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Abstract: Renewable energy and electric vehicles have become involved in power systems, which
has attracted researchers to stochastic continuous disturbances (SDEs). This paper addresses
stochastic analysis issues for the stability of a power system with losses under SDEs. Firstly, the
quasi-Hamiltonian models of power systems with losses under SDEs are given. Secondly, a novel
analytical method is proposed to analyze the stability of the power system with losses under SDEs
based on the stochastic averaging method. Thirdly, comparisons of stability probability under
different parameters are performed, from which insights to improve the stability probability of power
systems with losses under SDEs can be obtained. Even though it is challenging to assess the stability
of a power system with losses under SDEs, the proposed method in this paper could serve well in
this regard.

Keywords: stability probability; stochastic averaging method; quasi-Hamiltonian system; energy
function method; Kolmogorov backward equation

1. Introduction

Power systems always operate under stochastic disturbances (SCDs). Considerable attention
has been paid to SCDs in power system analyses. However, SCDs were considered small in power
systems previously. Nowadays, renewable energy and electric vehicles have become integrated into
to power systems [1–3]. Recently, it has been shown that wind power output is an intermittent
energy resource [4–6]. In [7], the very important development of renewable energy sources in the last
few years has been pointed out, mainly in renewable technologies, such as wind, solar, hydro, and
marine energies, among others. In [8], the authors indicate that the plug-in hybrid electric vehicles or
all-electric vehicles are starting to take their share of the vehicle market and will potentially replace
combustion engine vehicles in the future. These stochastic resources are considered to bring significant
stochastic disturbances into power systems [9]. One of the major issues is if the stability could be
impacted by the SCDs [10]. This paper focuses on the stochastic stability analysis in power systems
with losses under SCDs.

In power system analysis, stability is known to be greatly influenced by contingencies, but
problems in power system stability can arise when the penetration of intermittent renewable energy
and electric vehicles obviously increases. It has been shown that the cumulative effect of SCDs can
force system states to leave bounded regions after a long enough time, which may cause stability
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issues [11]. Power system stability was analyzed in [12], in which stochastic excitation, which is
caused by wind power fluctuation and stochastic parameters of virtual inertia caused by wind
speed uncertainty, was considered. In [2], the small-signal stability was explored in a power system
with probabilistic uncertainties in correlated photovoltaic and loads. The authors of [13] regard the
increasing involvement of plug-in hybrid electric vehicles, and of wind and solar power, as a threat to
power system stability. In [14], an assessment of the impact of renewable resources and plug-in electric
vehicles on stability is presented. In [15], it is shown that small perturbations from wind generation
can drive a system to different operating points, leading to different stability margins.

Usually, Itō stochastic differential equations (SDEs) are adopted to describe power system
dynamics with SCDs. In [16], SDEs were adopted to describe continuous wind speed models. In [17],
power systems impacted by stochastic perturbations from the load and variable renewable generation
are modeled by SDEs. In [18], a systematic method using SDEs for describing a power system under
stochastic perturbations is presented. Gaussian-distribution-based stochastic excitation is adopted to
describe the mechanical power inputs in asynchronous wind turbines in [19], and the power system is
modeled with SDEs. In [20], a stochastic model based on SDEs is employed to describe power systems
with variable wind power. Disturbances from intermittent renewable energy and plug-in electric
vehicles are described in [21] as a continuous-time stochastic process, and the power system is further
modeled by SDEs.

Monte Carlo simulations are regarded as good tools for studying power system dynamics under
SCDs because of their high scalability in SDE simulations [22]. However, the disadvantages of
Monte Carlo simulations are obvious and include low computation efficiency and an unclear impact
mechanism. An analytical method that is highly efficient and that has a clear impact mechanism is
desired. There have been considerable efforts to propose analytical methods for stability assessments
in power systems. The stochastic averaging method has been adopted in power systems without
losses to analyze first passage failure, and the analytical solutions agreed well with the Monte Carlo
solutions [23,24]. In [25], the stability of a multi-machine power system without losses was assessed by
utilizing the stochastic averaging method. In the above methods, the stochastic averaging method is
based on an energy function method in power systems, so these methods are faster and have a clearer
mechanism intrinsically, which makes them attractive. However, in the above method, the losses
from the transmission system and transfer conductance are seldom considered. To use the stochastic
averaging method in the power system with losses, the Hamiltonian (i.e., energy function) should
be presented firstly [26,27]. Much effort has been made to seek system energy functions for power
systems considering losses, which unfortunately has been in vain. No general energy function exists in
multi-machine power systems considering losses, which is disappointing information for attempts
to seek energy functions in power systems with losses. However, the energy function exists in the
single-machine infinite-bus (SMIB) power system [28,29].

