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Abstract: A bifurcation study for dc-dc converters operated in DCM is performed using an accurate
method. When applying classical techniques significant difficulties are encountered in the calculations.
For example, using the averaging method the validity of the result is limited to half the switching
frequency and higher order effects are neglected Another approach is to perform a Taylor expansion
of the state transition matrices. However, this is somehow also an averaging but the fact that the
Taylor series is truncated leads to unacceptable inaccuracy. A new mathematical technique for
discontinuous conduction mode (DCM) analysis of dc-dc switching converters is proposed in order
to predict bifurcation and chaos. The proposed technique is based on exact calculation of the state
transition matrices and of the Jacobian thus providing higher accuracy of the results compared to
other previously reported approaches. Beside the fact the new technique allows for exact diagnosis
of instability, it is also highly general, in the sense that it can be applied to any dc-dc DCM operated
converter employing any type of control. The good agreement between theoretical, simulation and
experimental results, with an error lower than 0.94%, confirms the validity of the proposed method.

Keywords: mathematical model; bifurcation; chaos; state-space model; discontinuous conduction
mode; eigenvalues; nonlinear circuits

1. Introduction

Power electronic switching converters are highly nonlinear systems that give arise of various
phenomena when a feedback loop is closed for control. In the past years much attention was dedicated
to chaos and bifurcations analysis of switching converters with emphasis on dc-dc switching topologies
employing different control strategies [1,2].

As known, dc-dc switching converters are mainly used in two operating modes: continuous
conduction mode (CCM) and discontinuous conduction mode (DCM). In CCM the diode currents
in the off state never reach zero and this mode occurs when the inductors are relatively high, while
the load current and the switching frequency are also significant. At light loads, that is at low output
currents or, equivalently, at higher load resistances, small inductor values or low switching frequencies
the inductor current ripple becomes comparable to its dc value and the diode current, equal to a linear
combination of inductor currents, is zero for a certain time interval during transistor off time.

In [3], a current-mode controlled boost converter was subjected to study, while a sampled-data
modelling and analysis of PWM dc-dc converters in both CCM and DCM is carried out in [4]. A unified
analysis of CCM converters employing different control techniques (e.g., one cycle control, charge
control, etc.) is performed in [5–8] from a bifurcation point of view. The asynchronous switching map
on studying the stability effects of circuit parameters in CCM fixed off-time controlled buck converter
is performed in [9]. Bifurcations due to on-load parameter fluctuations that can occur at the boundary
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between CCM and DCM and discontinuity mapping were investigated for a boost converter in [10],
developing the theory of border collision bifurcations for this special case.

From a chaotic point of view, in [11] a DCM voltage-controlled buck converter was presented.
Some important studies regarding bifurcations in DCM were reported in [12,13]. A DCM buck
converter with proportional control is provided in [14]. In [15] a current-mode pulse train (CMPT)
control technique is used with a DCM operated converter, the effects of circuit parameters on the
converter dynamics are analyzed and the border collision mechanism is revealed. The first bifurcation
study reported on a DCM Ćuk converter employing current mode control was performed in [16] and
the onset of oscillatory inductor currents is explained, proving that oscillatory inductor currents are
inherent in the Ćuk converter, even if the input voltage is a rectified one or a pure dc.

In all these studies simplified models for describing converter behavior and deriving the
iterative maps are used, mainly based on averaged models [2,11]. As known, these models exhibit
a limited validity in the frequency domain, the upper limit being half of the switching frequency.
Another approach used in [1] expands the state transition matrices in a Taylor series and only the first
three terms are retained. This is somehow also an averaging that comes with its limitations. On the
other side, individual studies for the buck, boost and buck-boost are performed, although all these
three converters have common roots. Therefore a tool unifying the analysis for all converters would be
both powerful and expected. These models can be useful in a certain range of converter parameters
but outside these limits the errors may become significant.

This paper proposes a new mathematical approach that, opposed to the above mentioned ones,
allows for exact iterative map derivation and exact operating point solution calculation, thus offering
the exact value for the parameters that lead to bifurcation. Moreover, the applicability of the method
has a high degree of generality, in the sense that it can be applied with the same formalism to any dc-dc
converter. Moreover, any control technique can be employed with the converter without modifying
the algorithm proposed for the analysis. Any bifurcation parameter can be studied e.g., gain k if the
controller, input voltage Vg, or load resistance R. The proposed algorithm can be easily implemented
in Matlab™ or similar programs.

2. State-Space Description of the Discontinuous Conduction Mode

In the most general case, DCM is defined as the operation mode in which at least one asynchronous
switching with respect to the control signals occurs. The passive switches, namely the diodes, are
responsible for this type of operation. The main waveforms of a converter in DCM are depicted in
Figure 1, where q(t) is the transistor switching function, dn is the duty cycle in the nth period, hnT
is the length of the second topological state when the active switch is off and the diode is forward
biased, and the third topological state is when both semiconductors are off. T is the switching period.
Compared to CCM, in DCM a third topological state is introduced, corresponding to the hatched zone
in Figure 1. Obviously, from Figure 1 it results that the lengths of the three topological states are dnT,
hnT and (1 − dn − hn)T for the on state, off state and the third state respectively.

In this paper the following notations have been adopted. Indexes of a discrete variable z
obtained by sampling the continuous time variable z at the time moments nT are written as subscripts.
For example zn = z(nT). The values of the continuous time variable at some time moment is denoted
using rounded brackets, for example z(nT + dnT) is the value of the continuous variable z at the time
moment nT + dnT. The state-space approach is used in this paper for converter description and analysis.
As in each topological state a different linear time invariant (LTI) circuit is configured, a dc-dc converter
is obviously a piecewise linear system.
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Figure 1. Transistor switching function, inductor voltage and inductor current in a DCM operated  
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Figure 1. Transistor switching function, inductor voltage and inductor current in a DCM operated
dc-dc converter.

