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Abstract: Artificially intelligent and predictive modelling of geomechanical properties is performed
by creating supervised machine learning data models utilizing artificial neural networks (ANN) and
will predict geomechanical properties from basic and commonly used conventional well logs such
as gamma ray, and bulk density. The predictive models were created by following the approach on
a large volume of data acquired from 112 wells containing the Bakken Formation in North Dakota.
The studied wells cover a large surface area of the formation containing the five main producing
counties in North Dakota: Burke, Mountrail, McKenzie, Dunn, and Williams. Thus, with a large
surface area being analyzed in this research, there is confidence with a high degree of certainty that
an extensive representation of the Bakken Formation is modelled, by training neural networks to
work on varying properties from the different counties containing the Bakken Formation in North
Dakota. Shear wave velocity of 112 wells is also analyzed by regression methods and neural networks,
and a new correlation is proposed for the Bakken Formation. The final goal of the research is to
achieve supervised artificial neural network models that predict geomechanical properties of future
wells with an accuracy of at least 90% for the Upper and Middle Bakken Formation. Thus, obtaining
these logs by generating it from statistical and artificially intelligent methods shows a potential for
significant improvements in performance, efficiency, and profitability for oil and gas operators.

Keywords: Bakken Formation; unconventional; geomechanics; shear wave; artificial intelligence;
predictive modeling; supervised machine learning; artificial neural networks (ANN); regression;
hypothesis testing; cost-savings

1. Introduction

North Dakota has been an oil producing state for over 60 years, but only during the past few
years has the Bakken oil boom made it to one of the largest hydrocarbon-producing states in the US.
As of 2017, estimates of about 4.4 to 11.4 billion barrels of undiscovered yet technically recoverable
oil, and 6.7 trillion cubic feet of associated natural gas and 0.53 billion barrels of natural gas has made
North Dakota’s Bakken draw a lot of attention. Emerging infrastructure developments along with
innovative technologies have been poured down upon the Bakken Formation to effectively extract from
the unconventional reservoir and transform the prospects for U.S. field production in the coming years.
To efficiently produce from unconventional reservoirs, it is imperative to determine and understand
the geomechanical properties of the formation. Successful wellbore stability, drilling design, and
hydraulic fracturing techniques are some of the key results of fully understanding the geomechanical
properties of the formation. However, with the high cost associated with obtaining geomechanical well
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logs, the usage of these logs can be limited, and are not widely used. Thus, this study will show an
alternate and cost-efficient technique, yet accurate estimation of geomechanical properties for current
and future wells by using artificial intelligence and predictive modelling.

Additionally, shear wave velocity will also be analyzed using regression technique [1–4], and
a new correlation will be proposed for the Upper and Middle Bakken Formation. In comparison
to regression techniques, shear wave velocity will also be predicted using artificial neural networks
(ANN). This will be done by creating supervised machine learning data models utilizing ANN that
will predict shear wave velocity, and geomechanical properties from commonly used conventional
well logs such as gamma ray, and bulk density. North Dakota will be the focus of this study, and the
application of this study will be developed from large volumes of data attained from 112 wells of the
Bakken Formation in North Dakota.

The Bakken formation is located at depths between 8000 feet to 11,000 feet and has a total thickness
of approximately 140 feet [5]. The upper and lower members of the Bakken Formation are organic rich
shales and are very uniform throughout their extents. They serve as source rocks for oil and natural
gas, and as seals for the Three Forks Formation, and the Middle Bakken Formation. The Upper member
has a thickness ranging from 20 feet to 58 feet, whereas the Lower member has a thickness between 45
feet to 56 feet [6,7], and are easily recognizable in wireline logs because of the unusually high gamma
ray readings of over 400 API, low bulk density, and low compressional and shear wave velocities, all
associated with high organic content (Figure 1). The middle member, sandwiched between the upper
and lower members, is composed of dolomitic siltstone, sandstone, laminated calcareous siltstone,
bioturbated calcareous siltstone, and fossiliferous calcareous siltstone; with a thickness ranging from
30 feet to 70 feet (Figure 1), and is the main producing member in the formation [8]. Since the middle
member’s lithology is highly variable and consists of five distinct lithofacies, hence there is high
heterogeneity present in this member [9]. All lithologies within the middle member have low porosity
and permeability with values ranging from 2% to 10% and from 0.000001 to 2 mD, respectively [10].
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Artificial Neural Networks (ANN) can be very good predictors in determining the relationship
between the inputs and the outputs which at times seem pattern-less. Previous studies show that neural
networks have been used to predict different reservoir properties such as porosity, permeability, and
fluid saturation to reduce the cost of utilizing expensive processes to acquire those properties [12–17].
Neural networks were also used to generate synthetic well logs and perform reservoir modelling
and analysis of formation characteristics [18,19]. With the recent advancements in shale recovery and
hydraulic fracturing, machine learning was successfully used to identify sweet spots in shale-gas
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reservoirs [20]. Artificial neural networks were also used to generate synthetic geomechanical well
logs from conventional well logs for Marcellus Shale, showing its use in minimizing cost in acquiring
geomechanical logs [21,22]. All the previous studies and work done above have one goal in mind;
to utilize statistical and artificially intelligent methods to improve the understanding of formation
characteristics with ease, and efficiently enhance the productivity from the reservoir. Similarly, this
study also follows a similar goal in utilizing an alternate and efficient technique to help operators
obtain a better understanding of the formation with ease, by processing large volumes of data from 112
wells, and transforming it into high value information that could ultimately help operators produce
more from current and future wells. The strategy proposed is to minimize input logs to just basic
and commonly used well logs that predict shear wave velocity and geomechanical properties with
high accuracy, to minimize cost and algorithm processing time without compromising the predictive
capability and reliability of the model [23].

One hundred and twelve wells from five of the main producing counties in North Dakota
containing the Upper and Middle Bakken Formation are taken into consideration. First, a study will
be conducted to predict shear wave velocity by linear and non-linear methods. Shear wave velocity
is crucial in making reliable calculations, especially to calculate the missing dynamic geomechanical
properties of the Upper and Middle Bakken wells. Once the missing values of dynamic geomechanical
properties are calculated, and the database is complete with all the required parameters, supervised
machine learning data-driven models will then be developed to predict geomechanical properties for
future wells. The results and benefits of the developed data models will then be demonstrated and
tested on 5 additional validation wells of the Bakken Formation to confidently assure its efficacy and
working capabilities on future wells of North Dakota.

2. Methodology

Artificial neural networks (ANN) are computational models based on a collection of neural units
modelling the problem-solving skills of the brain. Their neural units are compared specifically to the
neurons within the brain. ANN mimics the brain’s pattern recognition capabilities to solve complex
non-linear functions [24]. A multilayer perceptron type of ANN model is used extensively in this
research. The multilayer perceptron is a fully connected multilayer feed forward supervised learning
network with symmetric hyperbolic tangent activation functions, trained by the back-propagation
algorithm [25]. Figure 2 shows an illustration of the ANN model being used, and the number of nodes
carrying the activation function within the hidden layers performed in this research will vary for each
ANN model obtained to produce the most efficient results as outputs. The various activation functions
used within the nodes in this research are [26]:

• Hyperbolic Tangent Function (Sigmoid Function)—Transformation of values to be between −1
and 1 (Equation (1)). It is the centered and scaled version of the logistic function.

e2x − 1
e2x + 1

(1)

where x is the linear combination of the input variables.
• Linear Function (Identity Function)—The linear combination of the input variables is not

transformed in this function. This activation function is mostly used with one of the non-linear
activation functions to reduce the dimensionality of the input variables first, and then have a
nonlinear model for the output variables.

• Gaussian Function (Normal Distribution)—This activation function is used when the inputs
follow a normal distribution (Equation (2)).

e−x2
(2)



Energies 2018, 11, 680 4 of 26

where x is a linear combination of the input variables.
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Figure 2. Illustration of a multilayer perceptron ANN model showing the input, hidden, and
output layers.

A total of 14 ANN models were developed to successfully complete the research. All the models
follow the same principle, and are multilayer models trained using back propagation algorithm,
where 70% of the data was used for training, and 30% of the data was used for verification. This is
done by randomly dividing the original combined dataset into the training and validation sets and
using Monte-Carlo cross-validation with a randomly selected proportion of 30% for verification [23].
However, the inferring of the number of nodes carrying the activation functions within the hidden
layers performed in this research was obtained by trial and error technique and will vary for each of
the 14 ANN models obtained to produce the most optimal structure and ultimately provide efficient
results as outputs.