Recently, much attention has been paid to the study of analyzing stability in power systems under
SCDs. However, the issue of taking the losses into account has not been addressed yet. To deal with the
above issue, in this paper, an analytical method is offered to assess the stability of power systems with
losses under SCDs. To model the power system with losses under SCDs, SDEs are used. Moreover,
the quasi-Hamiltonian model of a power system with losses under SCDs is set up. Secondly, the
stability probability of a power system with losses under SCDs is worked out. Simulations show that
the analytical results from the proposed method are almost the same as those from the Monte Carlo
simulation. Finally, comparisons of stability probability under different parameters are performed and
show helpful insights.

In this paper, the organization is shown as follows: In Section 2, a power system with losses is
introduced. In Section 3, a stochastic model based on SDEs is built for power systems with losses under
SCDs, and its stability probability is also given. In Section 4, the stochastic model in quasi-Hamiltonian
form is presented, and the analytical method is proposed to analyze the stability probability of the
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power system with losses under SCDs. Simulation cases are offered in Section 5 and conclusions are
given in Section 6.

2. Power Systems with Losses

In this paper, the stochastic model is initially presented for power systems with losses under
SCDs, before the novel framework is proposed to analytically assess its stability. A major problem in
the stability assessment by a direct method is the derivation of Lyapunov functions for power systems
that are with losses [28,29].

2.1. A Model of Power System with Losses

The losses are considered mainly from transmission systems and transfer conductances [28,29].
In this paper, an SMIB system with losses is underscored, whose model is as follows:{

dδ/dt = ωNω

Mdω/dt = P− EUB12 sin δ− EUG12 cos δ− Dω
(1)

where δ denotes the rotor angle of the machine with respect to infinite bus; ω denotes the rotating speed
of the machine; M denotes the inertia coefficient of the machine; D denotes the damping coefficient of
the machine; U is the voltage of the infinite bus; P = Pm − G11E2, where Pm denotes the mechanical
power, E is the voltage behind direct axis transient reactance, and G12 (G11) denotes the conductance of
the element in the first row and second (first) column of the reduced admittance matrix; B12 denotes
the susceptance of the element in the first row and second column of the reduced admittance matrix;
and ωN denotes the synchronous machine speed.

The losses from the transmission systems and transfer conductances are expressed by EUG12cosδ.
Usually, Equation (1) can be expressed in the more compact form,{

dδ/dt = ωNω

Mdω/dt = P− EUY12 sin(δ− α)− Dω
(2)

where Y12
2 = B12

2 + G12
2 and α = −arctan(G12/B12).

The phase α in Equation (2) is due to the losses. Due to the presence of losses in Equations (1) and
(2), this kind of system is called a lossy power system.

2.2. Energy Function of Power System with Losses

Practically, the losses are neglected in the lossy power system when the direct method is used to
assess the stability, due to the fact that the general energy function in lossy power systems generally
does not exist. However, for the SMIB system of Equation (2), there is a general energy function, which
is shown as follows [28,29]:

H =
1
2

MωNω2 − Pδ− EUY12 cos(δ− α) + Pδs + EUY12 cos(δs − α) (3)

where δs is the stable state of δ.

2.3. Stability Assessment of Power System with Losses

Based on the energy function in the direct method, stability can be easily assessed. To be specific,
if the system energy (Equation (3)) exceeds the critical potential energy, the system is not stable. For the
system (Equation (2)) with the energy function (Equation (3)), the critical potential energy is equal to
the potential energy when δ = π − δs + 2α. The potential energy is shown as follows:

HP = −Pδ− EUY12 cos(δ− α) + Pδs + EUY12 cos(δs − α). (4)
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3. Stochastic Stability of Power System Considering the Losses under Stochastic
Continuous Disturbances

3.1. Stochastic Power System Model Based on SDEs

In this paper, the stochastic model is initially presented for power systems with losses under
SCDs, before the novel framework is proposed to analytically assess its stability. To describe the power
systems with losses under SCDs, SDEs are adopted in this paper to express the stochastic model.
The normalized SMIB model with additive white noise perturbations is modeled as a set of Itō SDEs.{

dδ/dt = ωNω

Mdω/dt = P− EUY12 sin(δ− α)− Dω + σW(t)
(5)

where σW(t) denotes the SCDs, which represents the power imbalance between the generators and the
loads; W(t) is the Gaussian white noise; σ is the intensity of the excitation.

