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Abstract: Improving the energy efficiency of data center has become a research focus in recent
years. Previous works commonly adopted the inlet temperature constraint to optimize the thermal
environment in the data center. However, the inlet temperature-aware method cannot prevent the
servers from over-cooling. To cope with this issue, we propose a thermal-aware workload allocation
strategy with respect to the chip temperature constraint. In this paper, we conducted a comparative
evaluation of the performance between the chip and inlet temperature-aware workload allocation
strategies. The workload allocation strategies adopt a POD-based heat recirculation model to
characterize the thermal environment in data center. The contribution of the temperature-dependent
leakage power to server power consumption is also considered. We adopted a sample data
center under constant-flow and variable-flow cooling air supply to evaluate the performance
of these two different workload allocation strategies. The comparison results show that the
chip temperature-aware workload allocation strategy prevents the servers from over-cooling and
significantly improves the energy efficiency of data center, especially for the case of variable-flow
cooling air supply.

Keywords: data center; energy optimization; proper orthogonal decomposition; abstract heat-flow
model; workload allocation

1. Introduction

The explosive growth of information technology (IT) and cloud computation in recent years
makes data centers consume nearly 2% of total worldwide electricity [1]. In order to provide
an acceptable temperature and humidity environment for maintaining the stable operation of IT
equipment, approximately 30–50% of energy consumption in an air-cooled data center is consumed by
the cooling system [2]. Cooling energy consumption is an important part of the operation cost of data
center [3]. Thus, improving the cooling efficiency of the data center attracts more and more attention
in the design and operation stages.

The typical air-cooled data centers commonly adopt the raised floor structure, as shown in
Figure 1. The server racks are placed on the plenum and organized according to the hot aisle-cold
aisle arrangement. The cooling air from computer room air condition (CRAC) is blown into the
underfloor plenum and then distributes to the cold aisle via the perforated tiles. The rack inlets of
the neighboring rows draw cooling air from the same cold aisle to remove the heat generated by IT
equipment. Meanwhile, the rack outlets expel the same amount of exhaust hot air to the hot aisle.
Finally, the heat generated by IT equipment is removed from the room space by CRAC. The hot
aisle-cold aisle arrangement weakens the mixing of exhaust hot air and supplied cold air at server inlet,
and effectively improves the energy efficiency of cooling system. Unfortunately, the exhaust hot air
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from electrical equipment still immerses into the cold aisle, especially at the top and side of server racks.
In addition, some cooling air escapes from the cold aisle without passing through the server chassis.
These recirculation airs elevate the temperature at server inlet and form some local hotspots. In order
to provide an acceptable temperature environment for servers in these particular areas, the cooling
system blows excess cold air into the equipment room, causing some servers over-cooled.
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Figure 1. Typical air cooling system in data center.

In fact, the workload in data center is easily migrated across servers via consolidation/virtualization
techniques. For computing-intensive data centers, this allows any computational task to be executed
on any server. According to previous works, the energy efficiency of data center is improved by
optimizing the workload distribution among servers. To maintain an acceptable thermal state for IT
equipment, the inlet temperature is used as the optimization constraint in these studies. However, the
inlet temperature-aware methods cannot prevent server from over-cooling since the server’s thermal state
is correlated to its workload and the cooling air supply. To cope with this problem, we propose a chip
temperature-aware strategy to optimize the workload scheduling in high-performance computing (HPC)
data center. In this article, we conducted a comparative evaluation of the performance between the chip
and inlet temperature-aware workload allocation strategies. These two workload allocation strategies
are based on the heat recirculation model. Unlike previous works, the POD method is adopted to
predict the cross-interference coefficients for the data center under variable-flow cooling air supply.
In addition, the temperature-dependent leakage power of IT equipment is also estimated by a linear
model. The comparison results show that the chip temperature-aware workload allocation strategy
achieves a significant reduction in holistic power consumption of data center, especially for the case of
variable-flow cooling air supply.

The rest of this article is organized as follows. Section 2 briefly reviews the related work. Section 3
presents the system model and the problem statement of chip and inlet temperature-aware workload
allocation strategies. Section 4 compares the performances of these two different workload allocation
strategies through a case study. Section 5 gives a summary of this article.

