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Abstract: A large scale of renewable energy employing grid connected electronic inverters fail to
contribute inertia or damping to power systems, and, therefore, may bring negative effects to the
stability of power system. As a solution, an advanced Virtual Synchronous Generator (VSG) control
technology based on Hamilton approach is introduced in this paper firstly to support the frequency
and enhance the suitability and robustness of the system. The charge and discharge process of power
storage devices forms the virtual inertia and damping of VSG, and, therefore, limits on storage
capacity may change the coefficients of VSG. To provide a method in keeping system output in an
acceptable level with the capacity restriction in a transient period, an energy control algorithm is
designed for VSG adaptive control. Finally, simulations are conducted in DIgSILENT to demonstrate
the correctness of the algorithm. The demonstration shows: (1) the proposed control model aims
at better system robustness and stability; and (2) the model performs in the environment closer to
practical engineering by fitting the operation state of storage system.

Keywords: VSG; dissipative Hamiltonian system; energy storage; small-signal model

1. Introduction

In recent years, penetration of distributed generation (DG) in power systems is increasing rapidly,
accompanied with the reduction of total system inertia. To play their potential fully and reduce their
negative effects at the same time, specific functionalities are designed for the converter interfacing
DG and power grid [1–4]. Virtual synchronous generator (VSG) technology [5,6], which imitates the
output characteristic of synchronous generator (SG) to enhance the stability of power grid, is one of
the effective methodologies and attracting more and more attention.

In the project of Virtual Synchronous Machines (VSYNC) in Poland, an idea named VSG was
put forward the first time, aiming at making the converter imitate the mechanical equation for a
more stable grid frequency [7]. A further study in excitation control was introduced later, completing
and developing the VSG system [8]. However, since the immaturity of the early VSG technology,
the dynamic response of the systems are commonly slow and accompanied with slight oscillations.

Small-signal modeling is one of the mainstream methods in linear system analysis and it is widely
used in VSG for system stabilization. Comparisons are illustrated in [9] between droop control and
VSG control. Superiority of VSG has been proved by comparing dynamic responses via small-signal
modeling and state equations. In [10], every specific elements of the inverter control modeling are
listed and analyzed. The corresponding small-signal model is then established for obtaining controller
sensitivity and revealing the effects of different parameters towards VSG system.

One of the merits of VSG compared to the SG is that the former one enjoys flexible parameters
selection. Analysis in [11] shows that the virtual inertia enjoys self-adaption depending on disturbance.
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In [12,13], an adaptive alternating inertial control algorithm is introduced. They verify the validity that
the VSG can work at the state of negative inertia, being more flexible and adjustable than the SG. With a
further study in [14,15], virtual inertia varies to meet the demands according to advanced control
algorithm rather than a fixed coefficient in [12,13]. Based on the studies above, VSG is commonly
regarded as the second-order system for simplification by neglecting parts of SG, resulting in a less
precise modeling. In this paper, a more accurate model is established and performs better in mimicking
SG characteristics.

The generalized Hamilton function method enjoying its superiority in nonlinear system research
for the merits in depicting the dynamic energy flow [16–18]. The technology is attracting more and
more attention gradually. In [19], a fifth-order model of the SG is established with an energy-based
Lyapunov function. In [20,21], a further study is conducted that the modeling of generator integrated
AVR (Automatic Voltage Regulator) and PSS (Power System Stabilization) shows the superiority of the
Hamilton approach in improving system robustness and stabilization. Considering the superiority,
an advanced control algorithm based on the Hamilton approach is applied to the VSG for better
suitability and robustness. Energy-based control laws are conducted via applying the Hamiltonian
approach to valving control and excitation system in this paper.

Electronic inverters fail to contribute inertia or damping to power grid, leading to a necessity that
the energy storage devices should be equipped to compensate the power vacancy [22]. In current study,
DG and storage devices are commonly simplified as DC power sources. In [23,24], conclusions can be
drawn that it is the charge and discharge progress of the storage devices that form the virtual inertia.
In [25], an optimal control strategy of the storage systems by setting the VSG’s output active power
depending on the grid frequency deviation is put forward. In [26], storage devices act as power buffers
to compensate power shortage in short-term impact for transient stability. Existing studies focus on
the significance of storage devices and binary control strategies between VSG and storage devices,
neglecting the connections between the storage devices and the VSG coefficients. Furthermore, storage
capacity is generally considered as unlimited in theoretical analysis, being considerably different from
the situation in practical engineering. Given the insufficiencies, corresponding analyses and solutions
are proposed.

Contributions of this paper are listed as follows:

1. A fourth-order model of VSG, being more detailed and accurate in mimicking SG, is established.
Based on the second-order model, the steam-valving system and excitation system are added,
taking the coordination between the two systems into consideration while avoiding the
complicated transition period.

2. A nonlinear control method, Hamilton approach is applied to VSG for better system suitability
and stability. Control laws are deduced and the system enhancements are illustrated.

3. Small-signal model is established for the obtaining boundaries of VSG coefficients.
4. Relations between the capacity limits of storage devices and the VSG coefficients, such as the

virtual inertia and damping, are discussed. An adaptive VSG control is designed via the energy
control algorithm for accelerating the recovery from the transient period.

This paper is organized as follows: In Section 2, VSG modeling aspects are illustrated. Energy
controller unit is then conducted in Section 3. Simulations are given in Section 4. Conclusions are
drawn in Section 5.

2. Virtual Synchronous Generator Modeling Based-On the Hamilton Approach

2.1. VSG Control System Overview

Detailed classification methods in VSG modeling are illustrated in [27] based on the order of SG
modeling. In this paper, a fourth-order model contains the steam-valving system and steam turbine
generator excitation system is built, performing better in revealing the coordination between the valve
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and the exciter. Therefore, a control algorithm based on energy function is deduced by making use
of Hamilton control system with virtual synchronous generator excitation (VSG) system and turbine
valve control, in which the physical significance is clearer than before. Figure 1 depicts the overall
block diagram of VSG control strategy.
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where D is damping, M is virtual inertia, Pe is the system output power, Pm the mechanical power, ω 
the angular velocity, ω0 the angular velocity references.  