Because the network and load are merged together, the term G11E2 in P actually denotes the active
power at load locations. In other words, the stochastic disturbances acting on machine equations
describe the disturbances from not only the generation power but also the load power.

3.2. Stability Probability of Power System with Losses under Stochastic Continuous Disturbances

In power systems, stability is known to be greatly influenced by contingencies. However, new
problems regarding stability can arise when the increasing intermittent renewable energy and electric
vehicles are introduced into such systems. It has been shown that the cumulative effect of SCDs can
force system states to leave the bounded region after a long enough time [11], which may bring about
stability issues. In recent years, many studies have been focused on this research area; the assessment
index is desired for the stability in power systems with losses under SCDs. Power system states change
randomly under SCDs. The probability describing that system states stay in the stability region is
defined as the stability probability in this paper. Based on the energy function method, the stability
probability P(t|H0) can be expressed in the following form [25]:

P(t|H0) = P{H(τ) < Hcr, τ ∈ (0, t]|H(0) = H0 < Hcr} (6)

where P(t|H0) denotes the stability probability, which represents the probability that the system energy
H (3) is smaller than the critical potential energy Hcr (3) within the time interval [0, t) when the initial
system energy H(0) is always smaller than the critical potential energy Hcr.

To offer the clear impact mechanism of SCDs on the stability of power system with losses, the
suitable assessment index is important. The stability probability proposed in this paper represents a
suitable index. The power system with losses under SCDs is more stable when its stability probability
is higher.

4. Stochastic Stability Assessment for Power Systems Considering Losses under Stochastic
Continuous Disturbances

Stochastic dynamics theory has been built to meet the needs of engineering fields [26]. However,
stochastic dynamics theory is rarely used in power systems. In this paper, the stochastic averaging
method based on quasi-Hamiltonian systems is adopted to assess the stability of power systems
considering losses under SCDs.
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4.1. Stochastic Power System Model in Quasi-Hamiltonian Form

To express the power system model in quasi-Hamiltonian form, the Hamiltonian should be
defined first. In Equation (1), the energy function of the power system can be regarded as the
Hamiltonian. Furthermore, the stochastic model in quasi-Hamiltonian form can be shown as follows:{

dδ/dt = (1/M)∂H/∂ω

dω/dt = (−1/M)∂H/∂δ− [D/(M2ωN)]∂H/∂ω + (σ/M)W(t)
(7)

where {
∂H/∂ω = MωNω

∂H/∂δ = −P + EUY12 sin(δ− α)
(8)

where ∂ denotes the partial differential operator.

4.2. Equivalent Itō Stochastic Differential Equation for the System Energy of Power Systems with Losses
under SCDs

If there are no stochastic disturbances in Equation (5) (i.e., the deterministic model (Equation (2))),
the differential function of the system energy can be derivated as follows:

dH = (∂H/∂ω)dω + (∂H/∂δ)dδ. (9)

After the introduction of SCDs, the Itō SDEs of the system energy H can be obtained based on the
Itō formula [30], which is shown as follows:

dH = (∂H/∂ω)dω + (∂H/∂δ)dδ + [σ2/(2M2)](∂2H/∂ω2)dt
= [−DωNω2 + σ2ωN/(2M)]dt + σωNωdB(t)

(10)

where [σ2/(2M2)](∂2H/∂ω2) is the Wong–Zakai correction term [30], B(t) is the Wiener process, and
dB(t)/dt = W(t).

Furthermore, by utilizing the stochastic averaging method, the Hamiltonian (i.e., the system
energy) weakly converges with a one-dimensional diffusion process, which can be regarded as the
equivalent Itō SDEs for Equation (10), as follows:

dH = m(H)dt + σ(H)dB(t) (11)

where 
m(H) = 1

T(H)

∫
Ω

{
[−DωNω2 + σ2ωN/(2M)]/(∂H/∂ω)

}
dδ

σ2(H) = 1
T(H)

∫
Ω

[
(σωNω)2/(∂H/∂ω)

]
× dδ

T(H) =
∫

Ω [1/(∂H/∂ω)]× dδ

Ω = { (δ)|H(δ, 0) ≤ H}

. (12)

4.3. Analytical Method for Solving the Stability Probability

The final step in the proposed assessment method is the application of the Kolmogorov backward
equation to solve for the stability probability.