2. Relate Works

To enhance the energy efficiency in the air-cooled data center, previous studies have paid attention
to optimize the thermal environment and the workload allocation of servers. In this section, we present
a brief review of the related works.
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With regard to the cooling efficiency, many researchers adopted computational fluid dynamics
(CFD) software to study the geometric layout of data center. Nada et al. conducted a series of
CFD simulations to investigate the impact of geometry layout on the thermal environment in data
center [4,5]. They evaluated the thermal environment using several metrics, such as supply/return heat
indices (SHI/RHI) and return temperature indices (RTI). Priyadumkol et al. performed a comprehensive
study of different cooling systems in data center using CFD simulations [6]. The results showed that
a significant reduction in cooling power is achieved by combining different cooling systems. In order to
improve the energy efficiency in a data center, an enormous amount of attention has been focused on
thermal modeling and workload scheduling [2,7,8]. Sun et al. proposed a spatio-temporal analytical
model to study the thermal-aware task scheduling for a set of high-performance computing applications
in both heterogeneous and homogeneous data center [9,10]. Tang et al. proposed a heat recirculation
model to describe the thermal environment in data center [11,12]. They adopted a cross-interference
matrix to characterize the heat transfer around the server racks. Based on the heat recirculation model,
the supply temperature of cooling system is maximized for a given workload. Khalaj et al. presented
a reduce order model to describe the heat flow in data center [13]. On the base of this reduced-order
model, they proposed a multi-objective optimization problem that minimizes the impact of hot spots by
optimizing workload distribution. Song et al. have constructed an artificial neural network to predict
the effect of cooling air supply on temperature distribution [14]. The artificial neural network is then
combined with a genetic algorithm to optimize the cooling air supply. Besides that, proper orthogonal
decomposition (POD), as a reduced-order model algorithm, is widely used to derive temperature
profiles from observations [15,16]. Samadiani et al. developed a POD-based modeling framework
to predict the temperature distribution in computer room [17,18]. Based on the POD-based model,
they proposed a compromise decision support problem to optimize the design parameters of data
center. Ghosh et al. presented a POD-based multi-parameter model for predicting the transient
temperature distribution in air-cooled data center [19,20]. Compared with the measurement data,
the proposed method reconstructed the temperature profiles with an acceptable accuracy. Fouladi et al.
combined a POD-based model with a flow network method to describe the cooling system in data
center [21]. Their study showed that the optimization of cooling system achieved a significant reduction
in cooling energy.

These inlet temperature-aware methods achieved a substantial improvement in energy efficiency
in computer room, even though the inlet temperature does not properly characterize the thermal state
of IT equipment.

3. System Model and Problem Statement

This section provides the system model used in our work. First, a POD-based heat recirculation
model is introduced to characterize the thermal environment in data center, followed by a description
of the power model for IT equipment and cooling system. Finally, the workload allocation strategies
are proposed on the basis of the system models.

3.1. POD-Based Heat Recirculation Model

In a typical air-cooled data center, as shown in Figure 1, we assume there are n server chassis
and each server chassis is considered to be a thermal node. In order to remove the heat generated by
the IT equipment, server chassis i draws a constant amount of cooling air at average temperature Ti

in
and expels the same amount of exhaust air at average temperature Ti

out. Due to the heat recirculation
around server racks, the air sucked by server chassis is the mixture of cooling air from CRAC and
the exhaust air from server chassis outlets. The typical heat transfer among server racks, as shown
in Figure 2, can be described using a cross-interference coefficient matrix An×n = {αij} proposed by
Tang et al. [11], where αij denotes the amount of heat transfer from chassis i to chassis j. It has been
proved that the cross-interference coefficients depend on the geometry layout and the air velocity
field in data center. In the previous works, the cross-interference coefficients are commonly obtained
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from CFD simulation. However, for the case of variable-flow cooling air supply, this method is not
suitable for the iterative optimization due to time-consuming. To cope with this problem, we adopt
a POD-based method to rapidly derive the cross-interference coefficients of data center.

CRAC Rack Rack i RackRack j

Supply Air

Return Air

Qsup

Q iout

αiiQ iout

αjiQ jout

Figure 2. Schematic of thermal cross-interference in data center.

3.1.1. Proper Orthogonal Decomposition

The Proper orthogonal decomposition (POD) is a reduced-order model method widely applied in
varies fields. It is capable to derive an orthonormal basis set from the observation dataset to reconstruct
the original high-dimensional process [22,23]. In this section, we present a POD-based framework on
the base of simulation data to predict the cross-interference coefficients of data center under different
cooling air supply. The procedure of this POD algorithm, as shown in Figure 3, is described as follows:
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Figure 3. Schematic diagram of POD method for cross-interference coefficient prediction.

1. Generate observation data set: For the POD algorithm used in present study, the m observations
of cross-interference coefficient are generated from CFD simulation by varying the cooling air
supply. The cross-interference coefficients in data center can be expressed in vector form:

−→
A i =

−→
A 0 + Ãi (1)
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where
−→
A i denotes the i-th observation,

−→
A 0 = 1

m ∑m
i=1
−→
A i is the mean of m observations,

Ãi denotes the fluctuate value of the i-th observation.
2. Calculate POD basis

−→
ψ i: For a set of observation cases, the POD basis

−→
ψ i is calculated by

−→
ψ i =

m

∑
k=1

ak(
−→
A k −

−→
A 0) (2)

In Equation (2), the weight coefficient ak for assembling the i-th POD basis is obtained by solving
an eigenvalue problem:

m

∑
k=1

R(i, k)ak = λai, i ∈ [1, 2, · · · , m] (3)

where R = 1
m ∑m

i=1(
−→
A i −

−→
A 0)

