarios based on consumers preferences. The work in [14] discussed
an intelligent home energy management algorithm. The algorithm manages the power consumption
of domestic appliances with DR analysis. The household load is managed using priority and the
total domestic load is constrained below a certain threshold level. The work provide an insight for
performing DR activities for residential consumers. In the next section, the motivation and problem is
explained in detail.

Marc Beaudin et al. provided a comprehensive review of HEMS in [16]. HEMS is an efficient tool
for shifting and reducing the energy production and consumption of a residential area. HEMS plays an
important role for demand response. By considering multiple objectives, i.e., user comfort, energy costs,
load profile and environmental concerns, HEMS creates an optimal energy consumption schedule
for home appliances. A stochastic programming model (SPM) was presented in [17]. The authors
considered the environmental and economic aspects using RESs. Using Monte Carlo method and
roulette wheel mechanism the uncertain parameters are modeled for 24 h duration considering demand
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and supply. The authors formulated the optimization problem as a stochastic multi-objective linear
programming problem.

In [18], the authors presented an efficient HEMS for DSM in residential area. They used the
combination of two pricing schemes for cost calculation: time of use (ToU) and real-time price.
To minimize peak creation, GA is used in this work. Simulation results show that the combination of
TOU and RTP is favourable for cost and PAR reduction. However, there exists a trade-off between the
UC and electricity cost.

The authors in [19] described the scheduling of home appliances. Their objectives was to optimize
electricity consumption pattern. For appliances and the RESs scheduling, MILP was investigated.
They generated electricity locally from RESs and it reduced the electricity cost and the excess energy
generated is sold back to the commercial grid to further minimize the electricity cost. Although RESs
combined with HEMS is useful for both the consumers and the utility, the installation cost of RESs is
expensive for a single home or consumer.

The authors of [20] proposed an optimal energy management model for a grid-connected solar
power and battery hybrid system is discussed. Their model optimizes the electricity cost while keeping
in view constraints such as power balance, solar output and battery capacity limits. They used the
open and closed loop method to dispatch the power flow in real-time based on uncertain distributions.
These two methods led to great cost saving and robust control performance. Furthermore, the authors
did not consider UC.

Table 1. Summarized literature review.

Technique(s) Objective(s) Finding(s) Limitation(s)

GA [18] Electricity cost and PAR reduction Cost and PAR is reduced using
RTP and TOU UC is not considered

MILP [19] PAR and cost reduction with
RESs integration Cost is reduced Expensive for small scale

residential users

OCM and MPC
[20] Electricity bill reduction Optimal energy management

solution and cost saving
AWT for UC is not taken

into account

MIP [21] Optimal scheduling of energy
resources among users Maximizes energy utilization UC is not considered

SCADA [22] A hybrid power generation model Design of hybrid power system UC is not considered

MILP [23] HEMS modeling and
techno-economic sizing

Used single step methodology to
size additional PV and ESS

UC and cost reduction
are ignored

PSO and GA [24] To minimize electricity cost Cost is reduced using PSO and GA To reduce cost UC
is compromised

MILP [25] Reduction of CO2 emission and cost CO2 emission and cost
minimization UC and PAR are not considered

PCPM [26] Design of a distributed EMS EMS is designed using optimal
operation of microgrids PAR and UC are not addressed

MTPSO [27] Cost reduction Cost reduction achieved UC is not discussed

IPSO [28] Peak load reduction They achieve desired objectives UC is compromised and only
passive appliances is considered.

PMU [29] To reduce electricity cost Cost is reduced by peer-to-peer
electricity sharing UC is decreased

A power scheduling problem with RESs and energy storage was investigated in [21].
They prioritized the appliances into five classes and proposed a novel formulation and solution
for this model using mixed integer programming (MIP). MIP made the problem more complex and
could not handle many appliances. They also ignored the UC.

In [22], authors proposed an autonomous hybrid power system (HPS), they used supervisory
control and data acquisition (SCADA) for this purpose. In autonomous HPS, they integrated diesel
generation with wind and solar power, which increases the availability of power. Solar generates DC
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electricity which is converted to AC via inverter. However, they did not consider minimization of
AWT for maximum UC.

The authors in [23] proposed a framework for the HEMS modeling and techno-economical
sizing using MILP. The sizing of additional DG and BBS are discussed for smart home appliances.
They investigated the DR activities for daily energy consumption demand profile as compared to
normal daily energy consumption profile of household appliances. They focused on decreasing cost,
varying load and distributed generation profile for different seasons for DG and BBS. They also
considered different sensitivity analysis keeping in view the impact of variations of economic input for
the provided model for a long-term analysis. However, the authors did not consider minimization
of AWT for UC maximization. The authors in [24] discussed the comparison of GA and particle
swarm optimization (PSO) for computational complexity. Their results illustrate that PSO have lesser
computational complexity to attain a desired result as compared to GA.

In [25], authors presented an operational planning model of microgrid considering multiple DR
programs. They defined two objective functions, cost and CO2 emission, which have been optimized
using epsilon constraint multi-objective optimization. The authors used MILP and did not consider
PAR and optimization of UC.

Authors presented and designed a distributed energy management strategy (DEMS) for the
optimal operation of microgrid. They considered the problem as an optimal power flow problem [26].
In this model, the microgrid central controller and the local controller compute an optimal schedule.
They applied the proposed distributed energy management system (EMS) to a real microgrid consisting
of solar, wind turbines, diesel generators and a BBS. They tested the distributed EMS in both islanded
and grid-connected mode and showed that their proposed algorithm converges quickly. The authors
did not consider UC optimization.

In [27], authors proposed a hybrid energy microgrid model and discussed energy scheduling
problem. Their model consisted of solar, wind power, combined heat energy storage system and
electric vehicle (EV). The objective function was cost optimization, which includes operational, gas,
electric power, storage and EV charging–discharging cost reduction. They proposed a multi-team PSO
(MTPSO) and units, groups and swarm information are used to update velocity. MTPSO has stable
conversion as compared to PSO. However, the authors did not consider UC.

In [28], the improved version of PSO (IPSO) was used for optimization. The goal of IPSO is to
minimize cost. Results illustrate that the user load curve and the objective curve nearly become the
same by the proposed IPSO. On the other hand, electricity price and the objective curve have an inverse
relationship. Power system stability was one of the objective functions, and the proposed scheme
rejected the load in peak hours and thus the UC was compromised. In [29], the authors introduced
the concept of peer-to-peer energy sharing by those who can afford renewable and non-renewable
electricity generation sources such as solar panel, generator and a windmill to those who cannot
afford such sources of renewable energy generation or lack access to main grid. This would create a
marketplace for electricity and self-sufficiency in power market. To this end, an ad hoc microgrid was
introduced using a power management unit (PMU). However, the authors did not reduce PAR. Sheraz
et al. proposed a cost-efficient scheme using cuckoo search and GA in [30]. Their proposed scheme
efficiently minimized the electricity cost but UC is not taken into account. A MILP based HEM scheme
was proposed in [31] for electric cost and imported load reduction from external grid. They integrated
microgrid which consists of wind turbine and solar panel with electrical vehicle (mobile storage).
Simulation results show that their proposed scheme reduces the total cost and imported load.

3. Motivation and Problem Description

With the rapid growth in population, the electricity demand in residential area is also increasing.
The residential sector consumes almost 40% of the electricity [32]. To meet the energy demand, various
methods of power generation have been explored. The existing and outdated power systems cannot
meet the current power demand required by consumers. It is too old and cannot withstand the
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pressure of peak power demand. Increased population has rendered the whole power transmission
and distribution system incapacitated, fragile and worn out. In addition, the existing old power system
is often subjected to power interruptions due to cumbersome maintenance procedures.

The authors designed a HEMS model considering ToU pricing scheme and RES integration in [33].
Their model uses evolutionary algorithms, i.e., cuckoo search, BPSO and GA, to optimally consume
RESs and grid energy. The proposed HEMS model significantly reduced high peaks and electricity cost.
Furthermore, the simulation results show that cuckoo search shows supremacy as compared to other
counter parts. However, they did not consider minimization of AWT for enhancing UC.

In [34], the authors studied the sizing of the storage units and the scheduling of RESs in microgrid.
They considered the uncertain nature of the microgrid and associated load. The authors made a hybrid of
chaos optimization algorithm and BPSO, i.e., chaos BPSO (CBPSO), which shows enhanced global search
capability compared to BPSO. Their results show that CBPSO reduces the electricity cost and microgrid
network losses efficiently. However, the authors did not consider peak reduction and UC maximization.

The authors in [35] provided study of domestic load scheduling problem. To satisfy the budget
of the consumers, the authors proposed a load scheduling algorithm. They considered ToU pricing
scheme to manage the total energy consumption . Mixed integer nonlinear programming (MINLP)
was used for problem formulation. However, this problem was difficult to solve and had high
computational complexity. To reduce the computational complexity and solve the problem easily,
they introduced the generalized bender decomposition approach. They solved the optimization
problem providing optimal load scheduling of appliances having different operation characteristics
and energy consumption pattern. However, by scheduling the appliances and satisfying the budget
limit, the UC was compromised.

Many techniques such as MILP [36], DP [37], convex programming (CP) [38], linear programming
(LP) [39], ILP [40] and bacterial foraging algorithm (BFA) [41] are used to design an efficient HEMS.
However, in some cases, these techniques cannot handle many appliances and their convergence rate
is also very slow. Moreover, with these techniques, the maximization of UC, use of dynamic pricing
schemes and integration of RESs with the system are almost ignored. Therefore, in this work, we
used GWO [42], GA [42], BPSO [43], WDO [44] and the proposed hybrid techniques, i.e., WDGA,
WDGWO and WBPSO, to design an efficient HEMS in term of low cost, energy consumption pattern,
and minimum PAR with maximum UC.