After the stochastic averaging, the system energy of the complex stochastic system (Equation (7))
is equivalent to the diffusion process (Equation (11)). The stability probability (Equation (6) can
be regarded as the first-passage probability of the diffusion process (Equation (11)). In probability
theory, the Kolmogorov backward equation is often used to characterize stochastic processes. To be
specific, the Kolmogorov backward equation describes how the probability that a stochastic process
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is in a certain region changes over time. Based on the Kolmogorov backward equation, the stability
probability is calculated by the following equation:

∂P
(

t|H0

)
/∂t = m(H0)∂P

(
t|H0

)
/∂H0 +

1
2

σ(H0)
2∂2P

(
t|H0

)
/∂H0

2 (13)

where H0 denotes the initial system energy (i.e., the system energy at t = 0).
For the partial differential Equation (13), initial and boundary conditions should be given for the

region where solutions of stability probability P(t|H0) will be solved [31].
Firstly, the initial system energy H0 should be smaller than the critical system energy Hcr, the

stability probability P(t|H0) at t = 0 is equal to 1, which represents the initial condition. If the initial
system energy H0 exceeds the critical energy Hcr, the stability probability P(t|H0) should be 0 all the
time, which represents a boundary condition. Meanwhile, the stability probability P(t|H0) with initial
energy H0 should be higher than 0 all the time, which represents another boundary condition. These
associated conditions for Equation (13) are shown as follows [25]:

P(0|H0) = 1, when H0 < Hcr

P(t|Hcr) = 0
∂P/∂t = m(0) ∂P/∂H0, when H0 = 0

. (14)

Usually, the partial differential equation based on the Kolmogorov backward equation
(Equation (13)) is hard to solve directly. In this paper, the Crank–Nicolson method is adopted to
solve Equation (10) to obtain stability probability [31].

4.4. Procedure for the Stochastic Stability Analysis of a Power System with Losses

The procedure for the stochastic stability analysis of a power system with losses by the stochastic
averaging method is outlined below and shown in Figure 1.

Step 1: Build the stochastic model of the power system with losses under SCDs (Equation (1)).
Step 2: Deduce the stochastic model in the quasi-Hamiltonian form (Equation (7)).
Step 3: Obtain the equivalent differential function of the system energy (Equation (9)), based on

the stochastic averaging method.
Step 4: Calculate the stability probability of the power system with losses under SCDs, by solving

the Kolmogorov backward equation (Equation (13)) based on the Crank–Nicolson method.
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5. Simulation Case

5.1. Modified SMIB System and Its Critical Potential Energy

In this section, a modified SMIB system is adopted to verify the proposed method. This system
includes losses and SCDs. The model of this system is described by Equation (2), and the corresponding
parameters are given as follows: ωN = 314.16, M = 20, P = 1.1184, E = U = 1, Y12 = 2, α = 6◦, D = 05,
σ = 0.1, and δs = 40◦.

Based on the potential energy (Equation (4)), the relation between the potential energy HP and
the rotor angle δ is shown in Figure 2. It can be seen that Point A (δ = δs = 34◦) is the stable equilibrium
point, which represents the stable state of the system; Point B (δ = π − δs − 2α = 152◦) is the unstable
equilibrium point, whose energy is the critical potential energy. Furthermore, the critical potential
energy is calculated as Hcr = HP(152◦) = 1.13.

Energies 2018, 11, x FOR PEER REVIEW  7 of 11 

 

equilibrium point, whose energy is the critical potential energy. Furthermore, the critical potential 

energy is calculated as Hcr = HP(152°) = 1.13. 

 

Figure 2. Potential energy curve near the stable point. 

5.2. Stochastic Averaging Method 

If system energy exceeds critical potential energy, the system is unstable. When SCDs are 

introduced into a power system, random events occur, and system energy is lower than critical 

potential energy, which should be determined by the probability. In this paper, this probability is 

defined as the stability probability, and the stochastic averaging method is used to analytically 

calculate it. The stability probability of a power system is equal to the first-passage probability 

(Equation (13)) of the diffusion process (Equation (11). 

After the stochastic averaging method is utilized, the equivalent diffusion process can be 

obtained. Based on the analysis in Section 4.2, the coefficients (i.e., m
__

(H) and σ
__

(H)) of the equivalent 

Itō SDE for the system energy can be calculated, and are illustrated in Figure 3. 