T ⊗ (
−→
A i −

−→
A 0) is the correlation matrix. The eigenvalue denotes

the energy of the corresponding POD basis.
3. Predict the cross-interference coefficients

−→
A i for new case: According to the POD model

reduction algorithm, the cross-interference coefficients is expanded as:

−→
A i =

−→
A 0 +

m

∑
i=1

bi
−→
ψ i, i ∈ [1, 2, · · · , m] (4)

where bi is the coefficient of POD basis. For the observation case, the coefficient of POD basis for
reconstructing the original observation is determined by

bi = (
−→
A i −

−→
A 0) •

−→
ψ i, i ∈ [1, 2, · · · , m] (5)

Now, for each observation case, we have a set of coefficients to match the design variable, such as
cooling air supply in present study. In order to predict the cross-interference coefficients of data
center with variable-flow cooling system, the coefficient of POD basis corresponding to arbitrary
cooling air supply is generated by interpolation among the coefficient sets of observation solutions.

3.1.2. Heat Recirculation Model

In present study, we adopted the abstract model proposed by Tang et al. to describe the heat
transfer among servers in data center [11,12]. Assuming that all the power consumed by IT equipment
is converted to heat, the steady heat exchange between server chassis i and the cooling air, according
to the thermodynamic law and the energy conservation law, is expressed as

Pi = Qi
out −Qi

in = ρ fiCp(Ti
out − Ti

in) (6)

where Pi is the power consumption of chassis i, Qi
out denotes the heat carried by outlet airflow,

Qi
in denotes the heat carried by inlet airflow, ρ is the density of air, Cp is the specific heat of air, fi is the

volume flowrate of cooling air passing through chassis i, Ti
in and Ti

out denote the average temperature
of inlet and outlet airflow respectively.

For brevity, Equation (6) is rewritten as

Ti
out = Ti

in + K−1
i Pi (7)

where Ki = ρ fiCP. Since the physical properties of air in data center can be considered as constants,
the value of Ki is determined by the air flowrate of server chassis i. Equation (7) means the heat load Pi
of chassis i heats the airflow from Ti

in to Ti
out.
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Considering the heat recirculation among all n server chassis in data center, the heat balance of
chassis i is expressed as

Qi
out =

n

∑
j=1

αjiQ
j
out + Qi

sup + Pi

or equivalently as

KiTi
out =

n

∑
j=1

αjiKjT
j
out + (Ki −

n

∑
j=1

αjiKj)Tsup + Pi (8)

where ∑n
j=1 αjiKjT

j
out is the sum of recirculation heat sucked by chassis i, (Ki −∑n

j=1 αjiKj)Tsup is the
heat carried by the cooling air from CRAC, Tsup is the supply temperature of CRAC. Now, we rewrite
Equations (7) and (8) in vector form:

−→
T out =

−→
T in + K−1−→P (9)

K
−→
T out = ATK

−→
T out + (K−ATK)

−→
T sup +

−→
P (10)

where K is defined as

K =


K1 · · · 0
...

. . .
...

0 · · · Kn


−→
T out = [T1

out, · · · , Tn
out]

T is the outlet temperature vector,
−→
T sup = [Tsup, · · · , Tsup]T is the supply

temperature vector and
−→
P = [P1, · · · , Pn]T is the power consumption vector.

Combining Equations (9) and (10), we have

−→
T in =

−→
T sup + [(K−ATK)−1 −K−1]

−→
P (11)

Considering the IT equipment in server chassis has homogeneous physical states, we adopt
a thermal resistance model to characterize the steady heat transfer between IT equipment and cooling
air [24], which is expressed as

Pi =
Ti

chip − Ti
in

Ri
(12)

or equivalently as
Ti

chip = Ti
in + RiPi (13)

where Ti
chip and Ri are the thermal-physical properties of chassis i representing the chip temperature

and the convective thermal resistance respectively. This heat resistance is depends on the heat
exchanger area and the cooling air velocity. For all n server chassis in data center, the chip temperature
is expressed as: −→

T chip =
−→
T in + R

−→
P (14)

where R is defined as

R =


R1 · · · 0
...

. . .
...

0 · · · Rn


−→
T chip = [T1

chip, · · · , Tn
chip]

T denotes the chip temperature vector.
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Combining Equations (11) and (14), the chip temperature is expressed as

−→
T chip =

−→
T sup + [(K−ATK)−1 −K−1 + R]

−→
P (15)

3.2. Server Power Model

The server power consumption consists two parts: computing power and leakage power [25].
The computing power can be estimated by a linear function of server utilization rate [26]. Assuming
that the servers within chassis i work at the same utilization rate, hence the computing power of
chassis i is expressed as:

Pcp
i = a1 + a2ui

where ui ∈ [0, 1] is the utilization rate, a1 and a2 represent the idle power and the additional computing
power for handling workload, respectively. Considering the temperature-dependent leakage effect,
the power consumption of server chassis i is modeled as

Pi = Pcp
i FT(Ti

chip)

where FT(Ti
chip) is a function of chip temperature for estimating the leakage power [27]. In the operating

temperature range, FT(Ti
chip) can be approximated as a linear function FT(Ti

chip) = b1 + b2Ti
chip with

acceptable accuracy [28].
Now, the power consumption of chassis i is given by

Pi = (a1 + uia2)(b1 + b2Ti
chip) (16)

which means the server power consumption is correlated with the utilization rate and the
chip temperature.