The set of LTI equations that govern converter operation differ from one topological state to
another. They can be written as:

dx
dt = A1x(t) + B1u(t) when t ∈ [nT, (n + dn)T)
dx
dt = A2x(t) + B2u(t) when t ∈ [(n + dn)T, (n + dn + hn)T)
dx
dt = A3x(t) + B3u(t) when t ∈ [(n + dn + hn)T, (n + 1)T)

(1)

where n is a positive integer, x(t) is the state vector, u(t) is the input vector containing the voltage
sources and Ai, Bi, i = 1, 3, are the state matrices corresponding to the three topological states. In these
conditions it is known [1,3] that converter operation can be described by the following discrete state
equation:

xn+1 = ϕ3 ϕ2 ϕ1 · xn + (ϕ3 ϕ2 Ψ1 + ϕ3 Ψ2 + Ψ3) · un (2)

where the transition matrices involved in (2) are:

ϕ1 = eA1dnT ; Ψ1 = eA1dnT ·
(

dnT∫
0

e−A1τdτ

)
· B1

ϕ2 = eA2hnT ; Ψ2 = eA2(dn+hn)T ·
(

(dn+hn)T∫
dnT

e−A2τdτ

)
· B2

ϕ3 = eA3(1−dn−hn)T ; Ψ3 = eA3T ·
(

T∫
(dn+hn)T

e−A3τdτ

)
· B3

(3)

When matrices Ai are nonsingular, then Ψ1, Ψ2, Ψ3 can be written in a simplified form as:
Ψ1 = A−1

1 (ϕ1 − I)B1

Ψ2 = A−1
2 (ϕ2 − I)B2

Ψ3 = A−1
3 (ϕ3 − I)B3

(4)

where I is the unity matrix of converter order. Even when singular, matrices Ψ1, Ψ2, Ψ3 can be easily
evaluated from (3) using symbolic calculation. It is also important to remark that if Bi is a zero matrix,
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then the corresponding Ψi is also zero. This is the situation in the boost converter where B3 =
[

0 0
]t

.
More general, in any converter with the transistor connected in series with the supply voltage, matrices
Bi are zero in all topological states when the transistor is off.

It is known that because of its periodic nature, the steady state solution of the discrete model
is constant and therefore the duty cycles dn and hn are constant, denoted by D and H and the input
vector un is also constant, U. Consequently, the steady-state transition matrices in (3) will be denoted
by capitals as below:

Φ1 = eA1DT ; Ψ1 = eA1DT ·
(

DT∫
0

e−A1τdτ

)
· B1

Φ2 = eA2 HT ; Ψ2 = eA2(D+H)T ·
(

(D+H)T∫
HT

e−A2τdτ

)
· B2

Φ3 = eA3(1−D−H)T ; Ψ3 = eA3T ·
(

T∫
(D+H)T

e−A3τdτ

)
· B3

(5)

In these conditions the steady-state constant state vector X can be easily found from (2) imposing
xn + 1 = xn = X, from which one obtains:

X = (I −Φ3Φ2Φ1)
−1 · (Φ3Φ2Ψ1 + Φ3Φ2 + Ψ3)U (6)

3. The New Method for Determining Bifurcation Parameter

Because the control of a dc-dc converter is of discrete nature, stability analysis can be performed
if an iterative map of the form:

xn+1 = f
(

xn, un, pbi f

)
(7)

is available. Here pbif is a generic bifurcation parameter. The proposed approach is based on the

small-signal assumption, requiring the determination of the Jacobian matrix J = ∂ f
∂xn

from (7) in
a certain steady-state operating point (OP) {un = U, dn = D, xn = X} and the calculation of the eigenvalues
(characteristic multipliers) from the well-known equation:

det(λI − J) = 0 (8)

However, in the most general case, the discrete state equation of a dc-dc converter is not of the
form (7), but it can be written as:

xn+1 = g
(

xn, dn, hn, un, pbi f

)
(9)

Clearly the form of Equation (9) differs from Equation (7) because additional variables dn and hn

appear. Comparing (2) to (9) it easily results that function g in (9) is:

g = ϕ3 ϕ2 ϕ1 · xn + (ϕ3 ϕ2Ψ1 + ϕΨ2 + Ψ3) · un (10)

As previously mentioned, function g depends not only on xn and un, but also on dn and hn. This is
due to the fact that matrices Φi and Ψi, i = {1,2,3}, depend on dn and hn, as (3) reveals. It is clear that (10)
is not an iterative map of the form (7), as the additional discrete variables dn and hn appear. However,
the Jacobian can be still evaluated as will be described below, eliminating parameters dn and hn in the
small-signal model, as they depend on xn and un. In order to achieve this let us first express the state
vector at the end of the first and second topological states in terms of the state vector at the beginning
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of the corresponding topological state. Because in each of these states the circuit is LTI, this can be
easily performed and one obtains:

x(nT + dnT) = ϕ1x(nT) + Ψ1un (11)

x(nT + dnT + hnT) = ϕ2x(nT + dnT) + Ψ2un (12)

In order to eliminate dn and hn from (9), two additional relationships are needed, both relating dn,
xn, un, and possibly pbif. In the most general case, these equations are of the form

F1

(
xn, dn, hn, un, pbi f

)
= 0 (13)

F2

(
xn, dn, hn, un, pbi f

)
= 0 (14)