The mechanical power Pm considering the steam-valving is given as Equation (2). 
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Figure 1. Block diagram of the VSG control strategy.

As indicated in Figure 1, Udc, which is assumed that the dc-link of the VSG is connected to an
energy storage unit or to a source with sufficient available buffer capacity, acts as the virtual prime
mover. The inductance of the filter inductor is Lf and filter capacitor is Cf. The output voltage for
the converter is denoted by e, representing the transient voltage of synchronous generator while the
current reference, tracked by the controller, is given by if. Meanwhile, u0 is the voltage at the filter
capacitors and i0 is the current flowing into the grid or load equivalent, which are equivalent to the
terminal voltage and current of stator winding of a synchronous generator (SG), making the dynamic
parameters at grid connection point, such as u0, i0, f and Pe, mimic the characteristic of a SG.

2.2. VSG Modeling Based on Dissipative Hamilton Theory

VSG shares the same mathematical model as the SG, and its mechanical equations are given as
Equation (1) { .

δ = ω−ω0
.

ω = ω0
M (Pm − Pe)− PD

M = ω0
M (Pm − Pe)− D(ω−ω0)

M ,
(1)

where D is damping, M is virtual inertia, Pe is the system output power, Pm the mechanical power,
ω the angular velocity, ω0 the angular velocity references.

The mechanical power Pm considering the steam-valving is given as Equation (2).

.
Pm =

1
Ts

(−Pm + Pm0) +
1
Ts

µg, (2)

where Ts represents the time constant, Pm0 is the mechanical power reference and µg the valving
control signal.

The output power Pe of the VSG is given as Equation (3).

Pe =
E′qUs sin δ

x′d ∑

, (3)

where δ is the power angle of VSG, Eq’ the transient electrodynamic force (E.M.F) on q-axis, Us the
voltage of infinite bus-system and x’dΣ the total stator-winding reactance of d-axis.
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The excitation control equation is given as Equation (4).

Td0
dE′q
dt

= U f − E′q − (Xd − X′d)id, (4)

where Td0 is the time constant in excitation winding, xd the self-inductance resistance, xdΣ the total
stator-winding reactance of d axis and Uf the excitation voltage. id in Equation (4) are noted as
Equation (5).

id =
Eq −Us cos δ

xd ∑
=

E′q −Us cos δ

x′d ∑

. (5)

According to Equations (1)–(5), system state equations are given in Equation (6):

.
δ = ω−ω0
.

ω = ω0
M Pm − D(ω−ω0)

M − ω0Us

Mx′d ∑

E′q sin δ

.
E
′
q = − xd ∑

x′d ∑Td0
E′q +

(xd−x′d)Us

x′d ∑Td0
cos x1 +

1
Td0

E f
.
Pm = − 1

Ts
Pm + 1

Ts
Pm0 +

1
Ts

µg

, (6)

where x1 = δ, x2 = ω − ω0, x3 = Eq’, x4 = Pm and Equation (6) can be transformed into Equation (7)

.
x1 = x2
.
x2 = ω0

M x4 − D
M x2 − ω0Us

Mx′d ∑

x3 sin x1 + w1
.
x3 = −p1x3 + p2 cos x1 + u1 + w2
.
x4 = − 1

Ts
x4 +

1
Ts

Pm0 + u2 + w3

. (7)

In Equation (7), p1 and p2 are parameters with perturbation, u1 and u2 are system input and w1,
w2 and w3 disturbances of the system. After obtaining the equilibrium points, Equation (7) can be
transformed to Equation (8). Details are shown in Equation (9).

.
X = (J − R)∇H(x) + g1v + g2w, (8)

where

∇H(x) =


∂H(x)

∂x1
∂H(x)

∂x2
∂H(x)

∂x3
∂H(x)

∂x4

 =


a23x3 sin x1

a21a42
a41

x2
p1a23

p2
x3

a23
p2

U f 0 − a23x3 cos x1

a21x4 − a21a42
a41

 ,

J =


0 1 0 0
−1 0 0 1
0 0 0 0
0 −1 0 0

R =


0 0 0 0
0 a22 0 0
0 0 p2

a23
0

0 0 0 a41
a21

g1 =


0 0
0 0
1 0
0 1

g2 =


0 0 0
1 0 0
0 1 0
0 0 1

.

(9)

Equation (8) is a dissipative Hamilton approach where g1(x), g2(x) and v are all column vectors of
m dimension and H(x) is regarded as the Hamilton function. Matrix J is antisymmetric and matrix R is
positive semidefinite.

Parameters in Equations (8) and (9) are shown in Equations (10) and (11).
a21 = ω0

M a22 = D
M a23 = ω0Us

Mx′d ∑

a41 = 1
Ts

a42 = 1
Ts

Pm0

p1 =
xd ∑

x′d ∑Td0
p2 =

(xd−x′d)Us

x′d ∑Td0

, (10)
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where v1 and v2 are the inputs after the introduction of state feedback, whose relations with u1 and u2,
the original input of the system, can be given by Equation (10).{

v1 = u1 −Uf0 = 1
Td0

Uf −Uf0

v2 = u2 − x2 = 1
Ts

µg − x2
. (11)

In Equation (10), Uf is the voltage of the excitation system, defined by the equation Uf = Uf0 + uf,
in which uf is the regulation of the excitation voltage.

Equation (9) fits in the form of the dissipative Hamilton system, which can be regarded as one
of the Hamilton approaches of VSG. Then, Hamilton function can be deduced after solving ∇H(x) in
Equation (9) out and noted as Equation (12) [28,29].

