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Abstract: Although a multi-stage hydraulically fractured horizontal well in a shale reservoir initially
produces gas at a high production rate, this production rate declines rapidly within a short period
and the cumulative gas production is only a small fraction (20–30%) of the estimated gas in
place. In order to maximize the gas recovery rate (GRR), this study proposes a multi-parameter
optimization model for a typical multi-stage hydraulically fractured shale gas horizontal well. This is
achieved by combining the response surface methodology (RSM) for the optimization of objective
function with a fully coupled hydro-mechanical FEC-DPM for forward computation. The objective
function is constructed with seven uncertain parameters ranging from matrix to hydraulic fracture.
These parameters are optimized to achieve the GRR maximization in short-term and long-term gas
productions, respectively. The key influential factors among these parameters are identified. It is
established that the gas recovery rate can be enhanced by 10% in the short-term production and
by 60% in the long-term production if the optimized parameters are used. Therefore, combining
hydraulic fracturing with an auxiliary method to enhance the gas diffusion in matrix may be an
effective alternative method for the economic development of shale gas.

Keywords: shale gas reservoir; multi-scale flow; multi-parameter optimization; response surface
methodology (RSM); gas recovery rate (GRR)

1. Introduction

As shale gas reservoirs typically have extremely low permeability, their flow behaviors are very
different from those in conventional gas reservoirs. The commercial development of shale gas has been
driven by three key advances in technology and science: (1) horizontal well plus multi-stage hydraulic
fracturing [1–6], (2) the understanding of gas storage mechanisms [1], and (3) the understanding
of multi-scale mechanisms of gas flows from shale matrix to hydraulic fracture [7–10]. A shale gas
reservoir has free gas stored in matrix pores and natural fractures, and adsorbed gas on the organic
matter [11,12]. The original free and desorbed gases flow from matrix to natural fractures, then to
hydraulic fractures and finally to the horizontal well. The gas flow shows significant multi-scale
characteristics [7] and is significantly affected by the uncertainties of many reservoir parameters for
matrix, natural fractures, and hydraulic fractures. Therefore, an optimal set of these parameters is
expected to maximize the gas recovery rate from a shale gas reservoir.

Sensitive analysis and optimal design for a shale gas reservoir have been conducted by researchers
to maximize the ultimate gas recovery. However, most of the optimal designs are achieved through
local-sensitivity analysis where one variable is usually changed while keeping all other variables
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fixed [3,11–14]. Such optimizations cannot provide sufficient insights in screening insignificant
parameters and considering parameter interactions to obtain the optimal design [2]. In addition,
most of reservoir simulations usually ignore the impact of geomechanics on ultimate gas recovery,
and the effect of doing this on gas recovery enhancement has not been well evaluated so far.

Multi-parameter optimization is an essential tool for shale reservoir design. For a problem with
strong non-linearity and noise including discontinuity and non-differentiability in functions, direct
optimal search methods, such as Genetic Algorithm (GA) and Polytope Algorithm (PA), have been
successful in finding reliable optimum solutions. The convergence of these methods is however usually
slow [15,16]. Holt [17] estimated the optimal layout and stages of hydraulic fractures along a horizontal
wellbore by using three gradient-based optimization algorithms. He compared the ensemble-based
optimization, the simultaneous perturbation stochastic approximation and finite-difference estimation
of gradient, and subsequently recommended a particle swarm optimization or genetic algorithm
instead of gradient-based algorithms for the optimization of hydraulic fracture spacing. Ma et al. [18]
estimated the optimal hydraulic fracture placement by using the gradient-based finite difference
method (FDM), discrete simultaneous perturbation stochastic approximation (DSPSA), and genetic
algorithm. They concluded that both DSPSA and GA are more efficient than the gradient-based
method. Li et al. [19] applied a dynamic simplex interpolation-based alternate subspace (DSIAS)
search method for the mixed integer optimization problems associated with shale gas development
projects. Rammay and Awotunde [20] simultaneously optimized the hydraulic fracture conductivity,
fracture length, fracture spacing and horizontal well. Therefore, many algorithms have been proposed
for the sensitivity analysis and optimal design for the enhancement of shale gas recovery. However,
no satisfactory algorithm is available for the optimal design to identify the significant factors
influencing shale gas production.