The study is broken down into two phases as shown in Figure 3.
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2.1. PHASE I: Calculation of Geomechanical Properties of the Upper and Middle Bakken Formation from
Elastic Waves

In this phase, geomechanical properties of the Upper and Middle Bakken Formation are calculated
dynamically from compressional wave velocity and shear wave velocity. Since the geomechanical
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properties of wells were not provided in the logs for 63 wells, they have been calculated dynamically
from elastic waves, i.e., shear wave and compressional wave. Thus, the purpose and goal of phase I
is to fill up the missing values of geomechanical properties of all the wells in the database, without
which phase II cannot be performed. Phase I has been broken down into two parts. Part 1 will predict
shear wave velocity for missing wells. Once the database for shear wave velocity is complete, part
2 will be to calculate geomechanical properties dynamically from elastic waves. Table 1 shows the
available data to proceed with this part.

Table 1. Data available for the prediction of Shear Wave Velocity.

Group Number of
Wells

Conventional Well Logs
Geomechanical

Well LogsGamma Ray Bulk Density Compressional
Wave Velocity

Shear Wave
Velocity

Phase I
49 Yes Yes Yes Yes Yes
63 Yes Yes Yes No No

Figure 4 shows the Bakken area of North Dakota, and the distribution of 112 wells with
respect to gamma ray, bulk density, compressional and shear wave velocity, sonic porosity, and
geomechanical properties. Since 63 wells do not contain information on shear wave velocity, the
dynamic geomechanical properties for 63 wells are also incomplete. Hence it is essential to predict
shear wave velocity for 63 wells to calculate the geomechanical properties for 63 wells. By this process,
the geomechanical properties database will be complete, and we can proceed to input into phase II.
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2.1.1. Part 1: Prediction of Shear Wave Velocity

To have consistent information of all wells, it is necessary to predict and generate data for the
missing information. All 112 wells have compressional wave velocity (derived from compressional
wave slowness), but only 49 wells have information on shear wave velocity (derived from shear
wave slowness). Thus, to calculate the geomechanical properties dynamically from elastic waves, it is
necessary to fill up the missing values of shear wave velocity for 63 wells.

Step A: Prediction of Shear Wave Velocity from Compressional Wave Velocity utilizing Linear
Regression Techniques.



Energies 2018, 11, 680 6 of 26

In this step, a linear approach is used, to create a correlation between shear wave velocity (Vs)
and compressional wave velocity (Vp), and then the shear wave velocity is determined for the missing
wells. Figure 4 shows the distribution of all wells with respect to information regarding compressional
wave velocity and shear wave velocity. A Monte-Carlo cross-validation technique was also performed
to show the predictive capability of the model, where 70% was used for training and 30% was used
for verification, and a model is developed which predicts the shear wave velocity (Vs) for 63 wells.
Figure 5 shows the visualization of the training set and validation set for predicting shear wave velocity
with an accuracy of 88% and 72% for both the Upper and Middle Bakken Formation respectively.
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Step B: Prediction of Shear Wave Velocity from Conventional Well Logs utilizing ANN
An ANN model was developed by using conventional well logs as the input and shear wave

velocity as the output. Initially, the conventional well logs used were depth, gamma ray (GR), and
bulk density (RHOB). The results obtained for predicted shear wave velocity were unsatisfactory,
resulting in a very low R2, indicating that a pattern was not fully recognized, and an additional input
was necessary to improve the reliability of the model. Thus, compressional wave velocity was added
as an additional input along with other conventional well logs.

Figure 4 shows the distribution of wells with respect to information regarding depth, gamma ray
(GR), bulk density (RHOB), compressional wave velocity (Vp), and shear wave velocity (Vs). Figure 6
shows the process flow for the creation of the neural network model using depth, gamma ray (GR),
bulk density (RHOB) and compressional wave velocity (Vp) for 49 wells and the output of shear
wave velocity (Vs) for 49 wells. The ANN model is trained and validated, where 70% was used for
training and 30% was used for verification using Monte-Carlo cross-validation technique, and a model
is developed which predicts the shear wave velocity (Vs) for 63 wells. Figure 7 shows the visualization
of the training set and validation set for predicting shear wave velocity with an accuracy of 94% and
86% for both the Upper and Middle Bakken Formation respectively.

Step C: Comparison of results of different models to predict Shear Wave Velocity.
In this step, the linear regression and ANN models used to achieve shear wave velocity for the

missing wells are compared. The model resulting in better prediction and accuracy of shear wave
velocity as compared to the actual shear wave velocity is selected as the model to estimate the shear
wave velocity for the remaining 63 wells. In this study, the ANN model predicts shear wave velocity
with higher accuracy of 94% and 86% as compared to a linear regression technique with an accuracy of
88% and 72% for the Upper and Middle Bakken Formation respectively. Both models have significantly
high accuracy, however in this research, shear wave velocity will be predicted from ANN for 63 wells
to proceed with the next part of the research. A detailed explanation of the comparison is seen below
at the results and discussions Section 3.1.3.



Energies 2018, 11, 680 7 of 26

Energies 2018, 11, x FOR PEER REVIEW  6 of 26 

 

wave velocity with an accuracy of 88% and 72% for both the Upper and Middle Bakken Formation 

respectively. 

 
(a) (b) 

Figure 5. Prediction of shear wave velocity linearly with its training and validation set for (a) the 

Upper Bakken Formation (b) Middle Bakken Formation.  

Step B: Prediction of Shear Wave Velocity from Conventional Well Logs utilizing ANN 

An ANN model was developed by using conventional well logs as the input and shear wave 

velocity as the output. Initially, the conventional well logs used were depth, gamma ray (GR), and 

bulk density (RHOB). The results obtained for predicted shear wave velocity were unsatisfactory, 

resulting in a very low R2, indicating that a pattern was not fully recognized, and an additional input 

was necessary to improve the reliability of the model. Thus, compressional wave velocity was added 

as an additional input along with other conventional well logs. 

Figure 4 shows the distribution of wells with respect to information regarding depth, gamma 

ray (GR), bulk density (RHOB), compressional wave velocity (Vp), and shear wave velocity (Vs). 

Figure 6 shows the process flow for the creation of the neural network model using depth, gamma 

ray (GR), bulk density (RHOB) and compressional wave velocity (Vp) for 49 wells and the output of 

shear wave velocity (Vs) for 49 wells. The ANN model is trained and validated, where 70% was used 

for training and 30% was used for verification using Monte-Carlo cross-validation technique, and a 

model is developed which predicts the shear wave velocity (Vs) for 63 wells. Figure 7 shows the 

visualization of the training set and validation set for predicting shear wave velocity with an accuracy 

of 94% and 86% for both the Upper and Middle Bakken Formation respectively. 

 

Figure 6. Flowchart process to obtain model to predict shear wave velocity for new wells. Figure 6. Flowchart process to obtain model to predict shear wave velocity for new wells.
Energies 2018, 11, x FOR PEER REVIEW  7 of 26 

 

 
(a) (b) 

Figure 7. Prediction of shear wave velocity using ANN with its training and validation set for (a) the 

Upper Bakken Formation (b) Middle Bakken Formation. 

Step C: Comparison of results of different models to predict Shear Wave Velocity. 

In this step, the linear regression and ANN models used to achieve shear wave velocity for the 

missing wells are compared. The model resulting in better prediction and accuracy of shear wave 

velocity as compared to the actual shear wave velocity is selected as the model to estimate the shear 

wave velocity for the remaining 63 wells. In this study, the ANN model predicts shear wave velocity 

with higher accuracy of 94% and 86% as compared to a linear regression technique with an accuracy 

of 88% and 72% for the Upper and Middle Bakken Formation respectively. Both models have 

significantly high accuracy, however in this research, shear wave velocity will be predicted from 

ANN for 63 wells to proceed with the next part of the research. A detailed explanation of the 

comparison is seen below at the results and discussions Section 3.1.3. 