H(X, p1, p2) = −2a23x3 cos x1 −
a21a42

a41
x1 +

x2
2

2
+

a21x2
4

2
− a21a42

a41
x4 +

p1a23

2p2
x2

3 −
a23U f 0

p2
(12)

A penalty function z, an interference suppression level γ and a weight matrix r(X) are firstly
defined and given in Equation (13).{

z = rgT
1 (X, p)∇H(X, p0)

r(X) = diag(r1, r2) > 0
. (13)

If it satisfies the condition in Equation (14) in any circumstances,{
z ≡ 0, gT

2∇H ≡ 0
R + 1

2γ2 [g1gT
1 − g2gT

2 ] ≥ 0 . (14)

Then, the control law of VSG based on Hamilton approach is given in Equation (15):
[

v1

v2

]
= − 1

2 rT(X)r(X)gT
1∇H − 1

2γ2 gT
1∇H − φTθ

.
θ = QφgT

1∇H

, (15)

where θ is an intermediate variable.
Details are shown in Equation (15) when parameters are substituted to Equation (16).

.
θ = Q

[
− ω0Us

Mx′d ∑

E′q cos δ +
ω0Usxd ∑

Mx′d ∑(xd−x′d)
(E′q)

2
]

u f = Td0U f 0 − Td0E′qθ + Td0
2 (r2

1 +
1

γ2 )

[
ω0Us

Mx′d ∑

cos δ− ω0E′q xd ∑

Mx′d ∑(xd−x′d)

]
µg = Ts(ω−ω0) +

Tsω0
2M (r2

2 +
1

γ2 )(Pm0 − Pm)

. (16)

3. Improved VSG Control Strategy Considering Storage Capacity Limits

In existing studies, energy storage capacity is generally assumed as sufficient in suppressing
oscillations. However, in practical engineering, storage capacity is commonly limited, resulting
in fluctuations in system outputs. To keep fluctuations of output active power Pe stay within the
limits (±20% variation from the steady state value of Pe), a self-adaptive control strategy is designed
and coefficients of VSG will change to meet the output demands and survive the transient period.
Connections between the VSG parameters and charge and discharge power/energy will be discussed
in the first step and the solutions will be illustrated in the following parts.
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3.1. Linearized Small-Signal Model

To simplify the analysis, it is assumed that the renewable energy sources have a stable
output power.

The output active power of VSG around the steady operating points of the states can be described
as Pe = Pm = Pm0. The small-signal state-space equations of the VSG can be deduced from Equations (8)
and (9), presented as Equation (17). Then, according to Equation (16), small-signal model of H∞ control
algorithms around the steady operating points of the state are given in Equation (18).

∆
.
δ = ∆ω− ∆ωg

∆
.

ω = ω0
M (∆Pm − ∆Pe)− D

M (ω−ωg)

∆Pe =
Us

x′d ∑

(∆E′q sin δ + E′q0∆δ)

∆
.
E
′
q = − xd ∑

x′d ∑Td0
∆E′q +

xd−x′d
x′d ∑Td0

Us sin δ0∆δ + 1
Td0

∆u f

∆
.
Pm = − 1

Ts
∆Pm + 1

Ts
µg

, (17)



∆
.
µg = Ts∆ωg +

Tsω0
2M (r2 + 1

γ2 )(−∆Pm)

∆u f = −Td0(∆θE′q0 + θ0∆E′q) +
Td0
2 (r2

1 +
1

γ2 )

[
− ω0Us

Mx′d ∑

sin δ0∆δ−
ω0x′d ∑∆E′q
M(xd−x′d)

]
∆

.
θ = Q

[
ω0Us

Mx′d ∑

(sin δ0∆δE′q0 − cos δ0∆E′q) +
ω0Usxd ∑

Mx′d ∑(xd−x′d)
· 2E′q0∆E′q

] , (18)

where E’q0 and δ0 are transient E.M.F and power angle respectively at steady-state point. They are
presented in Equation (20) deduced from Equation (19).

∆
.
θ = 0 =

xd ∑

xd−x′d
E′q0 − cos δ0

Pe0 =
E′q0Us sin δ0

x′d ∑

, (19)


δ0 = 1

2 arcsin
[

2Pe0xd ∑x′d ∑

(xd−x′d)

]
E′q0 =

Pe0x′d ∑
Us sin δ0

. (20)

Regulation of the excitation voltage at steady-state point uf0 is represented as Equation (21) based
on Equation (16).

u f 0 = Td0

[
U f 0 − E′q0θ0 +

ω0

2Mx′d ∑

(r2
1 +

1
γ2 )(Us cos δ0 −

E′q0xd ∑

xd − x′d
)

]
. (21)

According to Equations (19) and (20), θ0 in Equation (21) can be described as Equation (22).

θ0 = U f 0 +
ω0

2E′q0Mx′d ∑

(r2
1 +

1
γ2 )(Us cos δ0 −

E′q0xd ∑

xd − x′d
)−

E′q0xd ∑ − (xd − x′d)Us cos δ0

Td0E′q0xd ∑
. (22)

With the Laplace transform of Equations (17) and (18), the transfer function of small-signal
modeling is given in Equation (23), revealing the relationship between the small deviation of output
active power ∆Pe and the small deviation of the system frequency ∆ωg.

G(s) =
∆Pe

∆ωg
= −

G1(s)
[
s(s + k)− 1

M

]
(s + k)

[
s(s + D

M )G2(s) +
G1(s)

M

] . (23)
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G1(s) and G2(s) in Equation (23) are elaborated in Equation (24). Related elements and equations
of the small-signal state-space equation of Equation (23) are presented in the Appendix A.