Response surface methodology (RSM) is an efficient statistical method for the evaluation and
optimization of complex processes through controllable forward model computations [21]. RSM is
very popular in physical and chemical experiment designs and optimizations for experimental cost
reduction. Combining RSM with numerical reservoir simulations is an alternative optimization method
for multi-stage hydraulically fractured horizontal well. Yu and Sepehrnoori [2,21] employed RSM and
an economic model to optimize the design parameters such as permeability, porosity, fracture spacing,
fracture half-length, fracture conductivity and well distance. They optimized the combinations of these
parameters under different gas prices. Wang et al. [22,23] also used RSM to investigate the sensitivities
of seven parameters including structural parameters, geomechanical parameters, in-situ field stress
parameter (stress difference) and operational parameter (injection rate) on maximizing stimulated
reservoir volume (SRV). Their studies proved the feasibility of RSM in shale gas production and
hydraulic fracturing modeling. However, they did not consider the local stress-sensitive multi-scale
gas flow mechanisms during the shale gas recovery enhancement.

In the present study, a multi-parameter optimization model is proposed based on the coupling
of RSM with a fully coupled model to evaluate the efficiency of shale gas recovery. An optimization
algorithm will be introduced for multi-stage hydraulically fractured shale gas horizontal wells.
This algorithm combines the RSM for objective optimization and the fully coupled hydro-mechanical
fracture equivalent continuum-dual porosity model (FEC-DPM) for forward computations [14]. The gas
recovery rate (GRR) which is defined as the ratio of cumulative gas production and total mass of gas
in reservoirs at the initial condition is used as the objective function. Seven reservoir parameters are
chosen as decision variables. Design of experiments (DoE) based on an I-optimal method is applied
to obtain the reasonable group of runs. The short-term (2 years) and long-term (30 years) GRRs are
set as two objective functions. Furthermore, the sensitivities of the seven variables are quantitatively
and synchronously evaluated. These results may be helpful in the choice and design of variables or
parameters to maximize GRRs, thus providing a guide for the exploration and development of shale
gas reservoirs.
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2. Optimization Method and Objective Function Setting

2.1. Design of Experiments

DoE is a systematic method used to determine the relationship between uncertain factors affecting
a process and the response of that process. It has been used to evaluate statistically the significance of
different factors at the lowest experimental cost [21]. Figure 1 presents the numerical model used in
this computation, where seven uncertain parameters are indicated from the shale matrix to hydraulic
fracture such as matrix apparent diffusivity (A), initial NF aperture (B), NF density (C), NF orientation
(D), initial HF conductivity (E), HF half-length (F) and HF spacing (G). NF and HF stand for natural
fracture and hydraulic fracture, respectively. Their reasonable ranges with the actual maximum and
minimum values or coded symbol of “−1” and “+1,” respectively, are listed in Table 1. According to
these seven variables and their ranges, a series of cases are obtained based on the approach of I-optimal
design, which is originated from the optimal design theory. Optimal design is a good design choice
when central composite design (CCD) and Box-Behnken design (BBD) do not fit our needs. We can
specify the model we wish to fit, add multi-linear constraints, add center points, etc. Unlike the CCD
and BBD designs, where there is a specific pattern to the design points, points in these designs are
chosen by an algorithm. Because of this point selection process and the fact that there are often many
statistically equivalent sets of design points, it is possible to obtain slightly different designs for the
same factor and model information. I-optimal algorithm chooses runs that minimize the integral of
the prediction variance across the factor space. Thus, I-optimal criterion is recommended to build the
response surface designs where the goal is to optimize the factor settings, requiring greater precision
in the estimated model.

Table 2 shows the 46 combinations of these uncertain parameters generated by the I-optimal design.
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Figure 1. Numerical model of multi-stage hydraulically fractured shale reservoir horizontal well.

Table 1. Optimization parameter in this study.

Parameters Coded Symbol Minimum
(−1)

Maximum
(+1) Unit

Matrix diffusivity A 1 50 10−8 m2/s
Initial NF aperture B 10 20 µm

Density of NF C 0.001 0.005 fraction
Orientation of NF D 10 80 degree

Initial HF conductivity E 0.1 10 µm2·cm
HF half-length F 40 120 m

HF spacing G 40 100 m
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Table 2. I-optimal design table.