3.3. Cooling System Power Model

For a typical air-cooled data center, the cooling power is mainly consumed by the chiller system
and the CRAC blower.

The power consumption of chiller system depends on its heat load and coefficient of performance
(COP). COP is defined as the ratio of the heat load to the chiller power consumption. Considering all
the power drawn by IT equipment is converted to heat, COP is expressed as

COP =
PIT

PChiller

where PIT denotes the power consumption of IT equipment. In this work, the COP of chiller system is
estimate by an empirical model

COP(Tsup) = 0.0068T2
sup + 0.0008Tsup + 0.458 (17)

obtained from HP utility data center [29], where COP is a quadratic function of the supply temperature.
Now, the chiller power is expressed as

PChiller =
PIT

COP(Tsup)
(18)

Besides the chiller system, the CRAC blower consumes additional power to deliver cooling air to
the computer room. In present study, the power consumption of CRAC blower is estimated as follows:

PCRAC,re f =
∆pVre f

η
(19)
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PCRAC =
V3

sup

V3
re f

PCRAC,re f (20)

where Vsup is the volume flowrate of cooling air, η , ∆p and Vre f denote the reference working condition
of CRAC blower, as shown in Table 1.

Table 1. Reference working condition of CRAC [24].

Item Description Value [Unit]

η CRAC blower efficiency 60%
Vre f Reference air volume flowrate 15.14 m3/s
∆p Static pressure drop across CRAC 974 Pa

Substitute the reference working condition into Equations (19) and (20), the power consumption
of CRAC is expressed as

PCRAC(Vsup) = 7.082V3
sup (21)

3.4. Problem Statement

From the energy perspective, the performance of workload allocation strategy in air-cooled data
center can be characterized by the holistic power consumption. In present study, the data center adopts
a variable-flow cooling system to provide cooling air. For a given heat load, the power consumption
of cooling system is correlated to the supply temperature and the volume flowrate of cooling air.
Considering the contribution of auxiliary equipment (such as facilities lighting, etc.) to the total energy
cost is negligible, the total power consumption of data center is expressed as

Ptot = PIT + PChiller + PCRAC (22)

where PIT = ∑n
i=1 Pi demotes the power consumption of IT equipment, PCRAC and PChiller denote the

power consumption of cooling system.
For simplicity, assume that the data center has n identical server chassis and the servers in chassis

i work at utilization rate ui, thus the server chassis can be seen as a thermal node. In present study,
we consider there is a linear mapping between server workload and server utilization, the total
workload in data center is defined as Utot = ∑n

i=1 ui. Based on the system models described
above, we propose a chip temperature-aware workload allocation strategy to optimize the workload
assignment. For comparison, this article also describes an inlet temperature-aware workload allocation
strategy. Two different workload distribution strategies are as follows:

(a) Chip temperature-aware workload allocation (CTWA)

In order to provide an acceptance thermal state for electronic equipment, this strategy adopts
the chip temperature as constraint to optimize the workload spreading among servers. According
to the previous studies, the threshold of chip temperature is set to 75 ◦C which will not decrease the
reliability and performance of IT equipment [30]. The problem is defined as:

min PIT +
PIT

COP(Tsup)
+ PCRAC(Vsup) (23)

subject to ∑n
i=1 ui = Utot ui ∈ [0, 1]

15 ◦C ≤ Tsup ≤ 35 ◦C

Ti
chip ≤ 75 ◦C,

−→
T chip =

−→
T sup + [(K−ATK)−1 −K−1 + R]

−→
P



Energies 2018, 11, 669 9 of 23

(b) Inlet temperature-aware workload allocation (ITWA)

This is a proactive scheduling strategy that keeps the server inlet temperature below the threshold
by optimizing the workload distribution scheme, it was first proposed by Tang et al. [31]. According to
the guidelines provided by American Society of Heating Refrigeration and Air-conditioning Engineers
(ASHRAE), the threshold of inlet temperature is set to 27 ◦C [1]. The problem is defined as:

min PIT +
PIT

COP(Tsup)
+ PCRAC(Vsup) (24)

subject to ∑n
i=1 ui = Utot ui ∈ [0, 1]

15 ◦C ≤ Tsup ≤ 35 ◦C

Ti
in ≤ 27 ◦C,

−→
T in =

−→
T sup + [(K−ATK)−1 −K−1]

−→
P

In the above optimization problem, the air supply temperature Tsup, the air volume flowrate
Vsup and the workload allocation vector −→u = [u1, u2, · · · , un] are used as the decision variables.
The constraint 15 ◦C ≤ Tsup ≤ 35 ◦C ensures the air supply temperature is within the chiller
operating range.