In any dc-dc converter Equation (13) is the control equation, (e.g., proportional voltage control,
current mode control, charge control, etc.). Generally, function F1 is the result of a comparison between
converter variables and reference magnitudes and F1 is not very complicated for most of control
techniques. In this paper proportional voltage control is adopted as an example, but the reader can
easily apply the principle to any type of control. In proportional voltage-mode control, illustrated
in Figure 2 for a boost converter, the difference between the reference voltage Vref and the output
voltage vc is amplified and then compared to a rising saw tooth signal vsaw. When amplified difference
signal is higher than the saw tooth the transistor is switched on, otherwise it will be off. This is the
so called natural sampling PWM control, but also uniform sampling can be used, that is when the
output voltage is sampled at the beginning of each period and the value of the sample is provided to
the control circuit. From the schematic in Figure 2 it results that transistor off switching occurs when:

vsaw(nT + dnT) =
VU −VL

T
dnT + VL = k ·

[
Vre f − vc(nT + dnT)

]
(15)

where VU, VL are the peak and the valley value of the sawtooth signal and k is the gain.
From (15) the discrete duty cycle is:

dn =
k

Vu −VL
·
[
Vre f −Vexv · x(nT + dnT)

]
− VL

Vu −VL
(16)

where the row vector Vexv extracts the capacitor voltage from state vector. As function F1 requires xn as
argument, x(nT + dnT) has to be expressed in terms of xn. This is achieved substituting x(nT + dnT)
from (11) in (16), resulting in:

dn =
k

Vu −VL
·
[
Vre f −Vexv · (ϕ1x(nT) + Ψ1un)

]
− VL

Vu −VL
(17)

From (17) function F1 is easily identified as:

F1

(
xn, dn, hn, un, pbi f

)
= k ·

{
Vre f −Vexv · [ϕ1x(nT) + Ψ1un]

}
− (Vu −VL)dn −VL (18)

Function F2 that appears in (14) typically describes the operation mode of the converter. In DCM
it states that inductor current equals zero at the end of the second topological state. Mathematically
this can be written as:

Vexi · x((n + dn + hn)T) = 0 (19)
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where the vector Vexi is a row vector that extracts the inductor current from the state vector. Obviously,
from (19) and (14) it follows that and intermediate form for of F2 is given by:

F2

(
xn, dn, hn, un, pbi f

)
= Vexi · x((n + dn + hn)T) (20)

The final form of F2 is found substituting x((n + dn + hn)T) from successively substituting (11) in
(12) and the result in (20), obtaining that:

F2

(
xn, dn, hn, un pbi f

)
= Vexi [ϕ2 ϕ1x(nT) + (ϕ2Ψ1 + Ψ2) · un] (21)

Concluding, in order to obtain an equation of the form (7) we have to eliminate dn and hn from
the system of equations: 

xn+1 = g
(

xn, dn, hn, un, pbi f

)
F1

(
xn, dn, hn, un, pbi f

)
= 0

F2

(
xn, dn, hn, un pbi f

)
= 0

(22)

where g, F1 and F2 are given by (10), (18) and (21) respectively. System (22) is in fact a generalized
discrete state-space model, with two auxiliary variables represented by dn and hn and two constrains
given by F1(xn, dn, hn, un, pbif) = 0 and F2(xn, dn, hn, un, pbif) = 0.
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In most of the cases it is impossible to provide an explicit expression of type (7) for xn + 1 from
(22). But as long as stability is of concern, local stability can be still exactly predicted. First it has to be
stressed out that pbif is a parameter that influences the operating point and for local stability analysis it
is a constant value. In the following, the symbol ˆ will be used to denote the small-signal perturbations.
Linearizing the three equations in (22) around the constant steady-state operating point defined by

{U, D, H, X} and taking into account that
∧
pbi f = 0 because pbif is constant, one obtains:

∧
xn+1 = ∂g

∂xn

∣∣∣
OP

∧
xn +

∂g
∂dn

∣∣∣
OP

∧
dn +

∂g
∂hn

∣∣∣
OP

∧
hn +

∂g
∂un

∣∣∣
OP

∧
un

∂F1
∂xn

∣∣∣
OP

∧
xn +

∂F1
∂dn

∣∣∣
OP

∧
dn +

∂F1
∂hn

∣∣∣
OP

∧
hn +

∂F1
∂un

∣∣∣
OP

∧
un = 0

∂F2
∂xn

∣∣∣
OP

∧
xn +

∂F2
∂dn

∣∣∣
OP

∧
dn +

∂F2
∂hn

∣∣∣
OP

∧
hn + + ∂F2

∂un

∣∣∣
OP

∧
un = 0

(23)
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where in general the symbol ∂z
∂r

∣∣∣
OP

denotes the derivative of function z with respect to the variable r
evaluated in the operating point.

As the model described by (23) is LTI, from its last two equations
∧
dn and

∧
hn can be expressed in

terms of
∧
xn and

∧
un, leading to the proposed mathematical model:

∧
xn+1 =

(
∂g

∂xn

∣∣∣
OP

+ ∂g
∂dn

∣∣∣
OP

∂F1
∂hn

∂F2
∂xn
− ∂F1

∂xn
∂F2
∂hn

∂F1
∂dn

∂F2
∂hn
− ∂F1

∂hn
∂F2
∂dn

∣∣∣∣∣
OP

+ ∂g
∂hn

∣∣∣
OP

∂F1
∂xn

∂F2
∂dn
− ∂F1

∂dn
∂F2
∂xn

∂F1
∂dn

∂F2
∂hn
− ∂F1

∂hn
∂F2
∂dn

∣∣∣∣∣
OP

)
∧
xn

+

(
∂g

∂un

∣∣∣
OP

+ ∂g
∂dn

∣∣∣
OP

∂F1
∂hn

∂F2
∂un
− ∂F1

∂un
∂F2
∂hn

∂F1
∂dn

∂F2
∂hn
− ∂F1

∂hn
∂F2
∂dn

∣∣∣∣∣
OP

+ ∂g
∂hn

∣∣∣
OP

∂F1
∂un

∂F2
∂dn
− ∂F1

∂dn
∂F2
∂un

∂F1
∂dn

∂F2
∂hn
− ∂F1

∂hn
∂F2
∂dn

∣∣∣∣∣
OP

)
∧
un

(24)