G1(s) = is2 + (ei− gj)s + i f − jh
G2(s) = s2 + es + f

. (24)

3.2. Boundaries of VSG Parameters

The characteristic equation, given as Equation (25), can be drawn from the denominator of
Equation (23).

f (s) = (s + k)
[

s4 + (e +
D
M

)s3 + ( f +
i + eD

M
)s2 +

D f + ei− gj
M

s + (i f − jh)
]

. (25)

Five roots of Equation (25) are given in Equation (26), defined as x1–5, worked out via Cardan
and Tartaglia formulae. Elements (a1, b1), (a2, b2) and k are presented in Appendix A, Appendix B and
Table A2.

x1,2 =
−a1 ±

√
a2

1 − 4b1

2
x3,4 =

−a2 ±
√

a2
2 − 4b2

2
x5 = −k. (26)

As shown in Equation (26), Appendix B and Table A2, x1–4 are connected to M and D.x5 is only
connected with M and located far away from x1–4. In Figure 2a, M = 7.6 while D is variable. When D < 0,
the real parts of x1, x2 are positive, resulting in an unstable system. When D increases, x1 is approaching
approximately to zero while x4 is moving away from zero. When D > 18, x3 and x4 become negative
real numbers and system stabilizes gradually.

In Figure 2b, D = 3 while M is variable. When M increases, x3, x4 and x5 are approaching
approximately to zero. When M increases, the real parts of x3, x4 and x5 become negative and the
damping ratio of the system decreases. When M ≥ 13, the imaginary parts of x1, x2, x3 and x4 are not 0
anymore. The system is destabilizing for turning to the mode of oscillating decay.
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Figure 2. Roots of the poles with the variations of the parameters. (a) Pole Loci when M a constant
value; (b) Pole Loci when D a constant value.

Based on Figure 2, VSG fails to contribute enough inertia to the grid if M is too small while the
overshoots occur if M is too big. Proper D should be selected for achieving the overdamping condition
without slowing down the response time too much. As a deduction, boundaries of D and M are given
in Equation (27). {

0 < M ≤ 10
20 ≤ D ≤ 40

. (27)
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It is not very easy to obtain the accurate boundaries of virtual inertia and virtual damping, and in
Equation (27), margins exist for ensuring the system to keep stability when coefficients meet the
certain formulations.

3.3. Design of the Energy Controller with the Restriction of Storage Capacity

As mentioned at the beginning of Section 3, objective formulations are given as Equation (28).{
Pk.min ≤ ∆Pe ≤ Pk.max (a)
Ek.min ≤ ∆E ≤ Ek.max (b)

, (28)

where Pk.min = 0.8 p.u., Pk.max = 1.2 p.u. (±20% variation from the steady state Pe, 1.0 p.u.) and ∆Pe

is the output active power. Ek.min is the minimum, Ek.max the maximum and ∆E the output energy.
Ek.min and Ek.max will not be assigned and the reasons are illustrated in the following analysis.

3.3.1. Relations between Storage Capacity Limits and VSG Coefficients

The step response curve of Equation (23) is figured in the condition of underdamping and
overdamping, where S1, S2, . . . , S5 and S1’ are the areas enclosed by the curves and axes, representing
the energy in Figure 3.Energies 2018, 11, x FOR PEER REVIEW  9 of 18 
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where t2 represents the time when ∆ܲe becomes 0.00 the first time in underdamping condition, or the 
time when ∆ܲ e reaches ±0.05 in overdamping condition (∆ܲ e will infinitely approach zero in 
overdamping condition and the precision of energy deviation is set as ±0.05 for approximate 
calculation). It is noticeable that t2 is generally regarded as a very short period when faults occur and, 
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Figure 3. Step response with different damping ratio. (a) Active power response in under-damping
condition (b) Active power response in over-damping condition.

In Figure 3a, S1 is the largest among all the areas. Either of the response curves reaches their first
peak, ∆Pe reaches its maximum; the first time response curves reach zero, the energy ∆E (S1 and S1’)
meet the maximum. Through the analysis, the time power and energy of the storage devices reach
their limits can be calculated. Meanwhile, the minimum capacity of the storage devices is convenient
to access.

Transfer function in Equation (23) can be given in the form containing poles and zeros as
Equation (29).

∆Pe

∆ωg
= −

[
is2 + (ei− gj)s + i f − jh

](
s2 + ks− 1

M

)
(s + k)(s− x1)(s− x2)(s− x3)(s− x4)

. (29)

For the case of a perturbing with ωg, an inverse transformation of Laplace combined with residue
analysis is applied to Equation (29) to obtain Equation (30). Related elements of ki (i = 1, 2, . . . , 6) are
presented in the Appendix C.

∆Pe(t) = −(k1 + k2e−kt + k3ex1t + k4ex2t + k5ex3t + k6ex4t)∆ωg. (30)

After taking derivatives of Equation (30),

0 = −
(
−k2ke−kt + x1k3ex1t + x2k4ex2t + x3k5ex3t + x5k6 ex4t)∆ωg. (31)
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The smallest root of the positive roots in Equation (31) is given as t1, the time when ∆Pe reaches
its maximum.

∆Pemax = ∆Pe(t1), (32)

The maximum of ∆E can be calculated in Equation (32).

∆Emax =
∫ t2

0 ∆Pe(t)dt
=
∫ t2

0 −(k1 + k2e−kt + k3ex1t + k4ex2t + k5ex3t + k6ex4t)dt∆ωg(t)

= −k1t2 +
k2e−kt2

k − k3ex1t2
x1
− k4ex2t2

x2
− k5ex3t2

x3
− k6ex4t2

x4
− k2

k + k3
x1

+ k4
x2

+ k5
x3

+ k6
x4

, (33)

where t2 represents the time when ∆Pe becomes 0.00 the first time in underdamping condition,
or the time when ∆Pe reaches ±0.05 in overdamping condition (∆Pe will infinitely approach zero
in overdamping condition and the precision of energy deviation is set as ±0.05 for approximate
calculation). It is noticeable that t2 is generally regarded as a very short period when faults occur and,
therefore, ∆E is small and formulations in (b) of Equation (28) can be generally satisfied, explaining
the reasons that Ek.min and Ek.max without assignment.