In order to solve the optimization problems, a single-objective genetic algorithm (GA) is applied
to explore the design variables space to find the near-optimal solution that minimizes the holistic
power consumption of data center. In present study, the chromosome used in GA algorithm is defined
as
−→
S j = [−→u , Tsup, Vsup] = [u1, u2, · · · , un, Tsup, Vsup], and the fitness of chromosome is measure by

data center power consumption:

Fitness(Sj) = PIT +
PIT

COP(Tsup)
+ PCRAC(Vsup) (25)

The GA algorithm is implemented using the global optimization toolbox in MATLAB (Version
R2016b, MathWorks Inc., Natick, MA, USA).

4. Simulation and Discussion—Case Study

4.1. Simulation Setup

In this study, a sample data center simulated with Ansys CFX 14.5 is used to evaluate the
performance of workload allocation strategies described in Section 3.4. Figure 4 presents the geometry
layout of the sample data center. The length and the width of room are 7.8 m and 6 m respectively.
The height of plenum is 0.8 m and the ceiling is 3 m above the raised floor. A single CRAC provides
cooling air to the computer room via two rows of five perforated tiles (0.6 × 0.6 m2, 25% open).
Above the raised floor, ten server racks are arranged symmetrically on either side of the perforated
tiles. There are five server chassis in each rack and each server chassis draws 0.226 m3 of cooing air
per second to remove the heat generated by IT equipment. The air volume flowrate of CRAC is in the
range of 5.04–17.64 m3/s and the supply temperature is in the range of 15–35 ◦C. The pressure drop of
the cooling air through perforated tile is estimated as ∆P = K(0.5 ρv2), where ρ and v denote the air
density and the air velocity respectively, and K is the resistance factor that depends on the opening
ratio (K = 42.8 for a perforated tile with 25% opening).
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Figure 4. Data center layout used in our study.

The data center model is meshed using Gambit software (Version 2.4.6, Fluent Inc., Lebanon, NH,
USA) and solved using Ansys CFX software (Version 14.5, ANSYS Inc., Canonsburg, PA, USA) until
the maximum residual error is below 1× 10−5. The air in computational domain is considered to be
incompressible. Table 2 presents the air material properties applied in CFD simulation. The buoyancy
effect is estimated using Boussinesq model. Considering the accuracy and the computation time,
the data center model is meshed with 1,242,720 hexahedral elements. In order to quantify the air
recirculation around the server racks, the virtual tracer is introduced at the outlet of each server
chassis [32]. By measuring the tracer at the inlet of target server chassis, we can obtain the mass ratio
of recirculation air originating from each server chassis.

Table 2. Air materials properties in CFD simulation.

Property Value and Unit

Reference temperature 25 ◦C
Reference pressure 101,325 Pa
Specific heat capacity 1004.4 J/kg·K
Density 1.225 kg/m3

As illustrated in Figure 4, the sample data center contains 50 identical server chassis. The previous
research shows that the typical server in idle state consumes nearly 50% of peak power [33]. In this
work, we assume the peak power and the idle power of server chassis are 4200 W and 2100 W
respectively. The computing power is expressed as Pcp

i = 2100 + 2100ui. Base on the measure data
in [30], the temperature-dependent leakage power is estimated by FT(Ti

chip) = 0.75 + 0.002775Ti
chip.

Thus, the power consumption of server chassis i is expressed as

Pi = (2100 + 2100ui)(0.75 + 0.002775Ti
chip) = 1575 + 1575ui + 5.8275Ti

chip + 5.8275uiTi
chip (26)

Assuming the server temperature reaches 75 ◦C when the server utilization is 100% and the server
inlet temperature is 27 ◦C, the thermal resistance of server chassis is set as =0.011928 K/W according
to Equations (12) and (26). For simplicity, we assume the corresponding server chassis in each row
work at the same utilization. In our work, a GA algorithm with integer encoding is adopted to search
the optimal cooling parameters and workload allocation scheme, as presented in Section 3.4. There are
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200 solutions in each generation and the chromosomes are initialized by allocating the workload to
each chassis node equally. The crossover function is set as scattered. The crossover probability is 0.8
and the mutation probability is 0.05. The server utilization, the supply temperature, and the CRAC air
flowrate vary in steps of 0.05%, 0.5 ◦C, and 0.252 m3/s, respectively.

4.2. Verification of POD-Based Heat Recirculation Model

In this study, we use 14 CFD simulation cases to develop the POD models to reconstruct the
cross-interference matrix. The observations are obtained by varying the air flowrate of CRAC,
where Vsup ∈ [5.04, 5.67, 6.3, 6.93, 7.56, 8.19, 8.82, 10.08, 11.34, 12.6, 13.86, 15.12, 16.38, 17.64]. Using the
POD algorithm presented in Section 3.1, we derive 14 POD bases from the observations and the energy
of each POD basis is shown in Figure 5. We observe that the first several POD bases contain most of the
system energy. In order to accurately describe the heat recirculation, we use 7 POD bases, which retain
99.92% of the total energy, to reconstruct the cross-interference matrix. For each observation case,
the POD bases have a set of weight coefficients corresponding to the cooling air supply. In order to
characterize the heat recirculation in data center with variable-flow cooling supply, the coefficients of
POD bases are generated using cubic spline interpolation among the coefficient sets of 14 observation
solutions. In present study, the flowrate of cooling air can vary in the range of 5.04 to 17.64 m3/s.
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Figure 5. Energy distribution of POD basis.