2.1.2. Part 2: Calculate Geomechanical Properties Dynamically from Elastic Waves. 

After having the information for both compressional wave velocity (Vp) and shear wave velocity 

(Vs) for all 112 wells, the geomechanical properties can now be dynamically calculated from elastic 

waves. The properties of the Upper and Middle Bakken Formation are assumed to be isotropic in this 

research, and thus there are two independent elastic constants [27]. In other words, two elastic 

constants are enough to derive the other elastic constants. Young’s Modulus and Poisson’s Ratio were 

first calculated from elastic waves, and then are used to calculate Shear Modulus, Bulk Modulus and 

Minimum Horizontal Stress. Figure 8 shows the flowchart process to calculate the geomechanical 

properties from elastic waves. 

Ultimately, the Minimum Horizontal Stress (σmin) for 112 wells is calculated using Eaton’s 

Equation [28]. Poisson’s Ratio (ν) calculated from Step A for 112 wells is used as the input along with 

Overburden Stress (σν) imposed on the rocks from the weight of the overlying rocks, and Pore 

Pressure (Pp) from the fluids held within the rocks, and the generation of hydrocarbons. The Upper 

Bakken Shale is moderately over pressurized and is assumed to have a pore pressure of 0.65 psi/ft, 

and 0.55 psi/ft for the Middle Bakken Formation as the pore pressure decreases significantly away 

from the shales [29]. The overburden stress has been calculated and approximated to be 1.07 psi/ft 

for this research by using Eaton’s equation. However, since minimum horizontal stress is a key factor 

in understanding the directions to fracture the formation, hence we have proceeded with only 

predicting the minimum horizontal stress, and thus suffers the calculation and prediction of the 

maximum horizontal stress. 

2.2. PHASE II: Geomechanical Properties of the Upper and Middle Bakken Formation Available after 

Utilizing Data Mining Techniques and ANN 

After the completion of phase I, the geomechanical properties of the Upper and Middle Bakken 

Formation have been calculated from elastic waves and the missing information of geomechanical 

Figure 7. Prediction of shear wave velocity using ANN with its training and validation set for (a) the
Upper Bakken Formation (b) Middle Bakken Formation.

2.1.2. Part 2: Calculate Geomechanical Properties Dynamically from Elastic Waves.

After having the information for both compressional wave velocity (Vp) and shear wave velocity
(Vs) for all 112 wells, the geomechanical properties can now be dynamically calculated from elastic
waves. The properties of the Upper and Middle Bakken Formation are assumed to be isotropic in
this research, and thus there are two independent elastic constants [27]. In other words, two elastic
constants are enough to derive the other elastic constants. Young’s Modulus and Poisson’s Ratio were
first calculated from elastic waves, and then are used to calculate Shear Modulus, Bulk Modulus and
Minimum Horizontal Stress. Figure 8 shows the flowchart process to calculate the geomechanical
properties from elastic waves.

Ultimately, the Minimum Horizontal Stress (σmin) for 112 wells is calculated using Eaton’s
Equation [28]. Poisson’s Ratio (ν) calculated from Step A for 112 wells is used as the input along
with Overburden Stress (σν) imposed on the rocks from the weight of the overlying rocks, and Pore
Pressure (Pp) from the fluids held within the rocks, and the generation of hydrocarbons. The Upper
Bakken Shale is moderately over pressurized and is assumed to have a pore pressure of 0.65 psi/ft,
and 0.55 psi/ft for the Middle Bakken Formation as the pore pressure decreases significantly away
from the shales [29]. The overburden stress has been calculated and approximated to be 1.07 psi/ft for
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this research by using Eaton’s equation. However, since minimum horizontal stress is a key factor in
understanding the directions to fracture the formation, hence we have proceeded with only predicting
the minimum horizontal stress, and thus suffers the calculation and prediction of the maximum
horizontal stress.

2.2. PHASE II: Geomechanical Properties of the Upper and Middle Bakken Formation Available after Utilizing
Data Mining Techniques and ANN

After the completion of phase I, the geomechanical properties of the Upper and Middle Bakken
Formation have been calculated from elastic waves and the missing information of geomechanical
properties have been filled up in the database. This leads to the implementation of phase II, where
the geomechanical properties calculated from phase I are predicted using conventional well logs, as
to obtain a data-driven model that can ultimately predict geomechanical properties of future wells
drilled in the Bakken Formation of North Dakota.
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Figure 8. Flowchart process to calculate geomechanical properties from elastic waves.
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For the successful completion of Phase II, it has been broken down into 2 parts. Part 3 will predict
sonic porosity for missing wells. Once the database for sonic porosity is complete, part 4 will be to
predict geomechanical properties from conventional well logs utilizing ANN. The following parts are
mentioned in detail below:

2.2.1. Part 3: Prediction of Sonic Porosity from Conventional Well Logs Utilizing ANN.

In this part, sonic porosity (SPHI) is determined from conventional well logs to fill in the missing
sonic porosity values. Table 2 shows the available data to proceed with this part. An ANN model was
developed by using conventional well logs as the independent input variable and sonic porosity as the
output dependent variable.

Table 2. Data available for the prediction of Sonic Porosity.

Group Number of
Wells

Conventional Well Logs Geomechanical
Well LogsGamma Ray Bulk Density Sonic Porosity

Phase II
49 Yes Yes Yes Yes
63 Yes Yes No Yes

From Figure 4, the distribution of wells with respect to information regarding depth, gamma ray
(GR), bulk density (RHOB), and sonic porosity (SPHI) were seen. ANN is used to create a pattern
between sonic porosity (SPHI) and conventional well logs. Figure 9 shows the process flow of the
creation of the neural network model using depth, gamma ray (GR), and bulk density (RHOB) for
49 wells and the output of sonic porosity (SPHI) for 49 wells. At the end of part 3, sonic porosity (SPHI)
will be present for all 112 wells in the asset.
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Figure 9. Flowchart process to obtain model to predict sonic porosity for new wells.

The ANN model is trained and validated, where 70% was used for training and 30% was used for
verification using Monte-Carlo cross-validation technique, and a model is developed which predicts
the Sonic Porosity (SPHI) for 63 wells. Figure 10 shows the visualization of the training set and
validation set for predicting sonic porosity with an accuracy of 87% and 86% for both the Upper and
Middle Bakken Formation respectively.
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2.2.2. Part 4: Prediction of Geomechanical Properties from Conventional Well Logs Utilizing ANN

At this stage, all 112 wells in the asset have information on conventional well logs as the input
independent variables including sonic porosity (SPHI) as the additional input, and geomechanical
properties as the output dependent variables. In this part, a data-driven model is generated that will
predict geomechanical properties just from conventional well logs for future wells, and this was done
by using conventional well logs as the independent input variables and geomechanical properties as
the output dependent variables. Five ANN models will be achieved for each formation, with each
model generating a single geomechanical property for the Upper and Middle Bakken Formation.
For each neural network model, the geomechanical property output generated in the previous model
will be used as an input along with the conventional well logs to predict the next geomechanical
property. This process continues until all five geomechanical property data-driven models are obtained.

In Figure 11, the neural network uses depth, gamma ray (GR), bulk density (RHOB), and sonic
porosity (SPHI) as the input, and the output of five geomechanical properties for 112 wells. At the end
of part 4, five data-driven models are generated that will predict geomechanical properties just from
conventional well logs for future wells drilled in the Upper and Middle Bakken Formation. The ANN
model is trained and validated, where 70% was used for training and 30% was used for verification using
Monte-Carlo cross-validation technique. Overall, the 10 models obtained from neural networks predicting
geomechanical properties for the Upper and Middle Bakken Formation achieved R2 over 90%.
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In addition to the 30% validation performed above, the efficacy of the 5 models achieved above
is tested again and can be proven on 5 randomly selected test wells, one from each of the five major
counties containing the Upper and Middle Bakken Formation as seen in Figure 12. It is also important
to note that the actual geomechanical properties from the well logs obtained by the operators from
the 5 randomly chosen test wells containing the Upper Bakken Shale and Middle Bakken Formation
were not used in the dataset to train the ANN models achieved in phase II. In other words, the ANN
models achieved in phase II will use input parameters of depth, gamma ray, and bulk density from
each of the 5 test wells separately and generate the output of predicted geomechanical properties for
each of the 5 wells. The predicted geomechanical property output will then be compared to the actual
geomechanical logs of the 5 test wells obtained by the operators. This approach will prove the efficacy
of the ANN models achieved in phase II, showing that the model can be used to predict geomechanical
properties of future wells making it very cost effective for operators operating out of North Dakota for
the Upper and Middle Bakken Formation.Energies 2018, 11, x FOR PEER REVIEW  11 of 26 
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3. Results and Discussion