4. Formulation of the Problem Statement

In this section, we have mathematically formulated our problem by defining an objective function
along with few constraints. The detailed description of the formulation is presented as follows.

4.1. PV Generation

The smart home we proposed is equipped with a rooftop PV generation system, as solar
energy is less costly than other RESs (biomass, wind, biogas, tidal and geothermal) and available
everywhere. The Earth receives a huge amount of solar radiation and most of the areas with population
have insulation levels of 150–300 watts/m2 [45]. The output power from a PV panel is given in
Equation (1) [46–48].

PPV−out = PN−PV × (
G

Gre f
)× [1 + KT(Tc − Tre f )] (1)

where total electricity generated by PV is presented by PPV−out, G shows solar irradiation (W/m2), Gre f is
solar radiation at reference conditions (Gre f = 1000 W/m2), the cell temperature at reference conditions is
(Tre f = 25 ◦C), KT is the temperature coefficient (in this work, a value of KT = −3.7× 10− 3(1/◦C) is
adopted) and Tc depicts the cell temperature which is calculated by the Equation (2), [48].

Tc = Tamb + (0.0256× G) (2)
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where Tamb represents the ambient temperature.

4.2. Wind Generation

Wind is a very promising source of renewable energy. USA, China, Germany, Spain, Denmark
and India are the leading countries in power generation from wind using wind turbine. Power from
the wind can be given by the following Equation (3), [49,50].

P = 0.5ArsσV3Pco f f (3)

where Ars shows the rotor swept (blade) area of wind turbine in m2, the air density is represented by σ

in kg/m2, the average wind velocity is shown by V in m/s and Pco f f is a power coefficient which
shows the efficiency of a wind turbine (maximum value of 0.59). The output power available from
wind turbine depends on wind speed and can be given by Equation (4) taken from [51].

Pwt(v) =


0, v ≤ vcut−in , v ≥ vcut−out
(v−vcut−in)

vrated−vcut−in
prated, vcut−in ≤ v ≤ vrated

Prated, vrated ≤ v ≤ vcut−out

(4)

where vrated, vcut−out and vcut−in are the rated, cut-out and cut-in wind speeds, respectively. The rated
output power of wind turbine is shown by Prated. Wind turbine power output and wind speed is given
in Figure 1 [52].

Figure 1. Wind turbine power output and wind speed [52,53].

4.3. BBS

The capacity of the BBS (CWh) is calculated by Equation (5) in time slot t [54].

CWh(t) = (EL × AD)/(ηV × ηB × DOD) (5)

where DOD shows the allowable depth of discharge, EL is daily energy consumption, AD is a number
of autonomy days, and ηV and ηB are the voltage and BBS efficiency, respectively. Energy charging
and discharging by the BBS during the time period from t-1 to t can be given by Equation (6) [55].

CB(t) = CB(t− 1).(1− λ) + PBAT(t) (6)

where CB(t) and CB(t− 1) show the available power (which may consumed by consumer) in BBS at
time slot t and (t-1), respectively. The symbol λ denotes the self-discharge rate of the BBS and it is
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assumed as 0.002 in our study. PBAT(t) is the power from battery bank in time slot t. The value of CB(t)
remains between (CBmin) and (CBmax) during charging operation of the BBS, as given by Equation (7).

CBmin ≤ CB(t) ≤ CBmax (7)

where CBmin and CBmax are minimum and maximum allowable energy levels in the BBS. Furthermore,
the BBS is charged from own microgrid and commercial grid when electricity prices are low, and
charged electricity is used in high price hours.

4.4. Energy Consumption

We assume that t represents a single time slot and T represents total time horizon, which is 24 h.
Set of appliances in home is denoted by S and each appliance is denoted by α and consumes an amount
of energy Eα(t) in time slot t such that t ∈ T.

S = {α1, α2, α3, . . . , αn} .

The daily energy consumption by non-deferrable load (NDL), interruptible load (IL) and must-run
load (MRL) α and the total energy consumed in whole day by all appliances are calculated in
Equations (8)–(11), respectively [56].

ENDL
α =

24

∑
t=1

(
SN

∑
sn=1

ENDL
t,sn∈SN

)
=
{

ENDL
t1,sn∈SN + ENDL

t2,sn∈SN + . . . + ENDL
t24,sn∈SN

}
(8)

EIL
α =

24

∑
t=1

(
SI

∑
si=1

EIL
t,si∈SI

)
=
{

EIL
t1,si∈SI + EIL

t2,si∈SI + . . . + EIL
t24,si∈SI

}
(9)

EMRL
α =

24

∑
t=1

(
SM

∑
sm=1

EMRL
t,sm∈SM

)
=
{

EMRL
t1,sm∈SM + EMRL

t2,sm∈SM + . . . + EMRL
t24,sm∈SM

}
(10)

Etotal
α = ENDL

α + EIL
α + EMRL

α =
24

∑
t=1

(
SN

∑
sn=1

ENDL
t,sn∈SN +

SI

∑
si=1

EIL
t,si∈SI +

SM

∑
sm=1

EMRL
t,sm∈SM

)
(11)

where ENDL
t1,sn∈SN + ENDL

t2,sn∈SN + . . . + ENDL
t24,sn∈SN , EIL

t1,si∈SI + EIL
t2,si∈SI + . . . + EIL

t24,si∈SI and
EMRL

t1,sm∈SM + EMRL
t2,sm∈SM + . . . + EMRL

t24,sm∈SM are the energy consumption of NDl, IL and MRL appliances,
respectively, denoted by α. Etotalandα is the total energy consumption of NDL, IL and MRL appliances.

4.5. Energy Pricing and Electricity Cost

Many pricing schemes in existence are defined per unit energy cost. Some of the pricing schemes
are RTP, peak pricing (PP), critical peak pricing (CPP), TOU pricing, real-time market pricing (RTMP),
non-critical peak (NCP), locational marginal pricing (LMP), hourly pricing (HP), and critical peak
pricing with rebate (CPP-R) [57,58]. However, most of the work on appliances scheduling consists of
the DAP or TOU pricing scheme. In TOU scheme, the time is divided into multiple time slots. In this
work, we use RTP scheme, which remains constant for one time slot and varies from one slot to another
slot. The electricity cost against each class (NDL, IL and MRL) of appliances and total electricity cost of
all appliances are calculated by Equations (12)–(15), respectively.

Endl
ps (t) =

24

∑
t=1

(
SN

∑
snα=1

(
E(ndlsnα,t) ×Yndlsnα(t)

)
× PSrtp(t)

)
(12)

Eil
ps(t) =

24

∑
t=1

(
SI

∑
siα=1

(
E(ilsiα,t) ×Yilsiα(t)

)
× PSrtp(t)

)
(13)
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Emrl
ps (t) =

24

∑
t=1

(
SM

∑
smα=1

(
E(mrlsmα,t) ×Ymrlsmα(t)

)
× PSrtp(t)

)
(14)

Etotal
ps (t) = Endl

ps (t) + Eil
ps(t) + Emrl

ps (t) (15)

Yndlsnα(t) =

{
1 if snα is on

0 if snα is off
(16)

Yilsiα(t) =

{
1 if siα is on

0 if siα is off
(17)

Ymrlsmα(t) =

{
1 if smα is on

0 if smα is off
(18)

where PSrtp(t) is RTP signal in time slot t. Yndlsnα(t), Yilsiα(t) and Ymrlsmα(t) are the ON/OFF state of
NDL, IL and MRL appliances as shown in Equation (16)–(18), respectively. Endl

ps (t), Eil
ps(t) and Emrl

ps (t) are
the electricity prices of NDL, IL and MRL appliances in time slot t, respectively. ps show the price signal,
while snα, siα, smα, ndlsnα, ilsnα, and mrlsnα represent NDL, IL and MRL appliances and SN, SI and SM
represent the set of appliances of NDL, IL and MRL, respectively.

4.6. PAR

PAR balancing is necessary to bring equilibrium of demand and supply between consumers and
utility. The PAR is very important for cost savings, achieving stable system and increasing spinning
reserve system capacity. The PAR also helps in reducing peak load demand, peak power plants cost,
transmission line losses, increasing of electrical equipment life, etc. Let the peak and average load of
the smart home be denoted by LP and LA, respectively. Then, the PAR of the demanded load ΓPAR can
be given in Equation (19) [59].

ΓPAR =
LP
LA

(19)

4.7. AWT

Let Υtαwt denote the AWT of all smart appliances. Tαw is an AWT term which introduces the start
time, stop time, maximum waiting time, length of operation time (LOT), and minimum waiting time
of appliances α such that 0 ≥ Tαw ≤ Tmw. Now, the AWT α can be given by Equation (20) [60].

Υtαwt =
To

αw − Tst
αw

Tmw − Tl
(20)

where Υtαwt is appliance α waiting time, To
αw is the appliance α ON time, Tst

αw is the appliance α start
time, Tl is the appliance α LOT and Tmw is the appliance α maximum waiting time.

The AWT is 0 if start time and on time are equal, i.e., (To
αw = Tst

αw). On the other hand, if the
earliest starting time of any appliance and ON time (when any appliance starts execution) is different,
i.e., (To

αw 6= Tst
αw), then consumer has to wait to perform the operation of the appliance.