From (24) the Jacobian J is easily identified as:

J =
∂g
∂xn

∣∣∣∣
OP

+
∂g
∂dn

∣∣∣∣
OP

∂F1
∂hn

∂F2
∂xn
− ∂F1

∂xn

∂F2
∂hn

∂F1
∂dn

∂F2
∂hn
− ∂F1

∂hn

∂F2
∂dn

∣∣∣∣∣
OP

+
∂g
∂hn

∣∣∣∣
OP

∂F1
∂xn

∂F2
∂dn
− ∂F1

∂dn

∂F2
∂xn

∂F1
∂dn

∂F2
∂hn
− ∂F1

∂hn

∂F2
∂dn

∣∣∣∣∣
OP

(25)

Equation (25) is the final result that will be used in the analysis, where g F1 and F2 are defined
by (9), (13) and (14) respectively in the general cases. For DCM operation the expressions of these
functions are given by (10), (18) and (21) respectively. Examining (25) it can be seen that the partial
derivatives of the functions g, F1 and F2 with respect to xn, dn and hn need be calculated. Also the
exact steady-state operation point has to be calculated because the linearization process requires these
derivatives to be evaluated in the steady-state operating point. This will be presented and performed
in the next paragraph.

4. Partial Derivatives of Functions g, F1, F2 and Exact Steady-State Operating Point Calculation

For deriving the partial derivatives of function g evaluated in the operating point, Equation (10)
is used. After some simple algebra the final result is:

∂g
∂xn

∣∣∣∣
OP

= ϕ3 ϕ2 ϕ1|OP = Φ3Φ2Φ1 (26)

∂g
∂dn

∣∣∣∣
OP

= TΦ3(Φ2Φ1 A1 − A3Φ2Φ1)X + T[Φ3(Φ2Φ1B1 − A3Φ2Ψ1)− (Φ3 A3Ψ2 −Φ3B3)]U (27)

∂g
∂hn

∣∣∣∣
OP

= TΦ3(Φ2 A2 − A3Φ2)Φ1X + T[Φ3(Φ2 A2 − A3Φ2)Ψ1 + Φ3(Φ2B2 − A3Ψ2 − B3)]U (28)

The partial derivatives of F1 evaluated in the operating point are straight from (18):

∂F1

∂xn

∣∣∣∣
OP

= −kVexvΦ1 (29)

∂F1

∂dn

∣∣∣∣
OP

= −kTVexv(A1Φ1X + Φ1B1U)− (Vu −VL) (30)

∂F1

∂hn

∣∣∣∣
OP

= 0 (31)

Partial derivatives of F2 in the operating point are directly found from (21). The result is:

∂F2

∂xn

∣∣∣∣
OP

= VexvΦ2Φ1 (32)

∂F2

∂dn

∣∣∣∣
OP

= TVexiΦ2Φ1(A1X + B1U) (33)
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∂F2

∂hn

∣∣∣∣
OP

= TVexiΦ2[A2Φ1X + (A2Ψ1 + B2)U] (34)

In order to complete the Jacobian determination, the exact operating point needs to be calculated.
This can be achieved using (6) and taking into account that in steady state the discrete model becomes
a dc one, that is xn + 1 = xn = X, dn = D, hn = H and the steady-state transition matrices are those given
by (5). It is obvious that X depends on D and H. The relative length D is found from (18) written for
steady state, with dn = D. Thus a transcendent equation for D results in the form:

− D + k
[

Vre f −Vexv · (Φ1X + Ψ1U)
]
= 0 (35)

After solving this equation, with D known, H is obtained in a similar way from (21) in steady
state. The equation for finding H is:

Vexi [Φ2Φ1X + (Φ2Ψ1 + Ψ2)U] = 0 (36)

In conclusion, first D is found from (35), then with D known H is found from (36) and finally X is
given by (6). In other words, Equations (35), (36) and (6) constitute a nonlinear system that has to be
numerically solved in order to obtain the steady state solution {D, H, X}, with U known.

5. Bifurcation Analysis Using the Proposed Mathematical Model

As an example how the theory developed can be applied, a Matlab™ bifurcation analysis is
performed for a boost dc-dc converter employing proportional voltage-mode control, similar to that in
Figure 2. As Figure 2 shows, parasitics for C and L are ignored although they can be any time included,
as their presence only modify the state matrices without any influence on the algorithm.

The authors also performed simulations and experiments on high order converters, namely on
the fourth order Sepic, Zeta and excellent agreement between theory, simulations and experiments was
found. For the sake of simplicity and for space reasons only the results related to the Boost converter
will be presented in the paper.

The bifurcation parameter pbif was chosen to be the amplifier gain k. Converter parameters are:
Vg = 16 V; Vref = 22 V; C = 220 µF; T = 333.33 µs; R = 78 Ω; L = 1209 µH; Transistor on resistance is
Ron = 0.2 Ω and diode forward voltage is VD = 0.4 V; Saw tooth parameters are VU = 3.5 V; VL = 0.7 V.

For the boost converter under study, choosing the state vector as x =
[

iL vC

]t
and

U =
[

Vg VD

]t
, the state matrices are:

A1 =

 −Ron
L 0

0 −1
RC

 ; A2 =

 0 −1
L

1
C

−1
RC

 ; A3 =

 0 0

0 −1
RC

; B1 =

 1
L 0

0 0

 ; B2 =

 1
L

−1
L

0 0

 ; B3 =

 0 0

0 0



The program flow chart is presented in Figure 3. The MatlabTM code both for the main program
BOOST_DCM.m and for the function f_system.m that is used with the fsolve command for calculating
the dc operating point is provided in the Appendix A.