It is important to note that although phase I is used to calculate the geomechanical properties of
the Upper and Middle Bakken Formation which is used as a prequel to phase II, phase I is not required
and will not be used in the algorithm to predict the geomechanical properties of future wells from
conventional well logs. In a simpler understanding of this research, phase I was an additional section
used only to calculate the geomechanical properties dynamically from elastic waves, to fill up the
database with the missing values of geomechanical properties. Since phase I is an additional section in
this research, a relationship between shear wave velocity and compressional wave velocity was also
established using linear and non-linear techniques as additional information to this research. In all
aspects, the main goal of this research is phase II, which is to successfully achieve data-driven models
that use basic and commonly used well logs in the industry such as depth, gamma ray, and bulk
density to predict sonic porosity, which in turn is used as the input with the other input parameters to
predict the geomechanical properties of future wells of the Upper and Middle Bakken Formation, thus
making it very cost effective for oil and gas operators.
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A total of 14 ANN models were achieved to predict shear wave velocity, sonic porosity, and 5
geomechanical properties for the Upper and Middle Bakken Formation each. In this research, the
number of nodes carrying the activation functions of sigmoid, linear, and Gaussian within the hidden
layers vary for each ANN model, and an optimal structure was achieved through trial and error
technique for each model. For each model, 2 hidden layers were used, but the number of nodes
carrying the activation functions varied for each ANN model based on their output property. This was
done to produce highly accurate results as outputs, and thus a definite structure of the model cannot
be elaborated in this research. Overall, the neural network models are trained using back propagation
technique with multilayer perceptrons, which helps in faster learning making it possible to find a
pattern between variables that had previously been deemed pattern-less and unpredictable [25,30].
The main advantage of a neural network model is that it can efficiently model different response
surfaces and can be approximated to any accuracy. Neural networks are very flexible models but tend
to overfit data. When that happens, the model predicts the fitted data very well, but predicts future
observations poorly. To mitigate overfitting, neural network uses a validation technique that uses
part of the dataset in the training set to estimate the model parameters and using the other part in the
validation set to validate the predictive ability of the model. The partitioning of the dataset into training
and validation set is arbitrary and can vary depending on the situation and the developer’s choice.
In this research, 70% of the data was used for training and 30% of the data was used for verification,
which is an ideal choice for this research, providing sufficient amount of data for training the model and
finally verifying the model. This is done by randomly dividing the original combined dataset into the
training and validation sets by using a Monte-Carlo holdback validation with a proportion of 30% for
verification. A weight decay penalty is also applied on model parameters by penalizing large weights
on their squared value or absolute value. This is done to prevent the overfitting and overtraining effect.
Finally, an independent test set is used to assess the model’s predictive ability independently.

The continuous input variables in neural networks are transformed to near normality by using
Johnson’s Distribution [31], to mitigate the negative effects of outliers or heavily skewed distributions.
Boosting is also performed on neural networks at a slow learning rate of 0.1 making the model give
better predictions. If the updated model gives better prediction than the previous model, it replaces the
previous model achieved. This is done by building a large additive neural network model by fitting a
sequence of smaller models. Each of the smaller models is fit on the scaled residuals of the previous
model [26].

3.1. Prediction of Shear Wave Velocity

Two techniques were used to predict the shear wave velocity for the Upper and Middle Bakken
Formation each.

3.1.1. Prediction of Shear Wave Velocity Utilizing Linear Regression Techniques

A linear regression model was obtained in this research additionally to simplify the calculation of
shear wave velocity for the Upper and Middle Bakken Formation by just using compressional wave
velocity. The linear calculation of shear wave velocity for the Upper and Middle Bakken Formation is
of high accuracy and can be used for educational purposes and even for the industry. Figures 13 and 14
shows a linear correlation between shear wave velocity (Vs) and compressional wave velocity (Vp) for
the Upper and Middle Bakken Formation achieved in phase I. To determine the level of accuracy for
the different models achieved in this paper, coefficient of determination (R2) is used as the primary
statistical measure to show the closeness of the predicted data to the actual data. While the adjusted
R2 was also taken into consideration to determine the accuracy, the difference in the adjusted R2 and
R2 values was negligible because only compressional wave velocity was used as the predictor to
predict shear wave velocity in the linear model. If two or more predictors were used to predict shear
wave velocity, then the adjusted R2 would be a better determining tool of accuracy since it shows
how much variance can be explained by a model and the value increases only if the new predictor



Energies 2018, 11, 680 13 of 26

improves the model [32]. Root Mean Square Error (RMSE) is used as the secondary statistical measure
in determining the differences in values between the predicted and the actual. Data Analysis was
performed on the data, using the interquartile range technique (IQR) for cleansing out any outliers or
heavily skewed data that affect the trendline by removing data points that were 3 standard deviations
away from the mean. Along with the IQR technique, scatterplot matrix technique is also used to
analyze the data and to detect potential outliers affecting the data trend. A 95% bivariate normal
density ellipse is plotted, enclosing approximately 95% of the data points. After cleansing, the linear
models achieved an R2 of 88% and 72% for the Upper and Middle Bakken respectively, and the derived
equation to predict shear wave velocity (Vs) from compressional wave velocity (Vp) linearly is seen
below (Equations (3) and (4)). Both shear wave velocity (Vs) and compressional wave velocity (Vp) are
in km/s. This correlation is valid for compressional velocity with a range of 2.4 km/s to 5.3 km/s for
the Upper Bakken Formation and 4.3 km/s to 5.9 km/s for the Middle Bakken Formation. Derived
equation for the Upper Bakken Formation in km/s (Equation (3)):

Vs = 0.37 + 0.47 × Vp (3)
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Figure 13. Shear wave velocity versus compressional wave velocity of the Upper Bakken Formation,
North Dakota.

Derived equation for the Middle Bakken Formation in km/s is seen in the equation below
(Equation (4)). Figure 14b shows an interesting multivariate analysis and a correlation between the
sonic velocities and gamma ray. Shear wave velocity plotted against compressional wave velocity with
respect to gamma ray shows a significant decrease in gamma ray readings with an increase in velocity
for the Middle Bakken Formation. This is corroborated with multivariate analysis proving that gamma
ray has an inverse correlation of 60% with compressional wave velocity, and an inverse correlation of
56% with shear wave velocity for the Middle Bakken Formation. Figure 15 shows the Vp/Vs ratio for
the Upper and Middle Bakken Formation, with an average Vp/Vs ratio of 1.73 and 1.70 respectively.
The significance of the separation is caused due to the large volume of kerogen present in the Upper
Bakken Shale’s matrix causing the sonic velocities to be lower than the Middle Bakken’s Sandstone
(refer Figure 1).

Vs = 1.001 + 0.3841 × Vp (4)
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Figure 14. (a) Shear wave velocity versus compressional wave velocity for the Middle Bakken
Formation. (b) Shear wave velocity versus compressional wave velocity with respect to gamma
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Figure 15. Vp/Vs ratio for the Upper and Middle Bakken Formation.

Hypothesis testing and statistical inference is also performed, by performing an Analysis of
Variance (ANOVA) test on the achieved linear models. This was done by performing an F-test with a
confidence level of 95%, which is used to validate the overall significance of the models achieved. The
F-hypothesis testing revealed a significant linear relationship between Vp and Vs for both the Upper
and Middle Bakken. A T-test is also performed at a confidence interval of 95%, which is used to test for
the significance of the intercept and slope coefficients of the linear models achieved. The T-hypothesis
testing revealed that the intercept and the slope played a significant contribution to the linear models
achieved for the Upper and Middle Bakken.