4.8. Objective Function

The reduction in electricity cost, PAR and AWT for maximum UC were the basic objectives of this
study which are achieved by proper management of smart appliances. PAR reduction is important
for both utility and consumers to minimize the operation time of peak power plants and backup
generators. We supposed that there is single smart home (electricity consumer) in a residential area
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with HEMS and is consuming electricity from commercial grid and owned microgrid. Furthermore,
our proposed schemes did not affect any liberalized electricity market. We formulated the optimization
problem using MKP. From a set of appliances, we selected an appliance for a particular hour to be
ON or OFF. Each appliance has a single unique weight and value, which shows the ON/OFF state
and power rating, respectively. To allow any smart appliance to perform its operation in particular
time slot, EMC decides based on defined objective function (Equation (21)). The constraints must be
satisfied by the total weight i.e., the total energy consumed by appliances is explained in Equation (21)
and the constraints in Equations (22)–(24).

Objective function:

min

((
Endl(t) + Eil(t) + Emrl(t)−

(
EPV(t) + EWD(t)

)
− BS(t)

)
× Prtp(t)

)
(21)

Subject to:

Enim(t) ≤ Eug(t) + EPV(t) + EWD(t) + BS(t), ∀ 1 ≤ t ≤ 24 (22)

Enim(t) = ENDL
req + EIL

req + EMDL
req (23)

t0 ≤ tsch ≤ tmax (24)

where Endl(t), Eil(t) and Emrl(t) are the energy consumption of NDL, IL and MRL appliances in time
slot t, respectively. EPV(t), WD(t) and BS(t) are the available energy from PV, wind and battery in
time slot t, respectively. Enim(t) is the total energy consumption caused by all smart appliances in
particular time slot t. Eug(t) is the available energy from utility grid that a consumer can import in
time slot t. Emin

unsch is the minimum amount of energy consumed in unscheduled case. t0 and tmax

are the lower and upper limit of scheduling horizon, respectively. tsch shows the scheduling time of
appliances. In Equation (23), constraint is defined to bring balance between the energy of demand
and supply.

5. System Model

In proposed system model, each electricity consumer has a HEMS. The smart user uses RESs,
BBS, and energy from the electric grid for meeting their load requirements. Here, the RESs consists
of PV and wind turbine and Table 2 shows the assumed rating of the system model components.
The appliances are scheduled to minimize electricity expenses, PAR and maximum UC. Furthermore,
the appliances are categorized into three classes by consumers, i.e., NDLAs, which cannot be shifted to
another time slot; NDLAs have start and end points to describe its time-span and we assumed that
consumer cannot compromise in these type of appliances; and ILA, the load of particular consumers
that, according to the agreement, can be cut off by the supply undertaking for a limited period. Its
operation can be suspended in the middle. The interruptible appliance has a task having various
sequences of operation which can be interrupted. MRLA must be run immediately at any time. These
appliances are not shiftable, non-deferrable and non-interruptible. They must be run at any cost,
as presented in Table 3. Furthermore, all appliances considered in this work are connected to an
alternating current (AC) system.

The proposed system model is shown in Figure 2 and consists of smart meter (SM), energy
management controller (EMC), smart scheduler unit (SMSU), advanced metering infrastructure (AMI),
PV and wind power generation system, solar charge controller, DC/AC inverters, appliances and BBS.

Bi-directional communication between consumers and utility is only possible by integrating AMI,
and works as a backbone for the smart grid. The responsibility of AMI includes the hourly load
demand and the electricity rates between utility and SM. Utility and smart home communicate with
each other via SM, which acts as a communication gateway between them. The processing, reading,
and sending of energy consumption data and receiving of pricing signals are the main function of an
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SM. RESs are the real alternative sources of local power generation to fossil fuel. RESs mainly consist of
PV system, fuel cells, hydro and wind turbines, while, in our case, they consist of PV and wind turbine.
PV panel generates electricity which is DC and then converted to AC via converter. A BBS works as
a both sink and source of energy and is considered as a suitable solution for RES integration in the
residential sector. Therefore, in the proposed system model, BBS power is used to exploit the PV and
wind system energy efficiently and to alleviate the electricity cost and PAR. An SMSU is programmed
using heuristic algorithms and works in between the SM and EMC. The optimal energy consumption
pattern for all appliances is generated by SMSU and then it sends the scheduling pattern to the EMC
for further processing. EMC control the BBS and operation of all appliances according to the generated
scheduled by SMSU. EMC is the core of the proposed system model.

Table 2. Power rating of system model components.

Component Rating

Battery 1.2 kWh
Wind turbine 10 kW
Solar panel 230 W

Table 3. Appliances classification.

Non-Deferrable Loads Interruptible Loads Must-Run Loads

Home lightings Water heater Fans
Fan PEV Optional lightings
Exhaust fan Iron Heated towel rails
Desktop PC Pool Pump Personal computer
ESS Refrigerator Television
Washing machine Out-door lightings Electric clock

Figure 2. Block diagram of system model.



Energies 2018, 11, 1002 12 of 39

6. Optimization Techniques

The objective function for optimization of appliances scheduling discussed in Section 4.8
was solved using nature-inspired algorithms such as GWO, WDGWO, GA, BPSO, WDO, WDGA and
WBPSO. Therefore, we adopted heuristic technique to solve our optimization problem. Furthermore,
heuristic algorithms provide alternative ways for solving complex problems and have better
performance as compared to other techniques.

6.1. GWO

GWO algorithm represents the hunting mechanism and leadership hierarchy of grey wolves which
is proposed in [61]. To understand the leadership hierarchy, there are four types of wolves, i.e., alpha,
beta, delta and omega. To perform optimization, four main steps are implemented in GWO, i.e., hunting,
searching, encircling and attacking prey. Grey wolves always live in a pack with average size of 12–15.
Encircling prey can be mathematically given in Equation (25) and (26) below.

~D = |~C× ~Xp(t)− ~X(t)| (25)

~X(t + 1) = ~Xp(t)− ~A× ~D (26)

where ~A and ~C are coefficient vectors, t represents the current iteration, the position vector of the prey
is represented by ~Xp, and the position vector of a grey wolf is shown by ~X. To update the position of
the search agents, Equations (27)–(33) are used.

~Dα = |~C1 × ~Xα − ~X| (27)

~Dβ = |~C2 × ~Xβ − ~X| (28)

~Dδ = |~C3 × ~Xδ − ~X| (29)

~X1 = ~Xα − ~A1 × ~(Dα) (30)

~X2 = ~Xβ − ~A2 × ~(Dβ) (31)

~X3 = ~Xδ − ~A3 × ~(Dδ) (32)

~X(t + 1) =
~X1 + ~X2 + ~X3

3
(33)

With the help of these equations, a search agent updates its position in n-dimensional search
space. The position is updated according to alpha, beta and delta. The parameters used for GWO are
given in Table 4.

Table 4. Parameters of GWO.

Parameters Value

Total iterations 50
Population size 200
~α 2 to 0
Random vectors r1, r2 0, 1
n 18



Energies 2018, 11, 1002 13 of 39

6.2. GA

GA belongs to heuristic optimization family and is inspired from the genes of living organisms.
GA works on the basis of iteration and having different possible iterations with different possible
solutions [62]. The structure of GA consists of binary coded chromosomes which are randomly
initialized. The ON/OFF state of the appliances is represented by the binary coded chromosomes
pattern of GA and length of chromosomes show the total number of smart appliances represented
in Equation (34).

Chromosomes length = Number of household appliances (34)

With the creation of initial population, the fitness function of GA is evaluated as the objective
function of this study. The new population is generated by implementing mutation and crossover
operators. The parameters used in this work are presented in Table 5.

Table 5. Parameters of GA.

Parameters Value

Number of iterations 50
Population size 200
Probability of mutation 0.1
Probability of crossover 0.9
n 18

A whole new generation will be produced if crossover probability is 100%, while the new
generation produced will be an exact copy of the parents if the probability of crossover is 0%. However,
pre-mature convergence to the suboptimal solution is avoided by larger crossover rate for optimization
problems, which is why 90% is the best crossover rate, as given in Equation (35) below.

Probability of crossover = 0.9 (35)

The mutation process is used for randomness creation in the results. One or more genes are
mutated in a chromosome from its original state. The probability of mutation is given below:

Probability of mutation = 1-Probability of crossover (36)

After crossover and mutation process, the generated population and its fitness are compared with
the previous individuals.

6.3. BPSO

BPSO is a discrete variant of PSO and consists of four main steps, i.e., particle’s initial position and
initial velocity, and local and global best positions among the particles. The PSO randomly generates and
disperses population in the search space. BPSO updates velocity and position by following Equations (37)
and (38), respectively [63,64].

Vid(t) = Vid(t− 1) + c1r1(Pbestid(t− 1))− Xid(t− 1)) + c2r2(gbestid(t− 1)− Xid(t− 1)) (37)

where Xid(t), Xid(t − 1), Vid(t), and Vid(t − 1) are the position and velocity of particle i in the d
dimension at time slots t and t-1, respectively. Pbestid(t− 1) and gbestid(t− 1) are the best positions
obtained by particle i and swarm in d dimension in time slot t and t-1, respectively. c1 and c2 are the
two acceleration coefficients. r1 and r2 are random numbers between 0 and 1. The sigmoid function
for position is given below.
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sig(Vt+1
i (j)) =

1
1 + exp(−Vt+1

i (j))
(38)

where Vt+1
i shows the velocity of the particle. The parameters of BPSO are explained in Table 6.

Table 6. Parameters of BPSO.