In Table 1 the evolution of the characteristic multipliers values as the bifurcation parameter k is
progressively increased is presented. Four decimal places are retained as this is sufficient to provide
the accuracy of the results with an at least 0.01%.

The increment for the bifurcation parameter was 1 × 106. It can be remarked that one eigenvalue
is always zero and this is explained by the fact that in DCM in any switching cycle the inductor current
starts and ends at zero [10].

It can be remarked that at k = 1.1589 only one negative characteristic multiplier exits the unit circle.
It is known that if a negative real eigenvalue moves out of the unit circle, while other eigenvalues are
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within the unit circle, the converter exhibits period-doubling bifurcation [2,10,11]. This prognosis will
be confirmed by circuit simulation and experiments in the next paragraphs.Energies 2018, 11, x FOR PEER REVIEW  9 of 26 
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Table 1. Characteristic multipliers of the boost converter for increasing values of the gain k. The bold
value in the first column denotes the threshold when bifurcation occurs.

Gain k Eingenvalue l1 Eingenvalue l2 Remark

1.1560 −0.9945 0.0000 stable
1.1570 −0.9964 0.0000 stable
1.1580 −0.9983 0.0000 stable
1.1589 −1.0000 0.0000 Bifurcation
1.1600 −1.0020 0.0000 Bifurcation
1.2000 −1.0775 0.0000 Bifurcation
1.3000 −1.2715 0.0000 Bifurcation

6. Validation through Circuit Simulation

In order to validate the theory developed and implemented in Matlab™, a circuit simulation
is performed using the Caspoc™ package [17]. For correct results, the variation of the bifurcation
parameter has to be very slow compared to converter dynamics, such that the operation to consist
of a sequence of quasi steady-states, otherwise significant transients will occur and the bifurcation
diagram will be altered. In our case k is varied from 1.1 to 1.2 in 1 s. The simulation schematic is
presented in Figure 4. The bifurcation diagram is obtained in SCOPE3 displaying the values of k on
the x axis and the sampled output voltage on the y axis.
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Figure 5. The simulated bifurcation diagram of the boost DCM converter employing proportional
voltage-mode control.

From Figure 6 it can be seen that the first bifurcation with period doubling occurs at k = 1.159,
which is an excellent agreement with the Matlab™ prognosis of 1.1589, with 0.092% relative error.
In Figure 7a, a time representation of the inductor current in steady-state operation at a value of k = 1.1,
lower than the bifurcation value is presented. In Figure 7b the phase portrait of the system for the
same value of k is depicted.
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level and the solid line the inductor current. (b) Phase portrait for stable operation, k = 1.1. (c) Inductor 
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Figure 7. (a) The inductor current waveform for k = 1.1. The horizontal dotted line denotes the zero
level and the solid line the inductor current. (b) Phase portrait for stable operation, k = 1.1. (c) Inductor
current for parameter k = 1.2, higher than bifurcation threshold value of 1.1589. Unstable operation
with period doubling (period 2 subharmonic) is obvious.

Both representations in Figure 7a,b confirm that stable operation is achieved.
In Figure 7c, the inductor current waveform for a value of k = 1.2, a value that exceeds the

bifurcation threshold, being located in the range where the bifurcation diagram prognoses a period
doubling is enfaced. The corresponding phase portrait is shown in Figure 8. Figures 7c and 8, reveal
that period doubling occurs.
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It can be remarked that still increasing k after the first bifurcation (for example for k = 1.215),
period 4 bifurcation occurs. This bifurcation can also be numerically determined calculating the
Jacobian of the function f (f ), where f is the function in relationship (6). Obviously, the calculations are
more complex, but the approach is the same as the one used for determining the period 2 bifurcation.
Further increase of the bifurcation parameter causes the system to burst into chaos.

7. Experimental Results

The experimental setup schematic is presented in Figure 9. The differential amplifier consisting of
IC1 and resistors R1 to R4 impose the value of the gain k. With the typical condition of the differential
amplifier fulfilled, that is

R2 ·
(

R1p + R11
)
= R4 ·

(
R3p + R31

)
(37)

gain k is given by

k =
R2

R11 + R1p
=

R4

R31 + R3p
(38)

For the values of the resistors used, k range is between 1.08 and 2.16. The saw tooth waveform is the
voltage across capacitor C that together with potentiometer P2 imposes the operation frequency of the
SG3524 represented by IC0 circuit and the switching frequency of the boost converter. The two outputs
of the SG3524 circuit are connected in parallel, providing the short set pulses of the flip-flop. The
pulse width is adjusted by potentiometer P1. IC2 is used to amplify the pulses such that to cross the
threshold voltage of the flip-flop. The reset signal for the flip-flop is provided by the comparator
represented by IC3. The switching frequency is 3 kHz, equal to that used in the simulation.

In Figure 10 system behavior for k = 1.08 is presented. The theory developed predicts stable
operation both in Matlab™ and Caspoc™. This is experimentally confirmed by the waveforms in
Figure 10, where all signals exhibit the switching period, with the typical DCM shape of the inductor
current. The phase portrait is depicted in Figure 11, additionally confirming stable operation.Energies 2018, 11, x FOR PEER REVIEW  15 of 26 
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Then the gain factor k is then progressively increased and the inductor current is carefully
monitored. When two consecutive periods differ it is decided that the system enters bifurcation
and the corresponding value of k is retained. Figure 12 presents the inductor current and output
voltage of the converter when the system goes from stable operation to bifurcation. It can be seen that
two consecutive periods are not identical as the two inductor current peak values begin to slightly
differ. The value of parameter k corresponding to this situation is k = 1.17, while the Matlab™ and
Caspoc™ programs both predict that bifurcation appears at k = 1.16. Obviously, the relative error
between the simulation and experiment is very low, equal to 0.94%. The error sources come from the
fact that nonideal devices parameters, such as Ron and VD are not exactly known as only the catalog
values were used and the series resistance of the inductor and capacitor were neglected. Other error
sources are of course given by the equipment used but these are lower compared to those mentioned
above. Thus the experimental result accurately validates the theoretical method proposed.