Energies 2018, 11, 680 15 of 26

The linear model achieved for the Upper Bakken Shale is compared to Castagna’s mud rock
line equation (Equation (5)) in km/s [33–35] for shale (water-saturated). Similarly, the linear model
achieved for the Middle Bakken Formation is compared to Han’s equation (Equation (6)) for sandstone
with porosity lesser than 0.15 [33]. Since the Middle Bakken Formation has very low porosity, it is
compared on a similar level to Han’s equation [36,37]. Figure 16 shows the measure of fit for shear wave
velocity between Castagna’s equation for shale and the derived equation for the Upper Bakken Shale
(left), and Han’s equation for sandstone and the derived equation for the Middle Bakken Sandstone
(right). Castagna’s and Han’s equations both have negative R2, indicating that the chosen model
does not fit well for the Bakken Formation. This suggests that for accurate predictions, sometimes a
generalized equation cannot be used on every formation due to the varying lithology in each formation.
Similarly, it is important to note that the two achieved linear models in this research can be used for
the Upper and Middle Bakken with high degree of certainty of accuracy but may not necessarily work
for other formations with the same lithologies and varying properties.

Vs = 0.7700 × Vp − 0.8674 (5)

Vs = 0.853 × Vp − 1.137 (6)
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3.1.2. Prediction of Shear Wave Velocity Utilizing ANN

Although a linear correlation showed satisfactory results in predicting the shear wave velocity
with an R2 of 88% and 72% for the Upper and Middle Bakken respectively, a nonlinear correlation
utilizing artificial neural networks was also performed to predict shear wave velocity from common
conventional well logs such as gamma ray, and bulk density. The results obtained were unsatisfactory
and indicated that a pattern was not fully observed. This led to a need of another additional well
log, namely compressional wave velocity. In this case, while predicting shear wave velocity, multiple
predictors were used to predict it, and hence it would be ideal to use adjusted R2 as the determining
factor of accuracy. However, to prevent overfitting and overtraining of the data, early stopping and
penalty functions were applied to the model and hence the degree of freedom adjustments were not a
natural fit for the models [26]. As a result, adjusted R2 could not be computed, and the determining
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factor of accuracy was R2 and RMSE. This approach is performed with all the ANN models that follow
in this research.

The final model achieved an R2 of 94% and 88% for the Upper and Middle Bakken respectively,
with it being higher than that of a linear correlation. However, the difference in accuracy of linear fit
versus non-linear fit using ANN for the Upper Bakken Shale is negligible. This is because there is not
much of heterogeneity variation in the Upper Bakken Shale, as the properties of organic rich shales
and source rocks are very uniform throughout their extents. However, with a lot of heterogeneity in
the formation, there is a significant difference in the accuracy between linear and non-linear techniques.
This is evident in the Middle Bakken Formation comprising of 5 various lithologies, causing high
heterogeneity within the formation. In this case, ANN works better than linear techniques, as its
pattern recognizing abilities help in creating a relationship between non-linear variables. Thus, for
highly heterogenous formations, ANN will work better in forming patterns between highly varying
variables, ultimately predicting results with higher and better accuracy.

3.1.3. Comparison of Linear and ANN Model to Predict Shear Wave Velocity

Figure 17 shows a decent linear correlation contrasting against the ANN model for the prediction
of shear wave velocity. It proves that the ANN model delivers a better line of fit, closely following
and centered around the line of best fit. The Root Average Squared Error (RASE) and the Average
Absolute Error (AAE) of the ANN model is lower than that of the linear model, thus corroborating
the statement that the ANN model fits better than the linear model. Thus, the prediction of shear
wave velocity of the remaining 63 wells in phase I was performed using ANN, and the calculation of
geomechanical properties for the 112 wells is based on the values of shear wave velocity predicted
from neural networks. The complete dataset of calculated dynamic geomechanical properties from
phase I are then carried on to phase II, where the geomechanical properties of the Upper and Middle
Bakken Formation are predicted from conventional well logs.
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3.2. Prediction of Sonic Porosity

In phase II, the initial attempt was to predict geomechanical well logs from basic and commonly
used well logs such as gamma ray, and bulk density. The idea was to minimize input logs to predict
the output logs to minimize cost and algorithm processing time without compromising the predictive
capability and reliability of the model. The initial attempts of achieving satisfactory results was not
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accomplished, and this led to a need for an additional log as an input. This led to the need to predict
sonic porosity from conventional well logs as a prequel to performing the prediction of geomechanical
properties of the Upper and Middle Bakken Formation. The parameter of sonic porosity was chosen
mainly because it required just basic and commonly used well logs to predict it, and also provided
high and accurate predicted results for sonic porosity.

Wyllie’s Method [38], and Raymer-Hunt-Gardner Method as seen in Equations (7) and (8)
respectively are widely used for sonic porosity calculation.

SPHI =
∆t − ∆tm

∆tf − ∆tm
×

Hy

Cp
(7)

SPHI = C ×
(

∆t − ∆tm

∆t

)
(8)

The rock compressional transit time or DTCO (∆t) are obtained from the well logs. For the Upper
and Middle Bakken Formation, the transit time for the rock matrix (∆tm) was assumed to be 56 µs/ft.
The interstitial fluid (∆tf) is assumed to be oil with a transit time of 221.6 µs/ft for the Upper and
Middle Bakken. Since Wyllie’s technique (Equation (7)) tends to overestimate porosity in hydrocarbon
bearing reservoirs, the operators use empirical corrections such as compaction factor (Cp) of 1, which
shows the influence of pore pressure on the sonic porosity equation and is estimated from the sonic
response in the nearby shale, and hydrocarbon correction (Hy) was assumed as 0.9 to lessen this error.
Similarly, Raymer-Hunt-Gardner equation [39] was also used to calculate the sonic porosity for a few
wells of the Upper and Middle Bakken (Equation (8)). The transit time for the rock matrix (∆tm) was
assumed to have the same value of 56 µs/ft as used in Wyllie’s method for the Upper and Middle
Bakken. The value of C is an empirical constant and can vary depending on various conditions, and the
operators in North Dakota have used a constant value of 0.625 in their calculations of sonic porosity.

Despite the corrections, the calculation of sonic porosity obtained in the well logs are extremely
high for the Upper Bakken Formation, and the sonic porosity averages 30%. This is incorrect as the
Upper Bakken Shale has very low porosity and permeability. The incorrect and high values of sonic
porosity shown on the imported logs is caused primarily due to the uncertainty of empirical corrections
used, and also due to the negligence of shale corrections for the Upper Bakken Shale. High kerogen
and organic content present in the shale causes variable amounts of low density [40] causing Wyllie’s,
and Raymer-Hunt-Gardner’s technique to overestimate the porosity. A Total Organic Carbon (TOC)
component can be added to Wyllie’s equation to improve and provide more accurate estimations of
sonic porosity for the Upper Bakken Shale. Equation 9, shows Wyllie’s equation modified with the
TOC component added to it, to provide a better and clearer estimation of sonic porosity [41].

SPHI =
(∆t − ∆tm) +

(
wTOC
ρTOC

× ρb

)
× (∆tm − ∆tTOC)

∆tf − ∆tm
(9)

For the Upper Bakken Shale, the weight fraction of TOC (wTOC) is provided as seen in Equation (10)
below [40].

wTOC =

154.497
ρb

− 57.261

100
(10)

The density of kerogen (ρTOC) is assumed to be 1.00 g/cc and the transit time of kerogen (∆tTOC)
is assumed to be 135.47 µs/ft [11].

The incorrect and high values of sonic porosity attributed with the logs for the Upper Bakken
Shale have been replaced with the corrected values, and thus, the database now contains the corrected
values of sonic porosity. Hence with the data-driven model achieved, accurate estimation of sonic
porosity values for future wells will now be predicted by just using basic conventional well logs such
as gamma ray, and bulk density. Since phase I was just used as a prequel to phase II, to calculate and
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complete the database to contain dynamic geomechanical properties and not for any other purpose,
sonic porosity will not be calculated using sonic parameters from phase I, even though sonic porosity
can be calculated from sonic waves. This research focuses on a cost-effective approach to obtain the
sonic porosity, and we do not intend to use sonic logs to achieve sonic porosity. Instead, basic and
commonly used logs in the industry which are cost effective such as gamma ray, and bulk density will
be used to predict the sonic porosity of the formation using artificial neural networks achieving an
accuracy of 87% and 86% for both the Upper and Middle Bakken Formation respectively.

3.3. Prediction of Geomechanical Properties

Finally, upon populating all the missing values in the database, the final database consists of the
input independent variables Depth, Gamma Ray (GR), Bulk Density (RHOB), Sonic Porosity (SPHI),
and the output dependent variables Dynamic Young’s Modulus (E), Dynamic Poisson’s Ratio (v),
Dynamic Bulk Modulus (K), Dynamic Shear Modulus (G), and Minimum Horizontal Stress (σmin) for
each of the 112 wells.