Figure 6 shows the POD reconstructions of the cross-interference matrix for data center under
different cooling air supply, in addition, the corresponding reconstruction errors are also presented.
We observe that the heat recirculation among server chassis significantly weakens with the increase
of cooling air supply. This implies that increasing the supply of cooling air can improve the
thermal environment in data center. As shown in Figure 6, comparing to the simulation results
of the corresponding cases, the POD reconstruction errors of cross-interference coefficients are below
3.9× 10−3.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) POD reconstruction of cross-interference matrix for Vsup = 8.19 m3/s. (b) Reconstruction
error of cross-interference matrix for Vsup = 8.19 m3/s. (c) POD reconstruction of cross-interference
matrix for Vsup = 10.71 m3/s. (d) Reconstruction error of cross-interference matrix for Vsup = 10.71 m3/s.
(e) POD reconstruction of cross-interference matrix for Vsup = 13.23 m3/s. (f) Reconstruction error of
cross-interference matrix for Vsup = 13.23 m3/s.

In order to evaluate the accuracy of POD reconstruction, we compare the temperature distributions
calculated using cross-interference matrices obtained by POD method and CFD simulation. Assuming
the power consumption of server chassis is 4200 W and the temperature of cooling air is 15 ◦C, the inlet
temperature distribution is calculated according to Equation (11). Table 3 shows the temperature
errors between POD reconstructions and CFD simulations. For inlet temperature distribution of
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POD reconstruction, the maximum temperature error is 0.249 ◦C and the mean temperature error is
below 0.037 ◦C. This implies that the cross-interference matrix obtained by POD reconstruction has
an acceptable accuracy to describe the heat recirculation in data center.

Table 3. Temperature error of reconstruction case.

Item Case 1 Case 2 Case 3

Vsup 8.19 m3/s 10.71 m3/s 13.23 m3/s
Mean Error 0.027 ◦C 0.026 ◦C 0.037 ◦C
Max Error 0.101 ◦C 0.172 ◦C 0.249 ◦C

It is noteworthy that the POD-based heat recirculation model does not just describe the thermal
environment in homogeneous data center, but also describes the thermal environment in the
heterogeneous data center, because the cross-interference coefficients depend only on the geometric
layout and the air velocity field.

4.3. Comparison between Chip and Inlet Temperature-Aware Workload Allocation

In this section, we compare the performance of chip and inlet temperature-aware workload
allocation strategies for the sample data center using different cooling systems: constant-flow (CF) and
variable-flow (VF). The data center utilization rates in comparison study are 30%, 50%, 70% and 90%.

4.3.1. Case Study A: Constant-Flow Cooling System

For the data center using a constant-flow cooling system, we assume that the cooling air supply
equals the demand of server chassis. In present study, the volume flowrate of cooling air is set as
Vsup = 11.79 m3/s and the correspongding air velocity at CRAC outlet is 4.68 m/s.

Figure 7 presents the chip temperature distributions achieved by different workload allocation
strategies in data center under constant-flow cooling air supply. We observe that the chip
temperature-aware workload allocation strategy achieves a nearly uniform chip temperature
distribution in each case, and most of the temperatures are close to 75 ◦C. This implies that the chip
temperature-aware method effectively prevents the servers from over-cooling. In contrast, the chip
temperatures achieved by the inlet temperature-aware workload allocation strategy distribute over
a large range, and many chip temperatures are far below the threshold (Tchip = 75 ◦C), especially at
the server chassis that contribute more to heat recirculation. This means that a portion of the cooling
power is wasted on those servers with lower chip temperatures.

(a) (b)

Figure 7. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 7. Chip temperature distributions achieved by different strategies under constant-flow cooling
air supply. (a) Chip temperature-aware workload allocation, 30% data center utilization. (b) Inlet
temperature-aware workload allocation, 30% data center utilization. (c) Chip temperature-aware workload
allocation, 50% data center utilization. (d) Inlet temperature-aware workload allocation, 50% data
center utilization. (e) Chip temperature-aware workload allocation, 70% data center utilization. (f) Inlet
temperature-aware workload allocation, 70% data center utilization. (g) Chip temperature-aware workload
allocation, 90% data center utilization. (h) Inlet temperature-aware workload allocation, 90% data
center utilization.