Energies 2018, 11, x FOR PEER REVIEW  15 of 26 

 

 
Figure 9. Schematic of the experimental boost DCM converter employing proportional voltage-mode 
control. 

 
Figure 10. Set signal and reset signals of IC4, inductor current and output voltage waveform (this up 
to down order) for k = 1.08. Stable operation can be remarked. Figure 10. Set signal and reset signals of IC4, inductor current and output voltage waveform (this up

to down order) for k = 1.08. Stable operation can be remarked.
Energies 2018, 11, x FOR PEER REVIEW  16 of 26 

 

 
Figure 11. Phase portrait for k = 1.08, confirming stable operation. 

 
Figure 12. Inductor current and output voltage waveforms for k = 1.17. Notice that the peak inductor 
current values start to slightly differ in two consecutive periods and the period of the inductor current 
doubles compared to stable operation. 

Figure 11. Phase portrait for k = 1.08, confirming stable operation.



Energies 2018, 11, 663 16 of 25

Energies 2018, 11, x FOR PEER REVIEW  16 of 26 

 

 
Figure 11. Phase portrait for k = 1.08, confirming stable operation. 

 
Figure 12. Inductor current and output voltage waveforms for k = 1.17. Notice that the peak inductor 
current values start to slightly differ in two consecutive periods and the period of the inductor current 
doubles compared to stable operation. 

Figure 12. Inductor current and output voltage waveforms for k = 1.17. Notice that the peak inductor
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Further increasing the gain will reveal a more evident bifurcation. For example, in Figure 13
inductor current and output voltage are depicted for k = 1.20. The period of the system is clear half of
the switching period (period 2 subharmonic) and the phase portrait enfaced in Figure 14 is typical for
a period 2 bifurcation system.
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A higher value of the gain will lead the converter into chaos. This situation is presented in
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8. Input Voltage as a Bifurcation Parameter

In practice also the input voltage and the load resistance could affect the stability and the
bifurcation behavior of a dc-dc. For this reason and in order to additionally prove the validity
of the proposed method, a bifurcation analysis was carried out in the situation when the bifurcation
parameter is the input voltage Vg. The value of the gain k is now kept constant and equal to 1.

In Table 2 the characteristic multipliers are depicted as the input voltage is gradually increased.
It can be seen that when Vg equals 17.125 V the bifurcation occurs. The Matlab program is in

Appendix B.
Then the behavior of the converter was verified by Caspoc simulation. In Figure 16 the bifurcation

diagram is presented, revealing the theoretical value of 17.045 V, marked with the red circle on the
graph as the bifurcation threshold. In the small table below the Figure 16 the values in the column
denoted by y represent voltage of the power supply and the output voltage values respectively,
when the bifurcation appears. This value is in very good agreement with the theoretical one of 17.125
V (marked in the Table 2 with bold characters), with a relative error of 0.46%.

Finally the phenomena were experimentally confirmed. In Figure 17 the main waveforms and the
phase portrait are presented for the situation of an input voltage of 16.5 V. This corresponds to a stable
operation as the figure clearly presents.

Table 2. Characteristic multipliers of the boost converter for increasing values of the voltage Vg.
The bold value in the first column denotes the threshold when bifurcation occurs.

Voltage Vg Eingenvalue l1 Eingenvalue l2 Remark

16.6000 −0.8623 0.0000 stable
16.8000 −0.8983 0.0000 stable
17.0000 −0.9751 0.0000 stable
17.1250 −1.0000 0.0000 Bifurcation
17.2000 −1.0138 0.0000 Bifurcation
17.4000 −1.0572 0.0000 Bifurcation
17.6000 −1.1040 0.0000 Bifurcation
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In Figure 18 the behavior for an input voltage of 17.2 V, higher than the bifurcation threshold is
depicted. The bifurcation phenomenon is obvious. Further increase of the input voltage will drive the
system into chaos, as Figure 19 presents for an input voltage equal to 17.8 V.
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Figure 19. Chaotic operation of the converter corresponding to Vg = 17.80 V.

Hence it can be concluded that the proposed method is valid, powerful and with a high degree
of generality.

9. Conclusions

A new mathematical method for analyzing and predicting bifurcation behavior of DCM operated
dc-dc converters is proposed. Compared to other methods this new approach performs exact
calculation, without truncating any state matrix and thus correctly analyzing all the waveforms
that in most of the approaches are approximated to be piecewise linear. On the other side, the new
method is general, in the sense that it can be applied to any converter topology employing different
types of control by simply changing only the matrices that describe the state-space model and one
constraint equation. The proposed algorithm can be easily absorbed by any mathematical program
that is able to calculate the matrix exponential. The method provides excellent accuracy, better than any
other previous reported approach. The experimental results confirmed the perfect agreement between
theory and practice. The proposed technique can also be used to exactly predict the parameter values
that determine the operation at the border between DCM and CCM and thus to practically provide
exact prediction of border collision. The method is different from those in [1,2,9,12,15] and can be also
successfully applied both to uniform sampling and to different control techniques [15] employing
CCM or other discontinuous modes, such as discontinuous capacitor voltage mode (DCVM) [18,19].
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Appendix A