Parameters Values

Number of iterations 50
Swarm size 200
Maximum velocity 4
Minimum velocity −4
Initial weight constant 2
Final weight constant 0.4
Local pull 2
Global pull 2
n 18

6.4. WDO

WDO is a heuristic optimization algorithm. Instead of particles in BPSO, it works on the basis
of atmospheric motion of air parcels. WDO is differentiated from the other heuristic techniques
due to the existence of forces. Friction force resists the motion of air parcels in forward direction.
Gravitational force is a vertical force. Coriolis force deflects the air parcels in the atmosphere. Pressure
gradient moves the parcels in the forward direction. These forces can be mathematically represented
in Equations (39)–(42) [44].

FCr = −2Ω× ν (39)

FGv = ηψν× g (40)

Fprg = −∆ηψν (41)

FFr = −ηϕν (42)

where FCr and Ω show Coriolis force and earth rotation, respectively. ν is wind velocity, FGv is
gravitational force, η is air density, ψν is air finite volume, g is acceleration of gravity, pressure gradient
force is presented by Fprg, ∆ shows pressure gradient, FFr is friction force and ϕ is friction coefficient.

Equations (43) and (44) [44] represent the air parcel’s position and velocity.

ν
p
i+1 = ((1− ϕ)ν

p
i − gxp

i + [RT|1
r
− 1|(xgbest − xp

t )] +
cν

p
i

r
(43)

and
xp

i+1 = xp
i + ν

p
i+1 (44)

where ν
p
i and ν

p
i+1 represent the current and new velocity of the air parcels, respectively. xp

t and xp
i+1

show the current and new positions of the air parcels, respectively. xgbest is the global best position.
R, T, ϕ, g and c are universal gas constant, temperature, the coefficient of friction, gravity and Coriolis
force, respectively. r is a variable value for the rank of air parcels.

Random solutions are created by WDO and then a new population is generated by updating
the velocities and evaluating the fitness function. To attain an optimal appliances pattern, the fitness
function of updated and previous generation of air parcels are compared. The term pressure in WDO
is fitness function, i.e., in GA, PSO and BPSO. The parameters of WDO are described in Table 7.
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Table 7. Parameters of WDO.

Parameters Values

Total iterations 50
Population size 200
dimMin −5
dimMax 5
vmin −0.3
vmax 0.3
Universal gas constant 3
n 18
Gravity 0.2
Coefficient of friction 0.4

6.5. WDGA

WDGA is the hybrid of GA and WDO. In WDGA, first, steps of the WDO are performed, i.e.,
initialization of population and selection. Then, instead of using velocity updating step of WDO,
crossover and mutation operators from GA are performed for the generation of new population to
ensure diversity in the solution. The reason for replacing velocity step of WDO with crossover and
mutation operators of GA is the increase in time complexity which degrades the performance of WDO
when the input value is large. Thus, in our work, WDGA generated random solutions in the form of 0
and 1 (0 and 1 show the appliance status OFF and ON, respectively). After initialization of population,
these solutions were evaluated according to our defined objective function (minimum electricity cost
and PAR) in Equation (21). The proposed WDGA algorithm is given in Algorithm 1 and its parameters
are given in Table 8.

Table 8. Parameters of WDGA.

Parameters Values

Number of iterations 50
Parcels size 200
Dimensions [−1, +1]
Maximum velocity 0.4
Universal gas constant 3.0
Gravity 0.2
Coefficient of friction 0.4
Crossover rate 0.9
Mutation rate 0.1

6.6. WDGWO

WDGWO is an optimization technique that is developed by GWO and WDO algorithms.
The WDGWO works initially the same as GWO, however, the position of the search agents of the GWO
is replaced by iterative velocity updating parameter of the WDO. In WDO, velocity updating step is
better for new generation as compared to GWO updating method. This hybrid version of GWO and
WDO gives better results than GWO and WDO, separately. In our work, the initial population (in the
form of 0 and 1) was generated on the basis of wolves, i.e., alpha, beta, delta and omega. The selection
was also performed according to our objective function by GWO and velocity updating is performed
to regenerate best population. In every iteration, our proposed WDGWO found local best solutions
and finally it found the global best on the basis of local solutions. The pseudocode of the WDGWO is
shown in Algorithm 2. Table 9 shows the parameters that are used for simulations in WDGWO.
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Table 9. Parameters of GWDO.

Parameters Values

Number of iterations 50
Population size 200
Dimensions [−1, +1]
Maximum velocity 0.4
Universal gas constant 3.0
Gravity 0.2
Coefficient of friction 0.4
~α 2 to 0
Random vectors r1, r2 0, 1
n 18

6.7. WBPSO

In this section, we discuss WBPSO algorithm which merges WDO and BPSO. The WBPSO
algorithm is more efficient in solving optimization problems as compared to WDO and BPSO because
WBPSO consists of the best properties of both aforementioned algorithms. The pseudocode of this
hybrid algorithm is shown in Algorithm 3. The WBPSO works similarly to BPSO, i.e., random
population generation, finding the local and global best positions of particles by changing velocity,
and updating position of the particles in each iteration. When the stopping criteria are fulfilled,
the algorithm stops working and generates random solutions that are different from the previous
results. In our work, population generation step was performed by BPSO in binary form (0 and 1 show
OFF and ON status of each appliance, respectively). After population generation, best solutions were
selected on the basis of our defined objective function in Equation (21). WDO wind pressure was used
for new solution generation. Finally, the global best solutions (for each hour) were selected having
minimum electricity cost and PAR. The parameters of WBPSO are given in Table 10.

Table 10. WBPSO parameters.

Parameters Values

Number of iterations 50
Population size 200
Dimensions [−1, +1]
Maximum velocity 0.4
Minimum velocity −4
Initial weight constant 2
Final weight constant 0.4
Local pull 2
Global pull 2
Gravity 0.2
Coefficient of friction 0.4
n 18
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Algorithm 1 WDGA
Input: set of appliances α or population;
Initialization genetic parameters: peak hour, off peak hour, t = 0, H, vmax, vmin, no of iteration;
Initialization wind driven parameters: dimMin, dimMax, dim, param.rt, param.g, param.alp,
param.c;

1: for t = 1→ 24 do
2: for h = 1→ H do
3: Generate population randomly;
4: for h = 1→ P do
5: Fitness calculation;

Select best population, pop save in pop1;
Status check of appliance using peak hour and off peak hour;

6: if t == peak hour then
7: Shift on RESs and BBS;
8: OR wait for off peak hour;
9: if Consumption == high then

10: Check remaining t of all App and check LOT until it is 0 ;
11: end if
12: end if
13: end for
14: Generate new population;
15: Replace the genetic operators by particles pressure;
16: Evaluate and find air parcels (population) pressure;
17: for K = 1→ swarm do
18: for h = 1→ n do
19: x(K,h) = (dimMax - dimMin) * ((x(K,h)+1)./2) + dimMin;
20: Pres(K,h) = sum (x(K, h).2);
21: end for
22: end for
23: Save air parcels value in pop2;
24: Check and find air parcels velocity;
25: Vel = min(vel, maxV); and vel = max(vel, -maxV);
26: Find and update air parcel positions;
27: x = x + vel; and x = min(x, 1.0); and x = max (x, -1.0);
28: Finding best particle in population
29: Globalpres, indx = min (pres); and globalx = x (indx, :);
30: Find min location for this iteration
31: Minpres, indx = min (pres); and minpos = x (indx, :);
32: Rank the air parcels: sortedpres rankind = sort (pres);
33: Sort the air parcels position, velocity and pressure:
34: Pres = sortedpres;
35: Updating the global best:
36: Better = minpres < globalpres;
37: if Solution = better then
38: Globalpres = minpres;
39: Globalpos = minpos;
40: end if
41: Save the velocity and position value in pop3;
42: Select from pop2 and pop3;
43: New velocity and position of air parcels;
44: if Solution == infeasible then
45: Update solution;
46: Update with sol in pop2 and pop3;
47: end if
48: Update pop best solution;
49: Update t = t+1 till 24 h;
50: Terminate when t = 24 h or iter = Max;
51: end for
52: end for
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Algorithm 2 WDGWO
Input: set of appliances α or population;
Initialization grey wolf parameters: Max iter, Np, D, alpha, beta, delta, search agents;
Initialization wind driven parameters: dimMin, dimMax, dim, param.rt, param.g, param.alp,
param.c;

1: Randomly initialize the position of search agents i.e., positions = rand (Np, D);
2: Evaluate the position of search agents
3: while iter < itermax do
4: for i = 1 : size (positions, 1) do
5: Calculate objective function for each search agent

Fitness = sum (electricity cost * positionsx); Update alpha, beta and delta
6: if Fitness < alpha− score then
7: Alpha− score = f itness;
8: Alpha− pos = positions(i : 1);
9: end if

10: if Fitness < alpha− score and f itness < beta− score then
11: Beta− score = f itness;
12: Beta− pos = positions(i : 1);
13: end if
14: if Fitness > alpha− score and f itness > beta− score and f itness < delta− score then
15: Delta− score = f itness;
16: Delta− pos = positions(i : 1);
17: end if
18: end for
19: a = 2− l ∗ ((2)/Max− iter); a value linearly from 2 to 0
20: for i = 1: size (positions, 1) do
21: for j = 1: size (positions, 2) do
22: r1, r2 randomly initialize the value between 0 to 1
23: Vel = maxV * 2 * (rand (Np, D)-0.5)
24: for i = 1→ Np do
25: for j = 1→ D do
26: Velot (i, j) = vel (i, j);
27: Vel (i, j) = ( 1 - alp ) * vel (i, j) - ( g * positions (i, j)) + abs (1 - 1/i) * (((positions (i, j) -

positions (i, j))).* RT ) + ( c * velot (i, j) / i)
28: if ((vel (i, j) < vmax) and (vel (i, j) > vmin)) then
29: Velot (i, j) = vel (i, j);
30: else if ( vel (i, j) < vmin ) then
31: Vel (i, j) = vmin
32: else if (vel (i, j) > vmax) then
33: Vel (i, j) = vmax;
34: end if
35: Position updating
36: Sig (i, j) = 1/(1+exp (-vel (i, j)));
37: if rand (1) < sig (i, j) then
38: Positions (i, j) = 1;
39: else
40: Positions (i, j) = 0;
41: end if
42: end for
43: end for
44: end for
45: end for
46: end while