Figure 8 shows the power consumption of data center under constant-flow cooling air supply.
In contrast with the inlet temperature-aware workload allocation strategy, we observe that the chip
temperature-aware method achieves a lower holistic power consumption in data center since it allows
a higher supply temperature of cooling air and achieves a significant reduction in chiller power for
each case. Compared to the inlet temperature-aware method, although the temperature-dependent
leakage power leads to higher IT equipment power for the cases using the chip temperature-aware
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method as shown in Figure 8, the chip temperature-aware workload allocation strategy still achieves
energy saving since the reduction of cooling power.

30% 50% 70% 90%

Data Center Utilization

110

130

150

170

190

210

230

250

270

290

P
ow

er
 C

on
su

m
pt

io
n 

(k
w

)

10

20

30

40

S
up

pl
y 

te
m

pe
ra

tu
re

 (
°C

)

P
CRA C

(ITWA,CF)

P
CRA C

(CTWA,CF)

P
Ch ille r

(ITWA,CF)

P
Ch ille r

(CTWA,CF)

P
IT

(ITWA,CF)

P
IT

(CTWA,CF)

T
su p

(ITWA,CF)

T
su p

(CTWA,CF)

Figure 8. Power consumption of data center under constant-flow cooling air supply.

4.3.2. Case Study B: Variable-Flow Cooling System

In this case study, the sample data center employs a variable-flow cooling system with the air
flowrate of CRAC varying from 5.04 m3/s to 17.64 m3/s. As described in Section 3.3, the power
consumption of CRAC is a cubic function of the volume flowrate.

Figure 9 shows the power consumption and cooling parameters of data center achieved by the
inlet temperature-aware workload allocation strategy. Compared to the power consumption of data
center under constant-flow cooling air supply, the inlet temperature-aware workload allocation strategy
achieves a negligible reduction in the holistic power consumption of data center by changing the
supply volume of cooling air, except for the case with 90% data center utilization. At 90% utilization,
the heat recirculation is weakened since the increase of cooling air supply. Therefore, the supply
temperature is allowed to increase from 18.5 ◦C to 20.5 ◦C. Despite the increase of cooling air supply
requires a higher CRAC power, the reduction of chiller power still leads to lower holistic power
consumption in data center. At 30% utilization, although the cooling system reduces the supply of
cooling air and achieves a reduction in CRAC power, as shown in Figure 9b, the power saving in data
center is negligible since there is an almost equal increase in cooler power.

30% 50% 70% 90%
Data Center Utilization

100

120

140

160

180

200

220

240

260

280

P
ow

er
 C

on
su

m
pt

io
n 

(k
w

)

P
CRA C

(ITWA,CF)

P
CRA C

(ITWA,VF)

P
Ch ille r

(ITWA,CF)

P
Ch ille r

(ITWA,VF)

P
IT

(ITWA,CF)

P
IT

(ITWA,VF)

(a)

Figure 9. Cont.



Energies 2018, 11, 669 16 of 23

30% 50% 70% 90%

Data Center Utilization

7

8

9

10

11

12

13

14

15

C
oo

lin
g 

A
ir 

F
lo

w
ra

te
 (

m
3
/s

)

15

20

25

30

35

S
up

pl
y 

T
em

pe
ra

tu
re

 (
°C

)

T
su p

(ITWA,CF)

T
su p

(ITWA,VF)

V
su p

(ITWA,CF)

V
su p

(ITWA,VF)

(b)

Figure 9. Power consumption and cooling parameters of data center achieved by inlet temperature-aware
workload allocation strategy. (a) Power consumption under different data center utilization. (b) Cooling
parameters under different data center utilization.

Figure 10 presents the workload distribution achieved by the inlet temperature-aware workload
allocation strategy. Comparing the cases of constant-flow and variable-flow cooling air supply, we
observe that the inlet temperature-aware workload distribution strategy tends to adjust workloads on
servers that contribute more to heat recirculation. For the cases with 30% and 50% utilizations as shown
in Figure 10a–d, the workload distributions under variable-flow cooling supply reduce workload
from the lower positions of columns 4 and 5 since the decrease of cooling air supply enhances the
contribution of heat recirculation at these locations. For the workload distributions of 90% utilization
as shown in Figure 10g,h, since the increase of cooling air supply weakens the heat recirculation in
data center, we observe that the workload distribution under variable-flow cooling supply assigns
more workloads to columns 4 and 5. Meanwhile, the servers located in column 1 are assigned less
workload due to the increase of supply temperature.

(a) (b)

Figure 10. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 10. Workload distributions achieved by inlet temperature-aware workload allocation strategy.
(a) Constant-flow cooling air supply, 30% data center utilization. (b) Variable-flow cooling air
supply, 30% data center utilization. (c) Constant-flow cooling air supply, 50% data center utilization.
(d) Variable-flow cooling air supply, 50% data center utilization. (e) Constant-flow cooling air
supply, 70% data center utilization. (f) Variable-flow cooling air supply, 70% data center utilization.
(g) Constant-flow cooling air supply, 90% data center utilization. (h) Variable-flow cooling air supply,
90% data center utilization.