Overall, the models obtained from neural networks achieved R2 over 90%. This was possible
by cascading technique instead of multiple output neuron technique. By cascading technique, the
output of the geomechanical property achieved from the previous model was used as an input
along with the conventional well logs to predict the next geomechanical property in the next model.
The geomechanical property first predicted was based on trial and error, and the output that gave a
higher accuracy was predicted first. The output was then used as an input for the next model and the
next geomechanical property to be predicted was again based on trial and error. The geomechanical
property output giving a higher accuracy was selected as the second geomechanical property to be
predicted. This process continued and until all five geomechanical properties were obtained [21] for
each formation. With this approach, the results kept improving for every geomechanical property
generated, and ultimately, a highly reliable model for predicting minimum horizontal stress from
conventional well logs; achieving an R2 of 98% for the Upper and Middle Bakken Formation.

To prove the efficacy of the ANN models achieved, it is tested on 5 additional test wells spread
across the 5 major producing counties in North Dakota. The data from the 5 wells were not used in
the dataset to train the ANN models achieved in phase II, thus highlighting the efficacy of the ANN
models achieved in this research. In Appendix A, the test wells actual dynamic geomechanical well
logs are compared to the predicted dynamic geomechanical properties obtained from the ANN models
in phase II. Figures A1–A10 show actual dynamic geomechanical logs and predicted geomechanical
properties along with depth for each of the five test wells of the Upper and Middle Bakken Formation
each. The outcome of using the data-driven model on randomly selected test wells is highly accurate
and proves the reliability and efficacy of the model in predicting geomechanical properties of future
wells for the Upper and Middle Bakken Formation.

4. Conclusions

This research shows that statistical methods along with artificially intelligent supervised machine
learning data models have successfully aided in the achievement of three outcomes. The first outcome
is the prediction of shear wave velocity using linear and non-linear techniques. A new linear correlation
to determine shear wave velocity is proposed for the Bakken Formation with accuracies of 88% and
72% for the Upper and Middle Bakken Formation respectively. However, the goal of the research to
use supervised ANN models to predict shear wave velocity was a success, with estimations of higher
accuracies of 94% and 86% for the Upper and Middle Bakken Formation respectively. The second
outcome is the prediction of sonic porosity from basic conventional well logs utilizing ANN. Instead of
using expensive sonic logs to calculate the sonic porosity, this research shows an economic alternative
to predict sonic porosity by just using commonly used conventional well logs, with estimations of
significantly high accuracies of 87% and 86% for the Upper and Middle Bakken Formation respectively.
To get better estimations of sonic porosity for the Upper Bakken Shale that contains large amounts
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of kerogen, the impact of kerogen on sonic porosity was also accounted for, which resulted in more
accurate estimations of sonic porosity for the Upper Bakken Shale.

Ultimately: data-driven models are generated that predict geomechanical properties of the Bakken
Formation from just basic and commonly used conventional well logs with an accuracy greater than
90%, and a very high estimation of minimum horizontal stress of 98% accuracy. This is tested and
proven on 5 additional randomly chosen test wells in North Dakota, whose data were not included
in the original database, thus giving us confidence and assurance that the data models work and
can predict geomechanical properties for future wells of the Bakken Formation in North Dakota.
Altogether, this study shows the benefits of using artificially intelligent supervised machine learning
techniques as an approach in obtaining valuable information for oil and gas operators. In today’s
era, where cost savings is one of the primary objectives for oil and gas operators, the integration of
statistical techniques along with supervised artificially intelligent methods in the oil and gas industry is
potentially a smart technique in obtaining valuable information about reservoir properties, ultimately
leading to improvements in performance, efficiency, and profitability for oil and gas operators.
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Nomenclature

ANN Artificial Neural Networks
∆t or DTCO Rock Transit Time (µs/ft)
∆tf Interstitial Fluid Transit Time (µs/ft)
∆tm Rock Matrix Transit Time (µs/ft)
∆tTOC Kerogen Transit Time (µs/ft)
E Young’s Modulus (Mpsi)
G Shear Modulus (Mpsi)
GR Gamma Ray (API)
IQR Interquartile Range
K Bulk Modulus (Mpsi)
Pp Pore Pressure (psi)
R2 Coefficient of Determination (%)
RHOZ or ρb Bulk Density (g/cc)
ρTOC Kerogen Density (g/cc)
RMSE Root Mean Square Error
SPHI Sonic Porosity
VP Compressional Wave Velocity (km/s or ft/s)
VS Shear Wave Velocity (km/s or ft/s)
WTOC Weight Fraction of Kerogen
ν Poisson’s Ratio
σmin Minimum Horizontal Stress (psi)



Energies 2018, 11, 680 20 of 26

Appendix A

Energies 2018, 11, x FOR PEER REVIEW  19 of 26 

 

Nomenclature 

ANN Artificial Neural Networks 

Δt or DTCO Rock Transit Time (μs/ft) 

Δtf Interstitial Fluid Transit Time (μs/ft) 

Δtm Rock Matrix Transit Time (μs/ft) 

ΔtTOC Kerogen Transit Time (μs/ft) 

E Young’s Modulus (Mpsi) 

G Shear Modulus (Mpsi) 

GR Gamma Ray (API) 

IQR Interquartile Range 

K Bulk Modulus (Mpsi) 

Pp Pore Pressure (psi) 

R2 Coefficient of Determination (%) 

RHOZ or ρb Bulk Density (g/cc) 

ρTOC Kerogen Density (g/cc) 

RMSE Root Mean Square Error 

SPHI Sonic Porosity 

VP Compressional Wave Velocity (km/s or ft/s) 

VS Shear Wave Velocity (km/s or ft/s) 

WTOC Weight Fraction of Kerogen 

ν Poisson’s Ratio 

σmin Minimum Horizontal Stress (psi) 

Appendix A 

 

Figure A1. Actual and predicted geomechanical properties along with depth (feet) for test well 1 in 

Burke County for the Upper Bakken Shale. 
Figure A1. Actual and predicted geomechanical properties along with depth (feet) for test well 1 in
Burke County for the Upper Bakken Shale.

Energies 2018, 11, x FOR PEER REVIEW  20 of 26 

 

 

Figure A2. Actual and predicted geomechanical properties along with depth (feet) for test well 1 in 

Burke County for the Middle Bakken Formation. 

 

Figure A3. Actual and predicted geomechanical properties along with depth (feet) for test well 2 in 

Mountrail County for the Upper Bakken Shale. 

Figure A2. Actual and predicted geomechanical properties along with depth (feet) for test well 1 in
Burke County for the Middle Bakken Formation.



Energies 2018, 11, 680 21 of 26

Energies 2018, 11, x FOR PEER REVIEW  20 of 26 

 

 

Figure A2. Actual and predicted geomechanical properties along with depth (feet) for test well 1 in 

Burke County for the Middle Bakken Formation. 

 

Figure A3. Actual and predicted geomechanical properties along with depth (feet) for test well 2 in 

Mountrail County for the Upper Bakken Shale. 
Figure A3. Actual and predicted geomechanical properties along with depth (feet) for test well 2 in
Mountrail County for the Upper Bakken Shale.

Energies 2018, 11, x FOR PEER REVIEW  21 of 26 

 

 

Figure A4. Actual and predicted geomechanical properties along with depth (feet) for test well 2 in 

Mountrail County for the Middle Bakken Formation. 

 

Figure A5. Actual and predicted geomechanical properties along with depth (feet) for test well 3 in 

Dunn County for the Upper Bakken Shale. 

Figure A4. Actual and predicted geomechanical properties along with depth (feet) for test well 2 in
Mountrail County for the Middle Bakken Formation.



Energies 2018, 11, 680 22 of 26

Energies 2018, 11, x FOR PEER REVIEW  21 of 26 

 

 

Figure A4. Actual and predicted geomechanical properties along with depth (feet) for test well 2 in 

Mountrail County for the Middle Bakken Formation. 

 

Figure A5. Actual and predicted geomechanical properties along with depth (feet) for test well 3 in 

Dunn County for the Upper Bakken Shale. 
Figure A5. Actual and predicted geomechanical properties along with depth (feet) for test well 3 in
Dunn County for the Upper Bakken Shale.