Energies 2018, 11, 1002 19 of 39

Algorithm 3 WBPSO

Require: Number of particles, swarm size, tmax, electricity price, LOT and appliance power consumption rating
Require: vmax, vmin, no of iter, c1, c2, param.RT, param.g, param.alp, param.c, dimMin, dimMax, dim

1: Randomly generate the particles’ positions and velocities
2: Pgbest ← ∞
3: for t = 1 to swarmsize do
4: Initialize (swarmsize, tbits)
5: Pvel ← randomvelocity ()
6: Ppos ← randomposition (swarmsize)
7: Plbest ← Ppos
8: end for
9: for h = 1 to 24 do

10: Validate constraints
11: for i = 1 to M do
12: if f (σi) < f (plbest, i) then
13: plbest, i ← σi
14: end if
15: if f (Plbest, i) < f (Pgbest, i) then
16: Pgbest, i ← Plbest, i
17: else
18: Pgbest, i ← Pgbest, i
19: end if
20: Decrement one from the TOT of the working appliance
21: if Ecost > Emaxcost then
22: if ETOTRESs > Eloadh

then
23: Switch the load to RESs and BBS
24: else
25: Consume the grid energy
26: end if
27: end if
28: Return Pgbest, i
29: Vel = maxV * 2 * (rand (swarm, n)-0.5);
30: for i = 1 : swarm do
31: for j = 1 : n do
32: Velot (i, j) = vel (i, j);
33: Vel (i, j) = ( 1 - param.alp ) * vel (i, j) - ( param.g * pres (i, j)) + abs (1 - 1/i) * (((pres (i, j) - pres (i,

j))).*param.RT) + (param.c * velot (i, j) /i);
34: if ((vel (i, j) < = vmax) and (vel (i, j) >= vmin)) then
35: vel (i, j) = vel (i, j);
36: elseif ( vel (i, j) < vmin); vel (i, j) = vmin; elseif ( vel (i, j) > vmax); vel (i, j) = vmax;
37: end if
38: Sig (i, j) = 1 / ( 1 + exp ( -vel (i, j)));
39: if rand (1) < sig (i, j) then
40: x (i, j) = 1;
41: else
42: x (i, j) = 0;
43: end if
44: end for
45: end for
46: Check velocity: vel = min (vel, maxV); vel = max (vel, -maxV);
47: Update air parcel positions: x = x + vel; x = min (x, 1.0); x = max (x, -1.0);
48: Evaluate population: (pressure)
49: Finding best particle in population
50: Globalpres, indx = min (pres); globalx = x (indx, :);
51: Min location for this iteration
52: Minpres, indx = min (pres); minpos = x (indx, :);
53: Rank the air parcels;
54: Sorted-pres rank-ind = sort (pres);
55: Sort the air parcels position, velocity and pressure;
56: Pres = sorted-pres;
57: Updating the global best;
58: Better = minpres < globalpres;
59: if Better then
60: Globalpres = minpres; globalpos = minpos;
61: end if
62: end for
63: end for
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7. Simulation Results and Discussion

This section shows the detailed results of the simulations that we performed in MATLAB to
validate our proposed schemes. In our work, we uncovered the effect of microgrid integration and
effect of temperature and wind speed on the electricity generation from PV panel and wind turbine,
respectively. The heuristic algorithms GA, GWO, BPSO, and WDO as well as proposed WDGA,
WDGWO and WBPSO were used to evaluate the performance of our proposed scheme in terms of
electricity cost, PAR and AWT with and without RES integration.

7.1. RTP Scheme

Figure 3 explains the RTP signal in each time slot. The price signal is given in cents/kWh. In time
slot 1, the price is 10 cents/kWh and during 2.5–4.5 the price is 10.4 cents/kWh. During time slot 8,
the price is highest, i.e., above 25 cents/kWh. During time slots 10–16, the price is reduced and remains
20–10 cents/kWh. During time slots 14–24, the price signal is stable and remains below 10 cents/kWh.

Figure 3. RTP pricing scheme.

7.2. Energy Consumption Profile

Total energy consumption of all appliances is discussed in this section. The energy consumption
behavior can be described by defining some arbitrary thresholds. The thresholds of the load defined
are 15 kW is a high peak, 12–14 kW is peak load, 5–8 kW is moderate load, 3–5 kW is minimum load
and 1–2 kW is the negligible load. The hourly energy consumption with and without RES integration
is shown in Table 11. Approximately 66% of the energy is use from grid and 34% from RESs. Table 12
shows cost for each hour randomly taken with and without RES integration. After the integration
of RESs, the hourly difference and percentage cost reduction with and without RES integration is
depicted in Table 12. Table 13 shows similar statistics but for total daily cost.



Energies 2018, 11, 1002 21 of 39

Table 11. Energy consumption with and without RESs.

Technique Total Energy
Demand(kW)

Imported Energy
from Utility (kW)

Difference
(kW)

Reduction
(%)

Unscheduled 156.5000 156.5000 0.0000 0.0000%
GA scheduled 156.5000 156.5000 0.0000 0.0000%

BPSO scheduled 156.5000 156.5000 0.0000 0.0000%
WDO scheduled 156.5000 156.5000 0.0000 0.0000%
GWO scheduled 156.5000 156.5000 0.0000 0.0000%

WDGA scheduled 156.5000 156.5000 0.0000 0.0000%
WDGWO scheduled 156.5000 156.5000 0.0000 0.0000%
WBPSO scheduled 156.5000 156.5000 0.0000 0.0000%

Unscheduled + RESs 156.5000 103.5+53 53.0000 33.860%
GA scheduled + RESs 156.5000 103.5+53 53.0000 33.860%

BPSO scheduled + RESs 156.5000 103.5+53 53.0000 33.860%
WDO scheduled + RESs 156.5000 103.5+53 53.0000 33.860%
GWO scheduled + RESs 156.5000 103.5+53 53.0000 33.860%

WDGA scheduled + RESs 156.5000 103.5+53 53.0000 33.860%
WDGWO scheduled + RESs 156.5000 103.5+53 53.0000 33.860%
WBPSO scheduled + RESs 156.5000 103.5+53 53.0000 33.860%

Table 12. Hourly cost with and without RESs.

Technique Cost (Cents/hour) Difference (Cents/hour) Reduction (%)

Unscheduled 103.9500 0.0000 0.0000%
GA scheduled 84.6842 0.0000 0.0000%

BPSO scheduled 64.3556 0.0000 0.0000%
WDO scheduled 96.3625 0.0000 0.0000%
GWO scheduled 77.9125 0.0000 0.0000%

WDGA scheduled 83.1125 0.0000 0.0000%
WDGWO scheduled 71.2750 0.0000 0.0000%
WBPSO scheduled 73.1100 0.0000 0.0000%

Unscheduled + RESs 72.8857 31.0643 42.6205%
GA scheduled + RESs 55.9129 28.7713 33.9700%

BPSO scheduled + RESs 44.0948 20.2608 31.4800%
WDO scheduled + RESs 51.5500 44.8125 46.0500%
GWO scheduled + RESs 53.6400 24.2725 31.1500%

WDGA scheduled + RESs 54.0355 29.0770 34.9800%
WDGWO scheduled + RESs 41.2500 30.0250 42.1200%
WBPSO scheduled + RESs 32.8900 40.2200 55.0100%

Table 13. Total cost of one day with and without RESs.

Technique Cost (Cents/day) Difference (Cents/day) Reduction (%)

Unscheduled 2494.8000 0.0000 0.0000%
GA scheduled 2032.4000 0.0000 0.0000%

BPSO scheduled 1544.5000 0.0000 0.0000%
WDO scheduled 2257.7000 0.0000 0.0000%
GWO scheduled 1869.9000 0.0000 0.0000%

WDGA scheduled 2174.7000 0.0000 0.0000%
WDGWO scheduled 1870.6000 0.0000 0.0000%
WBPSO scheduled 1474.7000 0.0000 0.0000%

Unscheduled + RESs 1781.0814 713.7186 40.0722%
GA scheduled + RESs 1341.9000 690.5000 33.9700%

BPSO scheduled + RESs 1058.3000 486.2000 31.4700%
WDO scheduled + RESs 1237.4000 1020.3000 45.1900%
GWO scheduled + RESs 1287.4000 582.5000 31.1500%

WDGA scheduled + RESs 1196.9000 977.8000 44.9600%
WDGWO scheduled + RESs 810.0805 664.6195 35.5200%
WBPSO scheduled + RESs 900.5800 574.12000 38.9300%
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7.2.1. Energy Consumption with and without RESs