Combined with the Appendixs B and C, both ∆Pemax and ∆Emax are related to M and D and
therefore, detailed studies on their relationship are conducted. In Figure 4, the curves show the
influences that M/D exert on ∆Emax and ∆Pemax while, in Figure 5, the curves show the effect that
∆Emax/∆Pemax exert on M and D.
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Figure 4. Relationship between the Capacity limits of the energy storage equipment and the parameters.
(a) Storage capacity limits with M; (b) Storage capacity limits with D.

In Figure 4a, relation curves of ∆Emax and M, ∆Pemax and M are fitted in MATLAB (MATLAB
2012a, MathWorks, USA) when D is constant. When M increases, it is a monotone increasing
relationship between ∆Emax (or ∆Pemax) and M approximately. The bigger the virtual inertia becomes,
the larger capacity is needed. In Figure 4b, relation curves of ∆Emax and D, ∆Pemax and D are fitted
when M is constant. When D increases, ∆Emax and ∆Pemax drop rapidly in a short period, then turn to
a mild decrease. Influences that D exert on ∆Emax and ∆Pemax is smaller than M on ∆Emax and ∆Pemax.

In Figure 5, it can be concluded that the larger ∆Emax and ∆Pemax become, the wider the M and D
cover. Meanwhile, in any working conditions, relationship between M and D is monotonically when
either ∆Emax or ∆Pemax is constant. Meanwhile, when ∆Emax is constant, the variation of M is smaller
than those when ∆Pemax is constant. In other words, if ∆Pe meets the demands in (a) of Equation (28),
∆E follows in (b) of Equation (28) and the illustrations in defining the Ek.min and Ek.max are proved.



Energies 2018, 11, 677 10 of 17

Energies 2018, 11, x FOR PEER REVIEW  10 of 18 

 

Combined with the Appendix B and C, both ∆ܲemax and ∆ܧmax are related to M and D and 
therefore, detailed studies on their relationship are conducted. In Figure 4, the curves show the 
influences that M/D exert on ∆ܧmax and ∆ܲemax while, in Figure 5, the curves show the effect that ∆ܧmax/∆ܲemax exert on M and D. 

(a) (b)

Figure 4. Relationship between the Capacity limits of the energy storage equipment and the 
parameters. (a) Storage capacity limits with M; (b) Storage capacity limits with D. 

In Figure 4a, relation curves of ∆ܧmax and M, ∆ܲemax and M are fitted in MATLAB (MATLAB 
2012a, MathWorks, USA) when D is constant. When M increases, it is a monotone increasing 
relationship between ∆ܧmax (or ∆ܲemax) and M approximately. The bigger the virtual inertia becomes, 
the larger capacity is needed. In Figure 4b, relation curves of ∆ܧmax and D, ∆ܲemax and D are fitted 
when M is constant. When D increases, ∆ܧmax and ∆ܲemax drop rapidly in a short period, then turn to 
a mild decrease. Influences that D exert on ∆ܧmax and ∆ܲemax is smaller than M on ∆ܧmax and ∆ܲemax.  

In Figure 5, it can be concluded that the larger ∆ܧmax and ∆ܲemax become, the wider the M and 
D cover. Meanwhile, in any working conditions, relationship between M and D is monotonically 
when either ∆ܧmax or ∆ܲemax is constant. Meanwhile, when ∆ܧmax is constant, the variation of M is 
smaller than those when ∆ܲemax is constant. In other words, if ∆ܲ e meets the demands in (a) of 
Equation (28), ∆ܧ follows in (b) of Equation (28) and the illustrations in defining the Ek.min and Ek.max 
are proved. 

(a) (b)

Figure 5. Relation of M and D under different storage limits. (a) Relation of M and D when ∆ܲemax = 
Const; (b) Relation of M and D when ∆ܧmax = Const. 

3.3.2. Adaptive Control via Energy-Based Algorithms 

The energy-based algorithm should work within the restrictions in Equations (27) and (28). The 
diagram with an additional energy-based control algorithm is shown in Figure 6.  

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Values of M

 

 

 ∆Pemax
∆E max 

Δ
Pe
、

Δ
E 

 /p
.u

.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

Values of D

 

Δ
P

e、
Δ

E
  /

p.
u.

 ∆Pemax
∆E max 

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Values of M 

V
al

ue
s 

of
 D

 

 

Pemax=5 p.u.
Pemax=6 p.u.
Pemax=7 p.u.

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Values of M

V
al

ue
s 

of
 D

 

 

Emax=0.5 p.u.
Emax=0.6 p.u.
Emax=1 p.u.
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3.3.2. Adaptive Control via Energy-Based Algorithms

The energy-based algorithm should work within the restrictions in Equations (27) and (28).
The diagram with an additional energy-based control algorithm is shown in Figure 6.Energies 2018, 11, x FOR PEER REVIEW  11 of 18 
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Figure 6. Energy-based control algorithm.

In Figure 6, ME is the virtual inertia when D = DE = 20 and MP the virtual inertia when D = DP = 40.
According to Equation (27), a detailed algorithm is given in Figure 7.
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It is noticeable that the value of D is fixed at 20 or 40, the minimum and maximum of its boundaries.
The simplification is reasonable for the influences that D exert on ∆Emax and ∆Pemax is smaller than that
M on ∆Emax and ∆Pemax, proved in Section 3.3.1. When (ME, DE) and (MP, DP) are calculated, the smaller
one of ME and MP will be selected and, therefore, ∆Emax and ∆Pemax, energy and power needed in
suppressing oscillations, is smaller. The effeteness of the algorithm will be proved in Section 4.3.