BOOST_DCM.m
% Bifurcation and Chaos in DCM Boost Switching Regulators;
clear all; close all; clc;
% Declare symbolic variables
syms k x t Ron Vg D H R Rc C L T ;
format long
I=eye(2);Vexi=[1 0];Vexv=[0 1]; Vu=3.5; Vl=0.7;Vref=22;
Vg=16; C=220e-6; T=1000/3*1e-6; R=78; L=1.209e-3;Ron=0.2; Vd=0.4;U=[Vg;Vd];%
% Define de state and other necessary matrices and vectors
A1=[-Ron/L 0 ; 0 -1/(R*C)]; B1=[1/L 0; 0 0];
A2=[0 -1/L; 1/C -1/(R*C)];B2=[1/L -1/L; 0 0];
A3=[0 0 ; 0 -1/(R*C)]; B3=[0 0;0 0];
k=1.1588; incr=0.0001; lambda=zeros(2);
while abs(lambda(1))<1 && abs(lambda(2))<1 % test whether both characteristic multipliers lie inside
the unit circle

% Determine the steady state solution for the duty cycles
DandH=fsolve(@(x) f_sistem(x,k,t),[0.4;0.1]);
D=DandH(1,1);H=DandH(2,1);
% Calculate the actual matrices
Phi1=expm(A1*D*T); Psi1=A1\(Phi1-I)*B1; %see system (3)
Phi2=expm(A2*H*T); Psi2=A2\(Phi2-I)*B2; %see system (3)
Phi3=expm(A3*(1-D-H)*T); Psi3=eval(expm(A3*T)*int(expm(-A3*t)*B3, t,(D+H)*T,T));%see

system (3)
% Calculate the actual steady-state state vector
X=(I-Phi3*Phi2*Phi1)\((Phi3*Phi2*Psi1+Phi3*Psi2+Psi3)*U);%see Eq.6
% Evaluate de partial derivatives
dgdxn = Phi3*Phi2*Phi1;% see Eqn (26)
dgddn = T*Phi3*(Phi2*Phi1*A1-A3*Phi2*Phi1)*X+T*Phi3*(Phi2*Phi1*B1-A3*Phi2*Psi1-A3*Psi2-B3)*U;

% see Eqn (27)
dgdhn = T*Phi3*(Phi2*A2-A3*Phi2)*Phi1*X+T*Phi3*((Phi2*A2-A3*Phi2)*Psi1+Phi2*B2-A3*Psi2-B3)*U;

% see Eqn (28)
dF1dxn = -k*Vexv*Phi1; % see Eqn (29)
dF1ddn = -k*T*Vexv*(A1*Phi1*X+Phi1*B1*U)-(Vu-Vl); % see Eqn (30)
dF1dhn = 0; %see Eqn (31)
dF2dxn = Vexi*Phi2*Phi1; %see Eqn (32)
dF2ddn = T*Vexi*Phi2*Phi1*(A1*X+B1*U);%see Eqn (33)
dF2dhn = T*Vexi*Phi2*(A2*Phi1*X+(A2*Psi1+B2)*U); %see Eqn (34)
% Calculate Jacobian (see Eqn (24))
JFX=dgdxn+dgddn*(dF1dhn*dF2dxn-dF1dxn*dF2dhn)/(dF1ddn*dF2dhn-dF1dhn*dF2ddn)

+dgdhn*(dF1dxn*dF2ddn-dF1ddn*dF2dxn)/(dF1ddn*dF2dhn-dF1dhn*dF2ddn);
% Calculate the characteristic multipliers
lambda=eig(JFX)
lambda=abs(lambda);
k=k+incr
D,H

end
% Display the duty cycles, state vector, absolute value of characteristic

% multipliers and the critical value of the bifurcation parameter
lambda
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k=k-incr, D, H, X

Function: f_system.m

function F=f_sistem(x,k,t)
I=eye(2);Vexi=[1 0];Vexv=[0 1];Vref=22;Vu=3.5; Vl=0.7;
Vg=16; C=220e-6; T=1000/3*1e-6; R=78; L=1.209e-3;Ron=0.2; Vd=0.4;U=[Vg;Vd];%
A1=[-Ron/L 0 ; 0 -1/(R*C)]; B1=[1/L 0; 0 0];
A2=[0 -1/L; 1/C -1/(R*C)];B2=[1/L -1/L; 0 0];
A3=[0 0 ; 0 -1/(R*C)]; B3=[0 0;0 0];
D=x(1);
H=x(2);
Phi1=expm(A1*D*T); Psi1=A1\(Phi1-I)*B1; %see system (3)
Phi2=expm(A2*H*T); Psi2=A2\(Phi2-I)*B2; %see system (3)
Phi3=expm(A3*(1-D-H)*T);Psi3=expm(A3*T)*int(expm(-A3*t)*B3, t,(D+H)*T,T);%see system (3)
F=zeros(2,1); % vector initialization
X=(I-Phi3*Phi2*Phi1)\((Phi3*Phi2*Psi1+Phi3*Psi2+Psi3)*U); %see Eq.6 %
F(1)=k*(Vref-Vexv*(Phi1*X+Psi1*U))-Vl-(Vu-Vl)*D; % see Eq.18
F(2)=Vexi*(Phi2*Phi1*X+(Phi2*Psi1+Psi2)*U);%see Eq.21
end

Appendix B

% Bifurcation and Chaos in DCM Boost Switching Regulators with the input voltage as a
bifurcation parameter

clear all; close all; clc;
% Declare symbolic variables
syms k x t Ron Vg D H R Rc C L T ;
format long
I=eye(2);Vexi=[1 0];Vexv=[0 1]; Vu=3.5; Vl=0.7;Vref=22;
C=220e-6; T=1000/3*1e-6; R=78; L=1.209e-3;Ron=0.2; Vd=0.4;U=[Vg;Vd];k=1;%
% Define de state and other necessary matrices and vectors
A1=[-Ron/L 0 ; 0 -1/(R*C)]; B1=[1/L 0; 0 0];
A2=[0 -1/L; 1/C -1/(R*C)];B2=[1/L -1/L; 0 0];
A3=[0 0 ; 0 -1/(R*C)]; B3=[0 0;0 0];