Figures 4–6 show the energy consumption profile of the consumers without and with RES
integration. The energy consumption pattern can be seen in Figure 4 by heuristic algorithms, in the
case of unscheduled, GA, WDO, and WDGA and after the integration of RESs. In Figure 5, the energy
consumption pattern is shown for unscheduled, GWO, WDO and WDGWO and the integration of
RESs. Figure 6 shows the energy consumption pattern by unscheduled, BPSO, WDO and WBPSO.
Figure 4 shows the energy consumption pattern via GA, WDO and their hybrid version, i.e., WDGA.
It can be seen in Figure 4 that, after integrating RESs, the consumption pattern changes in each hour.
During time slots 6–13, the unscheduled load is high and reaches 15 KW. The peak load by GA during
time slots 4–6 can be seen in both subplots in Figure 4: without RES integration it is 14 KW and with
RES integration it is below 10 KW. Similarly, the peak load by WDO during time slots 1, 11 and 15 is
equal to or slightly above 14 KW, while after RES integration it is significantly below 14 KW. The energy
consumption pattern of WDGA and WDGA-RESs can also be compared in both subplots.
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Figure 4. Energy consumption profile by WDGA.
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Figure 5 represents the energy consumption with GWO, WDO and their hybrid, i.e., WDGWO.
The unscheduled load is similar in both subplots, while the load by GWO and GWO-RESs can be
seen in both subplots, which show a significant reduction after the integration of RESs. The reduction
by WDO can also be observed in both subplots in Figure 5. The pattern of energy consumption
by WDGWO and WDGWO-RESs is also shown in both subplots. Figure 6 represents the energy
consumption pattern of appliances by unscheduled, BPSO, WDO and their hybrid, i.e., WBPSO.
The unscheduled load is the same in both cases, while the energy consumption pattern by BPSO can be
seen in both subplots. The peak load is equal to 8 KW in the case of without RES integration and below
6 KW in the case of RES integration. The energy consumption by WDO can also be seen in both cases,
which show significant load optimization. The consumption patterns by WBPSO and WBPSO-RESs
can be seen in Figure 6. All the hybrid versions of the proposed algorithms, i.e., WDGA, WDGWO and
WBPSO, are perform better than their parent techniques.
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Figure 5. Energy consumption profile by WDGWO.
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Figure 6. Energy consumption profile by WBPSO.

7.3. Electricity Cost

The total hourly electricity cost by proposed algorithms WDGA, WDGWO and WBPSO are shown
in Figures 7–9 without and with RES integration, respectively. While Figure 10 shows the total cost of
one day without and with RES integration, Tables 12 and 13 show the hourly and total one day cost
with and without RES integration.
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Figure 7. Electricity cost of WDGA.

Electricity Cost Profile with and without RESs

The electricity cost profile shown in Figure 7 explains the unscheduled cost, and cost after
scheduling the load by GA, WDO and their hybrid WDGA. The unscheduled cost is the highest during
time slots 8–10 and lowest for time slots 15–24. The cost of GA during time slots 9–10 and 13–15 is
high, while during time slots 2–3, 6–7, 16–18 and 20–24 is low, i.e., below 50 cents. The cost of WDO is
highest during time slots 8-10, while lowest for 16–24. The cost is reduced by GA-RESs, WDO-RESs
and WDGA-RESs and its curve are very smooth, as shown in Figure 7. The cost is below 100 cents for
24 h. The cost of WDGA shown in Figure 7 is much less than its parent algorithms. The cost is highest
for time slots 14–15, i.e., 100 cents, and lowest for time slots 11–14, i.e., 45 cents.
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Figure 8 shows the electricity cost profile by WDGWO and WDGWO-RESs. The unscheduled cost
during time slot 7–13 is high both with RES and without RES integration. The cost for GWO, WDO,
and WDGWO before and after integration of RESs, i.e., GWO-RESs, WDO-RESs and WDGWO-RESs,
can be compared in Figure 8. The cost for WDGWO is between 0 and 200 cents, while the cost for
WDGWO-RESs is between 0 and 100 cents.
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Figure 8. Electricity cost of WDGWO.
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The cost for WBPSO is shown in Figure 9. The cost for BPSO and BPSO-RESs can also be seen
in the figure. The cost of WDO and WDO-RESs is also represented in Figure 9, which shows much
reduction in cost when RES is integrated. While the cost of WBPSO and WBPSO-RESs shows similar
behavior, the cost of WBPSO and WBPSO-RESs is much more than BPSO and WDO. The total costs
for one day using WDGA, WDGWO, WBPSO, WDGA-RESs, WDGWO-RESs, and WBPSO-RESs are
shown in Figure 10. The unscheduled cost is same in all subplots, while WDGWO, WDGA, WBPSO,
WDGWO-RESs, WDGA-RESs and WBPSO-RESs reduce the cost more than their parent] algorithms
because of their hybrid features. Table 13 shows the cost statistics with and without RES integration.
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Figure 9. Electricity cost of WBPSO.
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Figure 10. Total electricity cost.

7.4. PAR

The performance of the proposed algorithms WDGWO, WDGA and WBPSO evaluated in terms
of PAR is discussed in this section and shown in Figure 11. It is evident in Figure 11 that PAR is
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reduced significantly in the case of scheduling by these algorithms as compared to the unscheduled
electricity consumption.
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Figure 11. PAR with and without RESs.
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PAR with and without RESs

The PAR is shown without the integration of RES in Figure 11. The PAR is very high in unscheduled
case, while, in the case of scheduling the load using GWO, WDO, WDGA, GA, BPSO, WDGA and
WBPSO, the PAR is low as compared to the unscheduled scenario. The PAR using WDGA is less than
WDO and GA but more than BPSO, as BPSO has reduced the PAR much more compared to all other
algorithms. The PAR using WDGWO is less than WDO and GWO. After the integration of RESs and BBS,
the major portion of the load is shifted to RESs and a small portion of load remains on the grid. Therefore,
the PAR is further reduced as shown in Figure 11. The PAR in the unscheduled case is very high, while,
in the case of GA-RESs, GWO-RESs, WDO-RESs, and BPSO-RESs, it is very low as compared to the
case in which RESs is not integrated. The PAR with the proposed algorithms, i.e., WDGA, WDGWO,
and WBPSO, is further reduced as compared to the GA-RESs, GWO-RESs, WDO-RESs and BPSO-RESs.
Table 14 shows the reduction in PAR with and without RES integration.

Table 14. PAR with and without RESs.

Technique PAR Difference Reduction (%)

Unscheduled 5.2915 0.0000 0.0000%
GA scheduled 4.6095 0.0000 0.0000%

BPSO scheduled 2.7294 0.0000 0.0000%
WDO scheduled 5.2915 0.0000 0.0000%
GWO scheduled 4.2426 0.0000 0.0000%

WDGA scheduled 3.2915 0.0000 0.0000%
WDGWO scheduled 2.6095 0.0000 0.0000%
WBPSO scheduled 1.6518 0.0000 0.0000%

Unscheduled + RESs 5.2915 0.0000 0.0000%
GA scheduled + RESs 1.8199 2.7896 60.5100%

BPSO scheduled + RESs 2.0211 0.7083 74.0400%
WDO scheduled + RESs 2.5024 2.7891 47.2900%
GWO scheduled + RESs 1.6265 2.6161 38.3300%

WDGA scheduled + RESs 1.2474 2.0441 62.1000%
WDGWO scheduled + RESs 1.3251 1.2844 49.2200%
WBPSO scheduled + RESs 1.3427 0.3091 81.2800%

7.5. AWT

Figure 12 shows the AWT of appliances by scheduling the appliances with the proposed
algorithms, i.e., WDGA, WDGWO and WBPSO. The AWT using GWO, GA and BPSO is almost
three hours, while the AWT using WDO is almost two hours less than GWO and the AWT using
the proposed algorithms are further reduced and less than both GWO and WDO. This shows the
performance of the proposed algorithms is better than their parent algorithms.

7.6. Energy Generation Profile of Microgrid

In this section, the power generation from microgrid is discussed. The microgrid consists of PV
and wind power generation as discussed below.

7.6.1. Energy Generation with Wind Turbine and Solar Panel

The energy generation from wind turbine is depicted in Figure 13. The energy generation from
wind turbine is based on the wind speed presented in Figure 14. If the wind speed is high, maximum
energy will be generated; otherwise, if the wind speed is low, less energy will be generated. During
time slots 11–20, the wind speed is high, i.e., above 10 and 15 m/s, and the energy generation is also
high, i.e., 1.5–3.5 kWh. The energy generation is below 0.5 kW during time slots 1–6 and 21–24 because
the wind speed is very slow in these time slots, as shown in Figure 14. Figure 14 shows that the wind
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speed is the highest during time slot 12 so the energy generation is also highest, i.e., above 3 kWh.
The relationship between wind generation and wind speed is shown in Table 15.
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Figure 12. Appliances waiting time by WDGA, WDGWO and WBPSO.

The hourly electricity generation by PV panel is shown in Figure 13. As the PV generation
depends on solar radiation and external temperature, it only generates energy during the daytime.
The PV generates energy during time slots 5–18, i.e., only 13 h out of 24 h on average, as shown in
Figure 14. The maximum or peak generation is only 4–5 h depending on sunlight, temperature, panel
tilt angle and geographical location. As can be seen in Figure 14, the temperature of the day is high
during time slots 5–18 so the generation is also high. During time slots 1–4 and 19–24, the temperature
is below 20 ◦C and there is no solar Irradiation , therefore the PV generation is zero. Table 15 shows
the effect of temperature on PV generation.
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Figure 13. Hourly electricity generation.
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Figure 14. Relationship between wind generation and wind speed.

Table 15. Effects of wind speed and temperature on wind and PV generation.