Energies 2018, 11, x FOR PEER REVIEW  22 of 26 

 

 

Figure A6. Actual and predicted geomechanical properties along with depth (feet) for test well 3 in 

Dunn County for the Middle Bakken Formation. 

 

Figure A7. Actual and predicted geomechanical properties along with depth (feet) for test well 4 in 

Williams County for the Upper Bakken Shale. 

Figure A6. Actual and predicted geomechanical properties along with depth (feet) for test well 3 in
Dunn County for the Middle Bakken Formation.



Energies 2018, 11, 680 23 of 26

Energies 2018, 11, x FOR PEER REVIEW  22 of 26 

 

 

Figure A6. Actual and predicted geomechanical properties along with depth (feet) for test well 3 in 

Dunn County for the Middle Bakken Formation. 

 

Figure A7. Actual and predicted geomechanical properties along with depth (feet) for test well 4 in 

Williams County for the Upper Bakken Shale. 
Figure A7. Actual and predicted geomechanical properties along with depth (feet) for test well 4 in
Williams County for the Upper Bakken Shale.

Energies 2018, 11, x FOR PEER REVIEW  23 of 26 

 

 

Figure A8. Actual and predicted geomechanical properties along with depth (feet) for test well 4 in 

Williams County for the Middle Bakken Formation. 

 

Figure A9. Actual and predicted geomechanical properties along with depth (feet) for test well 5 in 

McKenzie County for the Upper Bakken Shale. 

Figure A8. Actual and predicted geomechanical properties along with depth (feet) for test well 4 in
Williams County for the Middle Bakken Formation.



Energies 2018, 11, 680 24 of 26

Energies 2018, 11, x FOR PEER REVIEW  23 of 26 

 

 

Figure A8. Actual and predicted geomechanical properties along with depth (feet) for test well 4 in 

Williams County for the Middle Bakken Formation. 

 

Figure A9. Actual and predicted geomechanical properties along with depth (feet) for test well 5 in 

McKenzie County for the Upper Bakken Shale. 
Figure A9. Actual and predicted geomechanical properties along with depth (feet) for test well 5 in
McKenzie County for the Upper Bakken Shale.

Energies 2018, 11, x FOR PEER REVIEW  24 of 26 

 

 

Figure A10. Actual and predicted geomechanical properties along with depth (feet) for test well 5 in 

McKenzie County for the Middle Bakken Formation. 

References 

1. Tariq, Z.; Elkatatny, S.; Mahmoud, M.; Abdulraheem, A. A New Artificial Intelligence Based Empirical 

Correlation to Predict Sonic Travel Time. In Proceedings of the International Petroleum Technology 

Conference, Bangkok, Thailand, 14–16 November 2016, doi:10.2523/IPTC-19005-MS 

2. Quirein, J.; Far, M.; Gu, M.; Witkowsky, J. Relationships between Sonic Compressional and Shear logs in 

Unconventional Formations. In Proceedings of the SPWLA 56th Annual Logging Symposium, Long Beach, 

CA, USA, 18–22 July 2015. 

3. Maleki, S.; Moradzadeh, A.; Riabi, R.G.; Gholami, R.; Sadeghzadeh, F. Prediction of shear wave velocity 

using empirical correlations and artificial intelligence methods. NRIAG J. Astron. Geophys. 2014, 3, 70–81, 

doi:10.1016/j.nrjag.2014.05.001. 

4. Ameen, M.; Smart, B.G.D.; Somerville, J.M.; Hammilton, S.; Naji, N.A. Predicting rock mechanical 

properties of carbonates from wireline logs. Mar. Pet. Geol. 2009, 26, 430–444, 

doi:10.1016/j.marpetgeo.2009.01.017. 

5. Pitman, J.K.; Price, L.C.; LeFever, J.A. Diagenesis and Fracture Development in the Bakken Formation, 

Williston Basin: Implications for Reservoir Quality in the Middle Member. US Geol. Surv. Prof. Pap. 2001, 

1653, 1–19. 

6. Hester, T.C.; Schmoker, J.W. Selected Physical Properties of the Bakken Formation, North Dakota and Montana 

Part of the Williston Basin; Oil and Gas Investigation Chart, USGS: Reston, VA, USA 1985. 

7. LeFever, J. Structural Contour and Isopach Maps of the Bakken Formation in North Dakota. N. D. Geol. Surv. 

Geol. Investig. 2008. https://www.dmr.nd.gov/ndgs/bakken/bakkenthree.asp (accessed on 10 January 2017). 

8. Sonnenberg, S. Interest Activity Continue in the Bakken. In 2013 Unconventional Playbook Series; Hart Energy 

Publishing: Houston, Texas, USA. 2013; pp. 4–20. 

9. LeFever, J. North Dakota Oil and Gas Division. North Dakota Middle Member Bakken Horizontal Play. 

2015. Available online: https://www.dmr.nd.gov/ndgs/bakken/Papers/middlebakken.pdf (accessed on 10 

January 2017). 

Figure A10. Actual and predicted geomechanical properties along with depth (feet) for test well 5 in
McKenzie County for the Middle Bakken Formation.



Energies 2018, 11, 680 25 of 26

References

1. Tariq, Z.; Elkatatny, S.; Mahmoud, M.; Abdulraheem, A. A New Artificial Intelligence Based Empirical
Correlation to Predict Sonic Travel Time. In Proceedings of the International Petroleum Technology
Conference, Bangkok, Thailand, 14–16 November 2016. [CrossRef]

2. Quirein, J.; Far, M.; Gu, M.; Witkowsky, J. Relationships between Sonic Compressional and Shear logs in
Unconventional Formations. In Proceedings of the SPWLA 56th Annual Logging Symposium, Long Beach,
CA, USA, 18–22 July 2015.

3. Maleki, S.; Moradzadeh, A.; Riabi, R.G.; Gholami, R.; Sadeghzadeh, F. Prediction of shear wave velocity
using empirical correlations and artificial intelligence methods. NRIAG J. Astron. Geophys. 2014, 3, 70–81.
[CrossRef]

4. Ameen, M.; Smart, B.G.D.; Somerville, J.M.; Hammilton, S.; Naji, N.A. Predicting rock mechanical properties
of carbonates from wireline logs. Mar. Pet. Geol. 2009, 26, 430–444. [CrossRef]

5. Pitman, J.K.; Price, L.C.; LeFever, J.A. Diagenesis and Fracture Development in the Bakken Formation,
Williston Basin: Implications for Reservoir Quality in the Middle Member. US Geol. Surv. Prof. Pap. 2001,
1653, 1–19.

6. Hester, T.C.; Schmoker, J.W. Selected Physical Properties of the Bakken Formation, North Dakota and Montana Part
of the Williston Basin; Oil and Gas Investigation Chart; USGS: Reston, VA, USA, 1985.

7. LeFever, J. Structural Contour and Isopach Maps of the Bakken Formation in North Dakota. N. D. Geol. Surv.
Geol. Investig. 2008. Available online: https://www.dmr.nd.gov/ndgs/bakken/bakkenthree.asp (accessed
on 10 January 2017).

8. Sonnenberg, S. Interest Activity Continue in the Bakken. In 2013 Unconventional Playbook Series; Hart Energy
Publishing: Houston, Texas, USA, 2013; pp. 4–20.

9. LeFever, J.; North Dakota Oil and Gas Division. North Dakota Middle Member Bakken Horizontal Play.
2015. Available online: https://www.dmr.nd.gov/ndgs/bakken/Papers/middlebakken.pdf (accessed on 10
January 2017).

10. Ling, K.; He, J.; Pei, P.; Wang, S.; Ni, X. Comparisons of Biot’s Coefficients of Bakken Core Samples Measured
by Three Methods. In Proceedings of the 50th U.S. Rock Mechanics/Geomechanics Symposium, Houston,
TX, USA, 26–29 June 2016.

11. Guedez, A. Developing Correlations for Velocity Models in Vertical Transverse Isotropic Media: Bakken
Case Study. Master’s Thesis, University of Louisiana at Lafayette, Lafayette, LA, USA, 2017.