4. Simulations

Simulations based on VSG of single-machine infinite system were performed on the model
in DIgSILENT (DIgSILENT/Power Factory 15.1.7, Germany) of Figure 8 with the parameters of
f base = 50 Hz, Pemax = 0.6 MW, E = 0.3 MW·s, both of which are abstracted from the photovoltaic
power plant equipped with storage devices in Qinghai Province, and the renewable energy power
was replaced by the DC source. In the simulation, a single lumped model, the replacement of the
photovoltaic power plant composed of 34 sets of solar subsystem of the Tucson Power Company,
USA is adopted for simplification. Related parameters of the VSG control system and the photovoltaic
power station are presented in the Table A1 of Appendix D.
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Figure 8. The simulation system diagram.

4.1. Comparisons between VSG Based on Droop Control and Hamilton Approach

To verify the superiority of Hamiltonian approach, comparisons are made between different VSG
control algorithms—the droop control [10] and the Hamiltonian approach. A three-phase metallic
short-circuit fault is set at the middle of the transmission line 3–4 at t = 1 s and the fault is cleared at
t = 1.05 s. In Figure 9, responding curves of the output active power Pe, grid frequency f, transient
E.M.F Eq’ and output voltage U0 during fault period are shown in Figure 9a–d.
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In these figures, solid curves represent the output of VSG with Hamilton approach while the
dotted curves represents the output of VSG with droop control. It is obvious that the advanced
algorithm enjoys the enhancement in suppressing oscillations, contributing inertia and shortening the
fluctuation period compared to the VSG based on droop control. Validity can be proved that system
stability and robustness are strengthened via the VSG based on a Hamilton approach.

4.2. Effects of Different Controller Coefficients on the System Output Responses

To verify the correctness of the controller coefficient boundaries in Section 3.2, simulations are
conducted at the same short-circuit condition above. Output responding curves are presented under
different coefficients including M, the virtual inertia and D, the system damping.

4.2.1. Output Responses with Different D (Virtual Damping)

In this simulation, M is fixed as 7 while D varies from 1 to 30. Curves are shown in Figure 10a,b.
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As we can see in Figure 10, it is remarkable in suppress oscillations with a stronger D. When D = 1,
it is too weak to suppress system oscillations compared to D = 10. When D = 30, it can be found that
an excessive damping constant results in a slower response speed compared to D = 10.

4.2.2. Output Responses with Different M (Virtual Inertia)

In this simulation, D is fixed as 20 while M varies from 1 to 20. Curves are shown in Figure 11a,b.
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When M = 1, it is too small for the inertia to suppress the oscillations. When M = 30, the system
tends to be in underdamping condition with a long oscillating period for a small damping ratio.

Without taking the limits of the storage capacity into consideration, M varies from 0 to 10 while
D from 20 to 40 according to Section 3. The results in Figure 10 verify the boundaries of M and D
discussed above, while laying a foundation for a further study.

4.3. Comparison between VSG Equipped with Capacity-Limited and Limit-Free Storage Devices

Under the same simulation conditions as above, the variation of M is shown in Figure 12a.
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Meanwhile, response curves of output active power Pe and grid frequency f under the storage
capacity limits displayed in Figure 12b,c. In those figures, solid curves represent the output of VSG
with capacity-limit storage devices while the dotted curves represents the output of VSG with limit-free
storage devices.

As can be seen in Figure 12a, during the fault period, the adaptive control of VSG takes effect for
keeping the system output to stay within the limits. M drops to 4.4 during the fault and returns to the
initial value (M = 4.6) when the fault is cleared. It is noticeable that the variation of D is too small to be
recorded. Hence, the variation of D will not be given in figures.

In Figure 12b,c, results are expected that VSG with limit-free storage devices performs better
in suppressing oscillations and shortening response time than the one with capacity-limit devices.
However, with the advanced algorithm, the virtual inertia of the VSG proposed in the paper is
adaptive, falls to 4.4 for the limitation in storage capacity during the transient period. As a result,
either ∆Emax or ∆Pemax becomes smaller and less power is needed to contribute from the storage
devices. Meanwhile, although the inertia becomes a smaller value, the VSG system can still keep
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stabilized and the differences from the counterpart is acceptable. In a word, the results prove the
validity and effeteness of the adaptive VSG control algorithm and the energy-based control algorithm.

5. Conclusions

In this paper, an improved VSG model was put forward to enhance system suitability and
robustness. A corresponding strategy based on Hamilton theory was then applied to meet the
complexity of the model. Compared to the VSG based on droop control via simulations, the advanced
model performed better in suppressing oscillations, contributing inertia and shortening the fluctuation
period. Boundaries of virtual inertia and damping corresponding to the system stable region were
deducted by the study on the small-signal model of VSG. Simulations on the effects that coefficients
variation exert on system output responses proved the correctness of the boundaries. To develop the
control algorithm with the limits in storage capacity, relations between VSG parameters and charge
and discharge capacity were analyzed. The dynamic response of the virtual inertia showed that the
proposed VSG made an adaption to satisfy the capacity restriction. With the acceptable cost of losing
part of the ability in suppressing oscillations during fault period, the simulations based on improved
model worked in the condition closer to the one in practical engineering.
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Appendix A

Equations and letters in Equation (12) are given as follows:

a = Td0θ0 +
ω0Td0xd ∑(r

2
1 +

1
γ2 )

2Mx′d ∑(xd − x′d)
b = Td0K1E′q0 c =

ω0VsTd0 sin δ0(r2
1 +

1
γ2 )

2Mx′d ∑

,

d = Td0K2E′q0 e =
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Td0x′d ∑

f =
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Td0
g =

a
Td0
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(xd − x′d)Vs sin δ0

Td0x′d ∑

,

h =
d

Td0
i =

E′q0Vs
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x′d ∑

k =
1
Ts

+
ω0Ts(r2

2 +
1
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2MTs
,

K1 =
ω0QVs
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(
2E′q0xd ∑

xd − x′d
− cos δ

)
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ω0QVs
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sin δ0E′q0.