Wind Generation (kWh) Wind Speed (m/s) PV Generation (kWh) Temperature (◦C)

0.1838 1.0000 0 18.0000
0.1103 0.6000 0 18.5000
0.1838 1.0000 0 19.0000
0.2021 1.1000 0 20.0000
0.2205 1.2000 0.0622 21.0000
0.4447 2.4200 0.5988 22.0000
1.1111 6.0470 1.0475 24.0000
1.3331 7.2550 1.5535 25.0000
1.8945 10.3100 1.9714 25.5000
2.8481 15.5000 2.2306 26.0000
2.9400 16.0000 2.3946 27.0000
3.2156 17.5000 2.4600 28.0000
2.3704 12.9000 2.3126 29.0000
1.7640 9.6000 2.0132 30.0000
1.9661 10.7000 1.6314 29.8000
2.5725 14.0000 1.1918 29.5000
2.4990 13.6000 0.7123 29.2000
0.7901 4.3000 0.1831 29.0000
1.2495 6.8000 0 28.5000
2.1131 11.5000 0 27.0000
0.2205 1.2000 0 25.0000
0.2205 1.2000 0 23.0000
0.1929 1.0500 0 21.0000
0.1470 0.8000 0 18.0000

8. Conclusion and Future Work

The monitoring and control of daily power consumption may help to prevent energy wastage and
minimize electricity cost and PAR. In this work, HEM schemeswere proposed to minimize electricity
cost and PAR with maximum UC in residential area. We also integrated wind turbine and PV panel for
cheaper electricity generation to reduce electricity cost. To achieve the above-mentioned objectives,
we implemented existing heuristics techniques: GA, BPSO, WDO and GWO. Moreover, we proposed
three hybrid techniques: WDGA, WDGWO, and WBPSO. A comparison between our proposed and
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the existing schemes is also presented and our hybrid schemes outperformed in terms of electricity
cost and PAR reduction. It is clearly observed from simulation results that our proposed schemes
achieve the defined objectives. After the integration of microgrid, the electricity cost is reduced by
35.02%, 35.60% and 53.39% using WDGA, WDGWO and WBPSO, respectively. The PAR is minimized
using WDGA, WDGWO and WBPSO by 61.30%, 61.43% and 18.89%, respectively.

In the future, the same classes of appliances will be considered; however, a hybrid renewable
energy generation system including PV, diesel generator, battery bank and wind turbines will be
designed. Plug-in hybrid electric vehicle (PHEV) and battery electric vehicle (BEV) will be considered
in a remote grid. To optimize energy cost and satisfy the budget limit, techno-economic analysis of the
hybrid system will also be carried out.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronyms Description
AC Alternate current
AD Autonomy days
AINA Advanced Information Networking and Applications
AMI Advanced metering infrastructure
AWT Appliances waiting time
BBS Battery bank storage
BEV Battery electric vehicle
BFA Bacterial foraging algorithm
BPSO Binary particle swarm optimization
CBPSO Chaos BPSO
CP Convex programming
CPP Critical peak pricing
CPP− R Critical peak price with rebate
DAP Day-ahead pricing
DC Direct current
DEMS Distributed energy management strategy
DERs Distributed energy resources
DG Distributed generation
DOD Depth of discharge
DP Dynamic programming
DR Demand response
DSM Demand side management
EC Energy consumption
ECG Energy consumption and generation
EMC Energy management controller
EMS Energy management system
EP Electricity price
ESS Energy storage system
EV Electric vehicle
GA Genetic algorithm
GWO Grey wolf optimization
HP Hourly pricing
HPS Hybrid power system
HEMS Home energy management system
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ICTs Information and communication technologies
IL Interruptible load
ILA Interruptible load appliances
ILP Integer linear programming
IPSO Improved PSO
KW Kilowatt
KWh Kilowatt hour
LMP Locational marginal pricing
LOT Length of operation time
LP Linear programming
MIP Mixed integer programming
MILP Mixed-integer linear programming
MINLP Mixed integer nonlinear programming
MKP Multiple knapsack problem
MPC Model predictive control
MPP Multi-parametric programming
MRL Must-run load
MRLA Must run load appliances
MTPSO Multi-team PSO
NCP Non-critical peak
NDL Non-deferrable load
NDLA Non-deferrable load appliances
OCM Optimal control method
PAR Peak-to-average ratio
PEV Plug-in electric vehicle
PC Personal computer
PCPM Predictor corrector proximal multiplier
PHEV Plug-in hybrid electric vehicle
PMU Phaser measurement unit
PMU Power management unit
PP Peak pricing
PS Price signal
PSO Particle swarm optimization
PV Photovoltaic
AD Autonomy days
HP Hourly pricing
PS Price signal
RE Renewable energy
RESs Renewable energy sources
RTMP Real-time market pricing
RTP Real time pricing
SCADA Supervisory control and data acquisition
SI Set of IL appliances
SM Smart meter
SM Set of must-run appliances
SMSU Smart schedular unit
SN Set of NDL appliances
T Temperature
TOU Time of use
UC User comfort
USA United States of America
WBPSO Wind driven BPSO
WDGA Wind driven genetic algorithm
WDGWO Wind driven GWO algorithm
WDO Wind driven optimization
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Symbol Description
PPV−out PV panel output power
Gre f Solar radiation at reference conditions
KT Temperature coefficient of the PV panel
σ Air density
Pco f f Wind turbine power coefficient
S Set of appliances α

vcut−in Cut-in wind speed
(CWh) BBS storage capacity
ηV BBS voltage
CB(t) Available power from BBS at time slot t
λ BBS self-discharge rate
CBmin Minimum allowable energy level remain in the BBS
α Appliance
PSrtp(t) Real time PS in time slot t
YilSIα(t) ON/OFF state of IL appliances
Endl

ps (t) EP of NDL appliances in time slot t
Emrl

ps (t) EP of MRL appliances in time slot t
SNα Represents NDL appliances
SMα Represents MRL appliances
ilSIα SI represents the number of appliances of IL
ΓPAR PAR of the demanded load
Υtαwt Waiting time of appliance
Tst

αw Appliance α start time
Tmw Appliance α maximum waiting time
Eil(t) EC of IL appliances in time slot t
EPV(t) Available energy from PV in time slot t
BS(t) Available energy from battery in time slot t
Eug(t) Available energy from utility grid in time slot t
t0 Lower limit of scheduling horizon
tsch Scheduling time of appliance
Xid(t− 1) Position of particle i in the d dimension at time slots t
Vid(t− 1) Velocity of particle i in the d dimension at time slots t-1
gbestid(t− 1) Best positions obtained by particle i and swarm in d dimension in time slot t-1
c Coriolis force
r Variable value for the rank of air parcels
FCr Coriolis force
ν Wind velocity
η Air density
g Acceleration of gravity
∆ Pressure gradient
ϕ Friction coefficient
ν

p
i+1 Current and new velocity of the air parcels

xgbest Global best position
PN−PV Rated or nominal power of PV cell at reference conditions
ENDL

α Energy consumption by NDL appliances
EMRL

α Energy consumption by MRL appliances
LA Average load
~X(t) In ~X(t), t is current iteration
~Xp Prey position vector
Xα Best search agent
Xδ Third best search agent
G Solar radiation
Tre f Cell temperature at reference conditions
Ars Rotor swept area
V3 Average wind velocity
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vrated Rated wind speed
vcut−out Cut-out wind speed
Prated−wt Wind turbine rated output power
EL Daily EC
ηB BBS efficiency
CB(t− 1) Available power from BBS at time slot (t-1) hour
PBAT(t) BBS power in time slot t
CBmax Maximum allowable energy level remain in the BBS
Eα(t) Energy consumed by appliance α in time slot t
YndlSNα(t) ON/OFF state of NDL appliances
YmrlSMα(t) ON/OFF state of MRL appliances
Eil

ps(t) EP of IL appliances in time slot t
ps Price signal
SIα Represents the set of IL appliances
ndlSNα SN represents the set of NDL appliances
mrlSMα SM represents the set of MRL appliances
Lt Total load of all consumers
To

αw Appliance α ON time
Tl Appliance α Length of operation time
Endl(t) EC of NDL appliances in time slot t
Emrl(t) EC of MRL appliances in time slot t
EWD(t) Available energy from wind in time slot t
Enim(t) Total EC of NDL, IL and MRL appliances in time slot t
Emin

unsch Minimum amount of EC in unscheduled case
tmax Upper limit of scheduling horizon
Xid(t) Position of particle i in the d dimension at time slots t
Vid(t) Velocity of particle i in the d dimension at time slots t
Pbestid(t− 1) Best positions obtained by particle i and swarm in d dimension in time slot t-1
c1 and c2 Acceleration coefficients
r1 and r2 Random numbers between 0 and 1
Vt+1

i Velocity of particle in particular time slot
Ω Earth rotation
FGv Gravitational force
ψν Air finite volume
Fprg Pressure gradient force
FFr Friction force
ν

p
i Current and new velocity of the air parcels

xp
t Current and new positions of the air parcels

R Universal gas constant
Tc Temperature of PV cell ◦C
EIL

α Energy consumption by IL appliances
Lp Peak load
Tαw A term used for AWT
~A, ~C Coefficient vectors
~X Position vector of grey wolf
Xβ Second best search agent
D Encircling of prey

References

1. Guo, Y.; Pan, M.; Fang, Y. Optimal power management of residential customers in the smart grid. IEEE Trans.
Parallel Distrib. Syst. 2012, 23, 1593–1606.[CrossRef]

2. Agnetis, A.; de Pascale, G.; Detti, P.; Vicino, A. Load scheduling for household energy consumption
optimization. IEEE Trans. Smart Grid 2013, 4, 2364–2373.[CrossRef]

http://dx.doi.org/10.1109/TPDS.2012.25
http://dx.doi.org/10.1109/TSG.2013.2254506


Energies 2018, 11, 1002 37 of 39

3. Hossain, E.; Kabalci, E.; Bayindir, R; Perez, R. Microgrid testbeds around the world: State of art.
Energy Convers. Manag. 2014, 86, 132–153.[CrossRef]

4. Farhangi, H. The path of the smart grid. IEEE Power Energy Mag. 2010, 8, 18–28.[CrossRef]
5. Dizqah, A.M.; Maheri, A.; Busawon, K; Fritzson, P. Standalone DC microgrids as complementarity dynamical

systems: Modeling and applications. Control Eng. Pract. 2015, 35, 102–112.[CrossRef]
6. Tsui, K.M.; Chan, S.C. Demand response optimization for smart home scheduling under real-time pricing.