Vg=16.8; incr=0.001; U=[Vg;Vd]; lambda=zeros(2);
while abs(lambda(1))<1 && abs(lambda(2))<1 % test whether both characteristic multipliers lie inside
the unit circle

% Determine the steady state solution for the duty cycles
DandH=fsolve(@(x) f_sistem_Vg(x,Vg,t),[0.4;0.1]);
D=DandH(1,1);H=DandH(2,1);
% Calculate the actual matrices
Phi1=expm(A1*D*T); Psi1=A1\(Phi1-I)*B1; %see system (3)
Phi2=expm(A2*H*T); Psi2=A2\(Phi2-I)*B2; %see system (3)
Phi3=expm(A3*(1-D-H)*T); Psi3=eval(expm(A3*T)*int(expm(-A3*t)*B3, t,(D+H)*T,T));%see

system (3) % Calculate the actual steady-state state vector
X=(I-Phi3*Phi2*Phi1)\((Phi3*Phi2*Psi1+Phi3*Psi2+Psi3)*U); %see Eq.6
% Evaluate de partial derivatives
dgdxn = Phi3*Phi2*Phi1;% see Eqn (26)
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dgddn = T*Phi3*(Phi2*Phi1*A1-A3*Phi2*Phi1)*X+T*Phi3*(Phi2*Phi1*B1-A3*Phi2*Psi1-A3*Psi2-B3)*U;
% see Eqn (27)

dgdhn = T*Phi3*(Phi2*A2-A3*Phi2)*Phi1*X+T*Phi3*((Phi2*A2-A3*Phi2)*Psi1+Phi2*B2-A3*Psi2-B3)*U;
% see Eqn (28)

dF1dxn = -k*Vexv*Phi1; % see Eqn (29)
dF1ddn = -k*T*Vexv*(A1*Phi1*X+Phi1*B1*U)-(Vu-Vl); % see Eqn (30)
dF1dhn = 0; %see Eqn (31)
dF2dxn = Vexi*Phi2*Phi1; %see Eqn (32)
dF2ddn = T*Vexi*Phi2*Phi1*(A1*X+B1*U);%see Eqn (33)
dF2dhn = T*Vexi*Phi2*(A2*Phi1*X+(A2*Psi1+B2)*U); %see Eqn (34)
% Calculate Jacobian (see Eqn (24))
JFX=dgdxn+dgddn*(dF1dhn*dF2dxn-dF1dxn*dF2dhn)/(dF1ddn*dF2dhn-dF1dhn*dF2ddn)

+dgdhn*(dF1dxn*dF2ddn-dF1ddn*dF2dxn)/(dF1ddn*dF2dhn-dF1dhn*dF2ddn);
% Calculate the characteristic multipliers
lambda=eig(JFX)
lambda=abs(lambda);
Vg=Vg+incr
D,H

end
% Display the duty cycles, state vector, absolute value of characteristic
% multipliers and the critical value of the bifurcation parameter

lambda
Vg=Vg-incr, D, H, X

function F=f_sistem(x,Vg,t)
I=eye(2);Vexi=[1 0];Vexv=[0 1];Vref=22;Vu=3.5; Vl=0.7;
k=1; C=220e-6; T=1000/3*1e-6; R=78; L=1.209e-3;Ron=0.2; Vd=0.4;U=[Vg;Vd];%
A1=[-Ron/L 0 ; 0 -1/(R*C)]; B1=[1/L 0; 0 0];
A2=[0 -1/L; 1/C -1/(R*C)];B2=[1/L -1/L; 0 0];
A3=[0 0 ; 0 -1/(R*C)]; B3=[0 0;0 0];
D=x(1);
H=x(2);
Phi1=expm(A1*D*T); Psi1=A1\(Phi1-I)*B1; %see system (3)
Phi2=expm(A2*H*T); Psi2=A2\(Phi2-I)*B2; %see system (3)
Phi3=expm(A3*(1-D-H)*T);Psi3=expm(A3*T)*int(expm(-A3*t)*B3, t,(D+H)*T,T);%see system (3)
F=zeros(2,1); % vector initialization
X=(I-Phi3*Phi2*Phi1)\((Phi3*Phi2*Psi1+Phi3*Psi2+Psi3)*U); %see Eq.6 %
F(1)=k*(Vref-Vexv*(Phi1*X+Psi1*U))-Vl-(Vu-Vl)*D; % see Eq.18
F(2)=Vexi*(Phi2*Phi1*X+(Phi2*Psi1+Psi2)*U);%see Eq.21
end
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Nomenclature

Main Symbols

Ai, Bi State matrices
VD Diode voltage
vsaw Sawtooth signal
Ri Resistor
k Gain
Vref Reference voltage
VU, VL The peak and the valley value of the sawtooth signal
q(t) Transistor switching function
vL(t) Inductor voltage
vc(t) Output voltage
iL(t) Inductor current
dn Duty cycle
hnT Second state
(1 − dn − hn)T Third state
u(t) Input vector
D Dc duty cycle
H Dc on state of diode
X Steady state vector
U Dc input vector
Vg Input voltage
T, Tn, Tn + 1 Switching period
Vexv Extracts the capacitor voltage from state vector
C Capacitor
L Inductor
Ron Transistor on resistance
Pi Potentiometer
Vg Second state and the third state respectively
x(t) State vector
Vout Output voltage

Abbreviations

PWM Pulsed width modulated
ICi Integrated circuits
OP Operating point
SUB Substract
MUL Multiplicator
SIGNAL Signal generator
TIME Clock signal
SPL Sample and Hold
DCM Discontinuous conduction mode
CCM Continuous conduction mode
CMPT Current-mode pulse train
LTI Linear time invariant

Greek Symbols

ϕi, Ψi Transfer matrices
λ Eigenvalue
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