Appendix B

Equations and letters in Equation (26) are as follows:

a1 = B
2 −

√
B2

4 − C + y0 b1 = y0
2 −

[
By0

2 −E
B2
2 −2C+2y0

]√
B2

4 − C + y0

a2 = B
2 +

√
B2

4 − C + y0 b2 = y0
2 +

[
By0

2 −E
B2
2 −2C+2y0

]√
B2

4 − C + y0

,

B = e + D
M C = f + i+eD

M E = D f+ei−gj
M F = i f − jh,

p = C2

3 − BE + 4E q = 2C3−9BCE+36CF
27 + E2 + B2F− 4FC,
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W =
( q

2
)2 −

( p
3
)3 y0 = 3

√√
W + q

2 −
3
√√

W − q
2 + C

3 .

Appendix C

k1 = i f−jh
Mkx1x2x3x4

k2 = (i f−jh)−(ei−gj)k
Mk(k+x1)(k+x2)(k+x3)(k+x4)

k3 =
[ix2

1+(ei−gj)x1+(i f−jh)](x2
1+kx1− 1

M )

x1(x1+k)(x1−x2)(x1−x3)(x1−x4)

k4 =
[ix2

2+(ei−gj)x2+(i f−jh)](x2
2+kx2− 1

M )

x2(x2+k)(x2−x1)(x2−x3)(x2−x4)

k5 =
[ix2

3+(ei−gj)x3+(i f−jh)](x2
3+kx3− 1

M )

x3(x3+k)(x3−x1)(x3−x2)(x3−x4)

k6 =
[ix2

4+(ei−gj)x4+(i f−jh)](x2
4+kx4− 1

M )

x4(x4+k)(x4−x1)(x4−x3)(x4−x3)

Appendix D

Table A1. Main parameters of Tucson Company Photovoltaic Power Station.

Name Parameters

Number of solar-cell arrays 34
DC power 4590 kW
AC power 3812 kW

Inverter model Xantrex PV-150
Number of inverter 34

Rated capacity of inverters 157 kVA
Number of transformers 11

Rated power of transformers 500 kVA
Turns ratio 480 V/34.5 kV

Table A2. Parameters of VSG control system.

Parameters Value Parameters Value

Udc 700 V Pm0 1 p.u.
Lf 18 mH xd 0.42 p.u.
Cf 10,000 uS V0 0 p.u.
Zg 5 Ohm Vs 1 p.u.
ω0 1 p.u. Vt 1 p.u.
Q 1 δ 0.05 p.u.
f 0 1 p.u. Td0 6.2

xdΣ 0.77 p.u. x’d 0.77 p.u.
x’dΣ 2.1 p.u. x’qΣ 5.4 p.u.

References

1. Mehrasa, M.; Godina, R.; Pouresmaeil, E.; Vechiu, I.; Rodriguez, R.L.; Catalao, J.P.S. Synchronous active
proportional resonant-based control technique for high penetration of distributed generation units into
power grids. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe, Torino,
Italy, 26–29 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

2. Pouresmaeil, E.; Mehrasa, M.; Godina, R.; Vechiu, I.; Rodriguez, R.L.; Catalao, J.P.S. Double synchronous
controller for integration of large-scale renewable energy sources into a low-inertia power grid.
In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe, Torino, Italy,
26–29 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

3. Mehrasa, M.; Adabi, M.E.; Pouresmaeil, E.; Adabi, J.; Bo, N.J. Direct Lyapunov control (DLC) technique for
distributed generation (DG) technology. Electr. Eng. 2014, 96, 309–321. [CrossRef]

http://dx.doi.org/10.1007/s00202-014-0297-y


Energies 2018, 11, 677 16 of 17

4. Mehrasa, M.; Rezanejhad, M.; Pouresmaeil, E.; Catalão, J.P.S.; Zabihi, S. Analysis and control of single-phase
converters for integration of small-scaled renewable energy sources into the power grid. In Proceedings
of the Power Electronics and Drive Systems Technologies Conference, Tehran, Iran, 16–18 February 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 384–389.

5. Beck, H.P.; Hesse, R. Virtual synchronous machine. In Proceedings of the International Conference on
Electrical Power Quality and Utilization, Barcelona, Spain, 9–11 October 2007; IEEE: Piscataway, NJ, USA,
2007; pp. 1–6.

6. Zhong, Q.C.; Weiss, G. Synchronverters: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron.
2011, 58, 1259–1267. [CrossRef]

7. Loix, T.; Breucker, S.D.; Vanassche, P.; Keybus, J.V.D.; Driesen, J.; Visscher, K. Layout and performance of the
power electronic converter platform for the VSYNC project. In Proceedings of the IEEE Bucharest PowerTech,
Bucharest, Romania, 28 June–2 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–8.

8. Chen, Y.; Hesse, R.; Turschner, D.; Beck, H.P. Comparison of methods for implementing virtual synchronous
machine on inverters. In Proceedings of the International Conference on Renewable Energies and Power
Quality, Santiago de Compostela, Spain, 28–30 March 2012; p. 6.

9. Liu, J.; Miura, Y.; Ise, T. Dynamic characteristics and stability comparisons between virtual synchronous
generator and droop control in inverter-based distributed generators. IEEE Trans. Power Electron. 2014, 31,
1536–1543.

10. D’Arco, S.; Suul, J.A.; Fosso, O.B. Small-signal modelling and parametric sensitivity of a Virtual Synchronous
Machine. In Proceedings of the Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014;
IEEE: Piscataway, NJ, USA, 2014; pp. 1–9.