Figure 11 shows the power consumption and cooling parameters of data center achieved by the
chip temperature-aware workload allocation strategy. We observed that, except for 90% utilization,
the power consumption of data center under variable-flow cooling air supply is obviously lower than
the corresponding case under constant-flow cooling air supply. For the cases of variable-flow cooling
air supply with 30%, 50% and 70% utilizations, the chip temperature-aware workload allocation
strategy achieves a significant reduction in CRAC power by optimizing the workload allocation. At the
same time, compared to the data center with constant-flow cooling air supply, the increase of supply
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temperature in data center with variable-flow cooling air supply causes a increase in chiller power.
As the utilization decreases, the data center under variable-flow cooling air supply achieves more
energy saving. As shown in Figure 11b, the data center that uses variable-flow cooling air supply
achieves more savings in CRAC power by reducing the supply of cooling air as utilization decreases.
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Figure 11. Power consumption and cooling parameters of data center achieved by chip temperature-aware
workload allocation strategy. (a) Power consumption under different data center utilization. (b) Cooling
parameters under different data center utilization.

Figure 12 presents the workload distributions achieved by the chip temperature-aware workload
allocation strategy. In comparing cases of constant-flow and variable-flow cooling air supply,
we observe that the chip temperature-aware workload allocation strategy tends to adjust workloads
on servers as contributors and receivers of heat recirculation. For the cases with 30%, 50% and
70% utilizations, compared with the workload distributions under constant-flow cooling air supply,
the workload distributions under variable-flow cooling air supply reduce workload from the servers
that receive more recirculation heat (e.g., column 4, column5 and the top of racks). The reason is
that the reduction of cooling air supply enhances the heat recirculation at these locations. At 90%
utilization, the cases under constant-flow and variable-flow cooling air supply exhibit similar workload
distributions since the effect of variation in cooling system is negligible.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. Workload distributions achieved by chip temperature-aware workload allocation strategy.
(a) Constant-flow cooling air supply, 30% data center utilization. (b) Variable-flow cooling air
supply, 30% data center utilization. (c) Constant-flow cooling air supply, 50% data center utilization.
(d) Variable-flow cooling air supply, 50% data center utilization. (e) Constant-flow cooling air
supply, 70% data center utilization. (f) Variable-flow cooling air supply, 70% data center utilization.
(g) Constant-flow cooling air supply, 90% data center utilization. (h) Variable-flow cooling air supply,
90% data center utilization.
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4.3.3. Evaluation of Total Power Consumption and Energy Efficiency

Figure 13 shows the total power consumption of data center for each case study. We observe
that the power consumption of data center under variable-flow cooling air supply is always lower
than the corresponding case under constant-flow cooling air supply, and the power consumption of
data center optimized by the chip temperature-aware strategy is always lower than the corresponding
case optimized by the inlet temperature-aware strategy. Compared with the inlet temperature-aware
workload allocation strategy, the chip temperature-aware workload allocation strategy achieves energy
savings of 7.5–8.2% and 6.7–12.1% for the data center under constant-flow and variable -flow cooling
air supply, respectively.
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Figure 13. Total power consumption of data center for the case study.

In present study, we adopt a popular metric, Power Usage Efficiency (PUE), to quantify the energy
efficiency in data center. PUE is defined as the ratio of holistic power consumption in data center to
the power consumption of IT equipment, which is expressed as

COP =
Holistic power consumption

IT equipment power consumption

The energy efficiency of the data center enhances as its PUE declines. The ideal value for PUE
is 1. Figure 14 shows the PUE of the sample data center for the case study. For both constant-flow and
variable-flow cooling air supply, we observe that the PUE achieved by the chip temperature-aware
workload allocation strategy is obviously lower than the corresponding case adopted the inlet
temperature-aware workload allocation strategy. Compared with the inlet temperature-aware
workload allocation strategy, the chip temperature-aware workload allocation strategy decreases
the PUE of the case under constant-flow cooling air supply from 1.36–1.42 to 1.20–1.28 and decreases
the PUE of the case under variable-flow cooling air supply from 1.36–1.39 to 1.14–1.28. Especially
for the case of variable-flow cooling air supply under lower utilization, the chip temperature-aware
workload distribution will further improve the energy efficiency of data center.
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Figure 14. Power Usage Effectiveness for case study.

5. Conclusions

This paper utilized a POD-based heat recirculation model to evaluate the performance of the chip
and inlet temperature-aware workload allocation strategies. These two different workload allocation
strategies are implemented for the sample data center with constant-flow and variable-flow cooling
air supply. In our study, the heat transfer in data center is characterized using an improved heat
recirculation model, and the POD algorithm is used to reconstruct the cross-interference coefficients
for different cooling air supply. The temperature-dependent leakage power is also considered in our
work. To evaluate the performance of the chip and inlet temperature-aware workload allocation
strategies, we apply the workload allocation methods to the sample data center with different
utilization rates. The results show that, compared to the inlet temperature-aware workload allocation
strategy, the chip temperature-aware workload allocation strategy avoids the server over-cooling and
achieves a significant reduction in holistic power consumption of data center, especially for the case of
variable-flow cooling air supply.
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