  
(a) (b) 

Figure 3. The coefficients of the equivalent Itō stochastic differential equation for the system energy: 

(a) the drift coefficient m
__

(H); (b) the diffusion coefficient σ
__

(H). 

Stability probability was calculated based on Equation (13), which is shown here as the red line 

in Figure 4. To verify the proposed method based on Equation (13), a Monte Carlo simulation was 

also utilized to calculate the stability probability, which is shown as the black dotted line in Figure 4. 

As can be seen in Figure 4, the analytical results agree well with those of the Monte Carlo simulation. 

This analytical method also has a large advantage in time consumption. Based on the energy 

function method, the trajectories of the system state should be calculated first, and the system energy 

can then be calculated based on the trajectories of the system energy. Even though stability is directly 

assessed by judging whether the system state trajectories are unstable, iterations, which cost most 

time, are still necessary for Monte Carlo simulations. In Monte Carlo simulations, system state 

trajectories are simulated by repeated trials based on the stochastic model of power system with 

Figure 2. Potential energy curve near the stable point.

5.2. Stochastic Averaging Method

If system energy exceeds critical potential energy, the system is unstable. When SCDs are
introduced into a power system, random events occur, and system energy is lower than critical
potential energy, which should be determined by the probability. In this paper, this probability is
defined as the stability probability, and the stochastic averaging method is used to analytically calculate
it. The stability probability of a power system is equal to the first-passage probability (Equation (13))
of the diffusion process (Equation (11).

After the stochastic averaging method is utilized, the equivalent diffusion process can be obtained.
Based on the analysis in Section 4.2, the coefficients (i.e., m(H) and σ(H)) of the equivalent Itō SDE for
the system energy can be calculated, and are illustrated in Figure 3.
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Stability probability was calculated based on Equation (13), which is shown here as the red line
in Figure 4. To verify the proposed method based on Equation (13), a Monte Carlo simulation was
also utilized to calculate the stability probability, which is shown as the black dotted line in Figure 4.
As can be seen in Figure 4, the analytical results agree well with those of the Monte Carlo simulation.

This analytical method also has a large advantage in time consumption. Based on the energy
function method, the trajectories of the system state should be calculated first, and the system energy
can then be calculated based on the trajectories of the system energy. Even though stability is directly
assessed by judging whether the system state trajectories are unstable, iterations, which cost most time,
are still necessary for Monte Carlo simulations. In Monte Carlo simulations, system state trajectories
are simulated by repeated trials based on the stochastic model of power system with losses under SCDs
(Equation (1)), which is the major reason that much computation is needed in Monte Carlo simulations.

From these respects, the proposed analytical method is superior, due to its higher efficiency and
clearer mechanism. Moreover, since the proposed method is analytical, it can offer accurate results
directly without iterations. Hence, the proposed method could work well to analyze the stochastic
stability in power systems with losses under SCDs.
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5.3. Comparisons of Stability Probability under Different Parameters

To study the impacts of parameters on the stability probability in power systems with losses under
SCDs, several simulation cases, with different damping coefficients, different intensities of SCDs, and
different mechanical power levels (which are included in P), were considered, and results are shown in
Figure 5. When the mechanical power varies, the system energy function and the critical energy change
accordingly. Based on Figure 5, the results of the proposed method agree well with those of the Monte
Carlo simulations. Moreover, stability probability decreases as the damping coefficient decreases, as
the intensity of SCDs increases, and as the mechanical power increases. These results suggest that
the operations on enlarging system damping, mitigating SCDs, and reducing the generation level can
improve stability probability.
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6. Conclusions

Since intermittent renewable energy and electric vehicles have become involved in power systems,
SCDs have attracted much attention. One of the major concerns is whether SCDs influence stability.
In this paper, to assess the stability of a power system with losses under SCDs, a stochastic averaging
based analytical method is employed. The main contributions of this work are as follows:

(1) Based on the presented quasi-Hamiltonian model of a power system with losses under SCDs, the
quasi-Hamiltonian theory is shown here to be useful in analyzing nonlinear stochastic dynamics
in power systems with losses under SCDs.
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(2) The analytical method put forward, which determines the stability probability of a power system
with losses under SCDs, agree well with the results of the Monte Carlo simulation. The proposed
method is also shown to have a clearer impact mechanism and have higher efficiency.

(3) The comparisons of stability probability under different parameters are performed, from which
insights to improve the stability probability of power systems with losses under SCDs can
be obtained.
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