12. Mohaghegh, S.D.; Arefi, R.; Ameri, S.; Aminiand, K.; Nutter, R. Petroleum reservoir characterization with
the aid of artificial neural networks. J. Pet. Sci. Eng. 1996, 16, 263–274. [CrossRef]

13. Guler, B.; Ertekin, T.; Grader, A.S. An Artificial Neural Network Based Relative Permeability Predictor.
Pet. Soc. Can. 2003, 42. [CrossRef]

14. Mohaghegh, S.; Balan, B.; Ameri, S. Permeability determination from well log data. SPE Form. Eval. 1997, 12,
170–174. [CrossRef]

15. Al-Mudhafar, W.J. Integrating well log interpretations for lithofacies classification and permeability modeling
through advanced machine learning algorithms. J. Pet. Explor. Prod. Technol. 2017, 7, 1023. [CrossRef]

16. Lee, S.H.; Datta-Gupta, A. Electrofacies characterization and permeability predictions in carbonate reservoirs:
Role of multivariate analysis and nonparametric regression. In Proceedings of the SPE Annual Technical
Conference and Exhibition, Houston, TX, USA, 3–6 October 1999.

17. Lee, S.H.; Kharghoria, A.; Datta-Gupta, A. Electrofacies characterization and permeability predictions in
complex reservoirs. SPE Reserv. Eval. Eng. 2002, 5, 237–248. [CrossRef]

18. Rolon, L.F.; Mohaghegh, S.D.; Ameri, S.; Gaskari, R.; McDaniel, B. Developing Synthetic Well Logs for the
Upper Devonian Units in Pennsylvania. In Proceedings of the SPE Eastern Regional Meeting, Morgantown,
WV, USA, 14–16 September 2005.

19. Rolon, L.; Mohaghegh, S.D.; Ameri, S.; McDaniel, B. Using artificial neural networks to generate synthetic
well logs. J. Nat. Gas Sci. Eng. 2009, 1, 118–133. [CrossRef]

20. Tahmasebi, P.; Javadpour, F.; Sahimi, M. Data mining and machine learning for identifying sweet spots in
shale reservoirs. Expert Syst. Appl. 2017, 435–447. [CrossRef]

21. Eshkalak, M.O.; Mohaghegh, S.D.; Esmaili, S. Synthetic Geomechanical Logs for Marcellus Shale.
In Proceedings of the SPE Digital Energy Conference, The Woodlands, TX, USA, 5–7 March 2013.

http://dx.doi.org/10.2523/IPTC-19005-MS
http://dx.doi.org/10.1016/j.nrjag.2014.05.001
http://dx.doi.org/10.1016/j.marpetgeo.2009.01.017
https://www.dmr.nd.gov/ndgs/bakken/bakkenthree.asp
https://www.dmr.nd.gov/ndgs/bakken/Papers/middlebakken.pdf
http://dx.doi.org/10.1016/S0920-4105(96)00028-9
http://dx.doi.org/10.2118/03-04-02
http://dx.doi.org/10.2118/30978-PA
http://dx.doi.org/10.1007/s13202-017-0360-0
http://dx.doi.org/10.2118/78662-PA
http://dx.doi.org/10.1016/j.jngse.2009.08.003
http://dx.doi.org/10.1016/j.eswa.2017.07.015


Energies 2018, 11, 680 26 of 26

22. Mohaghegh, S.D.; Eshkalak, M. Synthetic Geomechanical Logs. In Shale Analytics: Data-Driven Analytics in
Unconventional Resources; Springer: Berlin, Germany, 2017; pp. 109–125.

23. Parapuram, G.K.; Mokhtari, M.; Ben Hmida, J. Prediction and Analysis of Geomechanical Properties of the
Upper Bakken Shale utilizing Artificial Intelligence and Data Mining. In Proceedings of the SPE/AAPG/SEG
Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017.

24. Hamblin, S. Determining Relative Permeability of North American Sandstone Utilizing Artificial Neural
Networks. Master’s Thesis, University of Louisiana at Lafayette, Lafayette, LA, USA, 2016.

25. Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ,
USA, 1998.

26. Klimberg, R.; McCullough, B.D. Fundamentals of Predictive Analytics with JMP, 2nd ed.; SAS Institute: Cary,
NC, USA, 2016.

27. Gudmundsson, A. Rock Fractures in Geological Processes; Cambridge University Press: Cambridge, UK, 2011.
28. Eaton, B.A. Fracture Gradient Prediction and Its Application in Oilfield Operations. Society of Petroleum

Engineers. J. Pet. Technol. 1969, 21, 25–32. [CrossRef]
29. Havens, J. Mechanical Properties of the Bakken Formation. Master’s Thesis, Colorado School of Mines,

Golden, CO, USA, 2012.
30. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature

1986, 323, 533–536. [CrossRef]
31. Johnson, N.L. Systems of Frequency Curves Generated by Methods of Translation. Biometrika 1949, 36,

149–176. [CrossRef] [PubMed]
32. Al-Mudhafar, W.J.; Rao, D.N. Proxy-Based Metamodeling Optimization of the Gas-Assisted Gravity Drainage

GAGD Process in Heterogeneous Sandstone Reservoirs. Soc. Pet. Eng. 2017. [CrossRef]
33. Schön, J. Physical Properties of Rocks, 1st ed.; Handbook of Petroleum Exploration and Production; Elsevier:

Amsterdam, The Netherlands, 2011.
34. Castagna, J.P.; Batzle, M.L.; Eastwood, R.L. Relationships between compressional-wave and shear-wave

velocities in clastic silicate rocks. Geophysics 1985, 50, 571–581. [CrossRef]
35. Castagna, J.P.; Batzle, M.L.; Kan, T.K. Rock physics-The link between rock properties and AVO response.

In Offset-Dependent Reflectivity—Theory and Practice of AVO Analysis, Investigations in Geophysics, Society of
Exploration Geophysicists; SEG: Tulsa, OK, USA, 1993; pp. 135–171.

36. Dvorkin, J. Yet another Vs equation. In SEG/San Antonio 2007 Annual Meeting; SEG: Tulsa, OK, USA, 2007;
pp. 1570–1574.

37. Han, D.; Nur, A.; Morgan, D. Effects of porosity and clay content on wave velocity in sandstones. Geophysics
1986, 51, 2093–2107. [CrossRef]

38. Wyllie, M.R.J.; Gregory, A.R.; Gardner, L.W. Elastic Wave Velocities in Heterogeneous and Porous Media.
Geophysics 1956, 21, 41–70. [CrossRef]

39. Alberty, M. Standard Interpretation. In AAPG Development Geology Reference Manual; Methods in Exploration
Series; AAPG: Tulsa, OK, USA, 1993; pp. 180–185.

40. Schmoker, J.W.; Hester, T.C. Organic Carbon in Bakken Formation, United States Portion of Williston Basin.
AAPG Bull. 1983, 67, 2165–2174.

41. Labani, M.; Rezaee, R. Well Log Analysis of Gas Shale Reservoirs. In Fundamentals of Gas Shale Reservoirs;
John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 125–137.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2118/2163-PA
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1093/biomet/36.1-2.149
http://www.ncbi.nlm.nih.gov/pubmed/18132090
http://dx.doi.org/10.2118/185701-MS
http://dx.doi.org/10.1190/1.1441933
http://dx.doi.org/10.1190/1.1442062
http://dx.doi.org/10.1190/1.1438217
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	PHASE I: Calculation of Geomechanical Properties of the Upper and Middle Bakken Formation from Elastic Waves 
	Part 1: Prediction of Shear Wave Velocity 
	Part 2: Calculate Geomechanical Properties Dynamically from Elastic Waves. 

	PHASE II: Geomechanical Properties of the Upper and Middle Bakken Formation Available after Utilizing Data Mining Techniques and ANN 
	Part 3: Prediction of Sonic Porosity from Conventional Well Logs Utilizing ANN. 
	Part 4: Prediction of Geomechanical Properties from Conventional Well Logs Utilizing ANN 


	Results and Discussion 
	Prediction of Shear Wave Velocity 
	Prediction of Shear Wave Velocity Utilizing Linear Regression Techniques 
	Prediction of Shear Wave Velocity Utilizing ANN 
	Comparison of Linear and ANN Model to Predict Shear Wave Velocity 

	Prediction of Sonic Porosity 
	Prediction of Geomechanical Properties 

	Conclusions 
	
	References