11. Karapanos, V.; Kotsampopoulos, P.; Hatziargyriou, N. Performance of the linear and binary algorithm of
virtual synchronous generators for the emulation of rotational inertia. Electr. Power Syst. Res. 2015, 123,
119–127. [CrossRef]

12. Alipoor, J.; Miura, Y.; Ise, T. Power system stabilization using virtual synchronous generator with alternating
moment of inertia. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 451–458. [CrossRef]

13. Alipoor, J.; Miura, Y.; Ise, T. Distributed generation grid integration using virtual synchronous generator
with adoptive virtual inertia. In Proceedings of the Energy Conversion Congress and Exposition, Denver,
CO, USA, 15–19 September 2013; IEEE: Piscataway, NJ, USA, 2013; Volume 8237, pp. 4546–4552.

14. Chong, C.; Yang, H.; Zheng, Z.; Tang, S.; Zhao, R. Rotor inertia adaptive control method of VSG. Autom. Electr.
Power Syst. 2015, 39, 82–89.

15. Miguel, A.T.L.; Lopes, L.A.C.; Luis, A.M.T.; José, R.E.C. Self-tuning virtual synchronous machine: A control
strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Convers. 2014,
29, 833–840.

16. Wang, Y.; Cheng, D.; Liu, Y.; Li, C. Adaptive H∞ excitation control of multi-machine power systems via the
Hamiltonian function method. Int. J. Control 2004, 77, 336–350. [CrossRef]

17. Xi, Z.; Cheng, D.; Lu, Q.; Mei, S. Nonlinear decentralized controller design for multi-machine power systems
using Hamiltonian function method. Automatica 2002, 38, 527–534. [CrossRef]

18. Galaz, M.; Ortega, R.; Bazanella, A.S.; Stankovic, A.M. An energy-shaping approach to the design of
excitation control of synchronous generators. Automatica 2003, 39, 111–119. [CrossRef]

19. Wang, Y.; Cheng, D.; Hong, Y. Stabilization of synchronous generators with the Hamiltonian function
approach. Int. J. Syst. Sci. 2001, 32, 971–978. [CrossRef]

20. Qian, J.; Zeng, Y.; Zhang, L.; Xu, T. Hamiltonian modeling of generator integrated AVR and PSS. Procedia Eng.
2012, 31, 1217–1224. [CrossRef]

21. Castro, G.; Bermúdez, J.; Jiménez, M.; Alvarez, M.; Arreaza, A. AVRs and PSSs revisited. In Proceedings of
the International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 26–28 November 2015;
IEEE: Piscataway, NJ, USA, 2016; pp. 1006–1010.

22. Bevrani, H.; Ise, T.; Miura, Y. Virtual synchronous generators: a survey and new perspectives. Int. J.
Electr. Power Energy Syst. 2014, 54, 244–254. [CrossRef]

23. Wesenbeeck, M.P.N.V.; Haan, S.W.H.D.; Varela, P.; Visscher, K. Grid tied converter with virtual kinetic storage.
In Proceedings of the IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; IEEE: Piscataway,
NJ, USA, 2009; pp. 1–7.

http://dx.doi.org/10.1109/TIE.2010.2048839
http://dx.doi.org/10.1016/j.epsr.2015.02.004
http://dx.doi.org/10.1109/JESTPE.2014.2362530
http://dx.doi.org/10.1080/0020717042000196254
http://dx.doi.org/10.1016/S0005-1098(01)00233-3
http://dx.doi.org/10.1016/S0005-1098(02)00177-2
http://dx.doi.org/10.1080/00207720117758
http://dx.doi.org/10.1016/j.proeng.2012.01.1167
http://dx.doi.org/10.1016/j.ijepes.2013.07.009


Energies 2018, 11, 677 17 of 17

24. Albu, M.; Visscher, K.; Creanga, D.; Nechifor, A.; Golovanov, N. Storage selection for DG applications
containing virtual synchronous generators. In Proceedings of the IEEE Bucharest PowerTech, Bucharest,
Romania, 28 June–2 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6.

25. Vassilakis, A.; Kotsampopoulos, P.; Hatziargyriou, N.; Karapanos, V. A battery energy storage based virtual
synchronous generator. In Proceedings of the IREP Symposium Bulk Power System Dynamics and Control—IX
Optimization, Security and Control of the Emerging Power Grid, Rethymno, Greece, 25–30 August 2013;
IEEE: Piscataway, NJ, USA, 2013; pp. 1–6.

26. Benidris, M.; Elsaiah, S.; Sulaeman, S.; Mitra, J. Transient stability of distributed generators in the presence of
energy storage devices. In Proceedings of the North American Power Symposium, Champaign, IL, USA,
9–11 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6.

27. D’Arco, S.; Suul, J.A. Virtual synchronous machines—Classification of implementations and analysis of
equivalence to droop controllers for microgrids. In Proceedings of the Powertech, Grenoble, France,
16–20 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–7.

28. Ma, Y.; Yu, R.; Liu, H.; Zhao, S. The analysis of VSG control algorithm base on Hamiltonian system.
Power Syst. Technol. 2017, 41, 2543–2553.

29. Maschke, B.; Ortega, R.; van der Schaft, A.J. Energy-based Lyapunov functions for forced Hamiltonian
systems with dissipation. IEEE Trans. Autom. Control 2000, 45, 1498–1502. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/9.871758
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Virtual Synchronous Generator Modeling Based-On the Hamilton Approach 
	VSG Control System Overview 
	VSG Modeling Based on Dissipative Hamilton Theory 

	Improved VSG Control Strategy Considering Storage Capacity Limits 
	Linearized Small-Signal Model 
	Boundaries of VSG Parameters 
	Design of the Energy Controller with the Restriction of Storage Capacity 
	Relations between Storage Capacity Limits and VSG Coefficients 
	Adaptive Control via Energy-Based Algorithms 


	Simulations 
	Comparisons between VSG Based on Droop Control and Hamilton Approach 
	Effects of Different Controller Coefficients on the System Output Responses 
	Output Responses with Different D (Virtual Damping) 
	Output Responses with Different M (Virtual Inertia) 

	Comparison between VSG Equipped with Capacity-Limited and Limit-Free Storage Devices 

	Conclusions 
	
	
	
	
	References