IEEE Trans. Smart Grid 2012, 3, 1812–1821.[CrossRef]
7. Oberdieck, R.; Pistikopoulos, E.N. Multi-objective optimization with convex quadratic cost functions:

A multi-parametric programming approach. Comput. Chem. Eng. 2016, 85, 36–39.[CrossRef]
8. Hubert, T.; Grijalva, S. Realizing smart grid benefits requires energy optimization algorithms at residential

level. In Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT), Anaheim, CA, USA,
17–19 January 2011; pp. 1–8.

9. Corchero, C.; Cruz-Zambrano, M.; Heredia, F.J. Optimal energy management for a residential microgrid
including a vehicle-to-grid system. IEEE Trans. Smart Grid 2014, 5, 2163–2172.

10. Graditi, G.; Ippolito, M.G.; Telaretti, E.; Zizzo, G. Technical and economical assessment of distributed
electrochemical storages for load shifting applications: An Italian case study. Renew. Sustain. Energy Rev.
2016, 57, 515–523.[CrossRef]

11. Ippolito, M.G.; Telaretti, E.; Zizzo, G.; Graditi, G. A new device for the control and the connection to the grid
of combined RES-based generators and electric storage systems. In Proceedings of the 2013 International
Conference on Clean Electrical Power (ICCEP), Alghero, Italy, 11–13 June 2013; pp. 262–267.

12. Molderink, A.; Bakker, V.; Bosman, M.G.; Hurink, J.L.; Smit, G.J. Management and control of domestic smart
grid technology. IEEE Trans. Smart Grid 2010, 1, 109–119.[CrossRef]

13. Siano, P.; Graditi, G.; Atrigna, M.; Piccolo, A. Designing and testing decision support and energy management
systems for smart homes. J. Ambient Intell. Hum. Comput. 2013, 4, 651–661.[CrossRef]

14. Pipattanasomporn, M.; Kuzlu, M.; Rahman, S. An algorithm for intelligent home energy management and
demand response analysis. IEEE Trans. Smart Grid 2012, 3, 2166–2173.[CrossRef]

15. Iqbal, Z.; Javaid, N.; Khan, M.R.; Khan, F.A.; Khan, Z.A.; Qasim, U. A Smart Home Energy Management
Strategy Based on Demand Side Management. In Proceedings of the 2016 IEEE 30th International Conference
on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland, 23–25 March
2016; pp. 858–862.

16. Beaudin, M.; Zareipour, H. Home energy management systems: A review of modelling and complexity.
Renew. Sustain. Energy Rev. 2015, 45, 318–335.[CrossRef]

17. Di Somma, M.; Graditi, G.; Heydarian-Forushani, E.; Shafie-Khah, M.; Siano, P. Stochastic optimal scheduling of
distributed energy resources with renewables considering economic and environmental aspects. Renew. Energy
2018, 116, 272–287.[CrossRef]

18. Deconinck, G.; Decroix, B. Smart metering tariff schemes combined with distributed energy resources. In
Proceedings of the 2009 Fourth International Conference on Critical Infrastructures, Linkoping, Sweden, 27
March–30 April 2009; pp. 1–8.

19. Yoo, J.; Park, B.; An, K.; Al-Ammar, E.A.; Khan, Y.; Hur, K.; Kim, J.H. Look-ahead energy management of a
grid-connected residential PV system with energy storage under time-based rate programs. Energies 2012, 5,
1116–1134.[CrossRef]

20. Wu, Z.; Tazvinga, H.; Xia, X. Demand-side management of photovoltaic-battery hybrid system. Appl. Energy
2015, 148, 294–304.[CrossRef]

21. Isikman, A.O.; Yildirim, S.A.; Altun, C.; Uludag, S.; Tavli, B. Optimized scheduling of power in an islanded
microgrid with renewables and stored energy. In Proceedings of the 2013 IEEE Globecom Workshops
(GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 855–860.

22. Boopathy, C.P.; Sivakumar, L. Implementation of a real-time supervisory controller for an isolated hybrid
(wind/solar/diesel) power system. Int. J. Eng. Technol. 2014, 6, 745–753.

23. Erdinc, O.; Paterakis, N.G.; Pappi, I.N.; Bakirtzis, A.G.; Catalão, J.P. A new perspective for sizing of
distributed generation and energy storage for smart households under demand response. Appl. Energy 2015,
143, 26–37.[CrossRef]

http://dx.doi.org/10.1016/j.enconman.2014.05.012
http://dx.doi.org/10.1109/MPE.2009.934876
http://dx.doi.org/10.1016/j.conengprac.2014.10.006
http://dx.doi.org/10.1109/TSG.2012.2218835
http://dx.doi.org/10.1016/j.compchemeng.2015.10.011
http://dx.doi.org/10.1016/j.rser.2015.12.195
http://dx.doi.org/10.1109/TSG.2010.2055904
http://dx.doi.org/10.1007/s12652-013-0176-9
http://dx.doi.org/10.1109/TSG.2012.2201182
http://dx.doi.org/10.1016/j.rser.2015.01.046
http://dx.doi.org/10.1016/j.renene.2017.09.074
http://dx.doi.org/10.3390/en5041116
http://dx.doi.org/10.1016/j.apenergy.2015.03.109
http://dx.doi.org/10.1016/j.apenergy.2015.01.025


Energies 2018, 11, 1002 38 of 39

24. Peyvandi, M.; Zafarani, M.; Nasr, E. Comparison of particle swarm optimization and the genetic algorithm
in the improvement of power system stability by an SSSC-based controller. J. Electr. Eng. Technol. 2011, 6,
182–191.[CrossRef]

25. Zakariazadeh, A.; Jadid, S. Energy and reserve scheduling of microgrid using multi-objective optimization.
In Proceedings of the 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013),
Stockholm, Sweden, 10–13 June 2013; pp. 1–4.

26. Shi, W.; Xie, X.; Chu, C.C.; Gadh, R. A distributed optimal energy management strategy for microgrids.
In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm),
Venice, Italy, 3–6 November 2014; pp. 200–205.

27. Liu, Z.; Chen, C.; Yuan, J. Hybrid Energy Scheduling in a Renewable Micro Grid. Appl. Sci. 2015, 5,
516–531.[CrossRef]

28. Yang, H.T.; Yang, C.T.; Tsai, C.C.; Chen, G.J.; Chen, S.Y. Improved PSO based home energy management
systems integrated with demand response in a smart grid. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 275–282.

29. Inam, W.; Strawser, D.; Afridi, K.K.; Ram, R.J.; Perreault, D.J. Architecture and system analysis of microgrids
with peer-to-peer electricity sharing to create a marketplace which enables energy access. In Proceedings of
the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea,
1–5 June 2015; pp. 464–469.

30. Aslam, S.; Iqbal, Z.; Javaid, N.; Khan, Z.A.; Aurangzeb, K.; Haider, S.I. Towards Efficient Energy Management
of Smart Buildings Exploiting Heuristic Optimization with Real Time and Critical Peak Pricing Schemes.
Energies 2017, 10, 2065.[CrossRef]

31. Sheraz, A.; Nadeem, J.; Muhammad, A.; Zafar, I.; Mian, A.; Mohsin, G. A mixed integer linear programming
based optimal home energy management scheme considering grid-connected microgrids. In Proceedings
of the 14th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC),
Limassol, Cyprus, 25–29 June 2018.

32. Lior, N. Sustainable energy development: The present (2009) situation and possible paths to the future.
Energy 2010, 35, 3976–3994.[CrossRef]

33. Javaid, N.; Ullah, I.; Akbar, M.; Iqbal, Z.; Khan, F.A.; Alrajeh, N.; Alabed, M.S. An intelligent
load management system with renewable energy integration for smart homes. IEEE Access 2017, 5,
13587–600.[CrossRef]

34. Yu, T.; Kim, D.S.; Son, S.Y. Optimization of Scheduling for Home Appliances in Conjunction with Renewable
and Energy Storage Resources. Int. J. Smart Home 2013, 7, 261–271.

35. Moon, S.; Lee, J.W. Multi-residential demand response scheduling with multi-class appliances in smart grid.
IEEE Trans. Smart Grid 2016, [CrossRef]

36. Sou, K.C.; Weimer, J.; Sandberg, H.; Johansson, K.H. Scheduling smart home appliances using mixed integer
linear programming. In Proceedings of the 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC), Orlando, FL, USA, 12–15 December 2011; pp. 5144–5149.

37. Tischer, H.; Verbic, G. Towards a smart home energy management system-a dynamic programming approach.
In Proceedings of the Innovative Smart Grid Technologies Asia (ISGT), Jeddah, Saudi Arabia, 17–20 December
2011; pp. 1–7.

38. Mohsenian-Rad, A.H.; Wong, V.W.; Jatskevich, J.; Schober, R. Optimal and autonomous incentive-based
energy consumption scheduling algorithm for smart grid. In Proceedings of the Innovative Smart Grid
Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–6.
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