Run A B C D E F G

1 50.00 10.00 0.001 10.00 2.38 40 40
2 42.65 10.00 0.001 80.00 0.10 40 100
3 50.00 10.00 0.005 80.00 10.00 120 40
4 19.87 10.00 0.001 80.00 5.20 120 40
5 17.42 10.00 0.005 10.00 3.86 100 40
6 50.00 17.00 0.005 42.20 0.10 40 40
7 1.00 15.08 0.001 50.60 6.04 40 70
8 16.93 20.00 0.004 56.20 10.00 80 100
9 2.23 12.65 0.004 47.80 8.52 120 70

10 28.56 20.00 0.001 80.00 0.10 40 40
11 1.00 10.00 0.005 80.00 10.00 40 100
12 50.00 16.90 0.001 56.55 0.10 100 70
13 28.20 20.00 0.002 10.00 0.64 60 70
14 27.71 14.75 0.001 33.80 10.00 80 40
15 50.00 10.00 0.004 49.55 5.10 80 100
16 1.00 20.00 0.005 80.00 0.10 40 70
17 44.12 20.00 0.005 55.15 0.10 40 100
18 50.00 20.00 0.005 80.00 0.25 120 100
19 2.23 12.65 0.004 47.80 8.52 120 70
20 50.00 20.00 0.001 10.00 10.00 40 100
21 1.00 16.35 0.002 13.50 0.10 120 40
22 15.70 13.40 0.004 17.00 2.08 40 100
23 15.70 13.40 0.004 17.00 2.08 40 40
24 30.79 10.00 0.003 43.95 10.00 40 70
25 48.53 14.02 0.001 24.35 5.57 80 100
26 1.00 15.08 0.001 50.6 6.04 40 70
27 1.00 19.70 0.004 10.00 10.00 40 40
28 17.17 18.10 0.005 74.05 5.20 100 40
29 20.36 18.90 0.001 10.00 6.49 120 100
30 48.78 16.75 0.003 80.00 6.83 60 70
31 50.00 20.00 0.003 29.25 5.99 120 40
32 1.00 20.00 0.001 80.00 10.00 120 40
33 1.00 10.00 0.002 10.00 10.00 80 100
34 2.23 16.70 0.002 80.00 1.83 100 100
35 1.00 20.00 0.005 10.00 0.10 120 100
36 25.34 11.00 0.002 10.00 0.30 80 70
37 50.00 20.00 0.001 80.00 0.84 40 100
38 50.00 10.00 0.003 10.00 9.26 120 40
39 1.00 10.00 0.001 25.40 0.10 120 100
40 44.12 12.53 0.001 80.00 10.00 120 100
41 1.00 10.00 0.004 73.00 0.10 60 40
42 30.79 10.00 0.003 43.95 10.00 40 40
43 50.00 13.50 0.003 10.00 0.10 120 100
44 32.85 10.50 0.005 80.00 0.10 120 70
45 46.08 16.80 0.005 10.00 10.00 80 70
46 48.78 16.75 0.003 80.00 6.83 60 40

2.2. Response Surface Methodology

Response surface methodology applies regression models, experiment design methods, and other
techniques to understand the behavior of the responses of the system. Developing a regression model
for each response can have linear, quadratic and two factor interaction regression models for sequential
F-tests, lack-of-fit tests, and R-square value. For a selected regression model, the significance of each
factor (linear, quadratic and interaction terms) is examined by the analysis of variance (ANOVA).
Insignificant factors are then discarded and the proposed models are used for the response predictions.
RSM can offer a cost-effective and efficient way to manage the uncertainties for shale gas reservoir
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development. More details on the mathematical and statistical theories of RSM can be found in the
reference [24].

The flow chart for the framework of RSM and FEC-DPM coupling is shown in Figure 2. The main
steps of this framework are listed: firstly, determine the objective function and identify the settings
for the uncertain factors; secondly, select DoE to generate simulation cases and run all simulations
according to FEC-DPM; thirdly, export simulation results for calculating objective function GRR;
fourthly, perform statistical analysis to obtain the response-surface model; and finally, perform further
optimization to obtain the maximum GRR. On the selection of an appropriate model, statistical
approach is used to decide which polynomial fits the equation with a linear model, two-factor model
interaction model (2FI), fully quadratic model, or cubic model. The criterion for this selection is to
choose the highest polynomial model, where additional terms are significant and the model is not
aliased. In addition, other criteria are required for the model selection such as the maximum “Adjusted
R-Squared” and “Predicted R-Squared”.
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Figure 2. Flow chart of framework for RSM optimization of gas production.

2.3. Objective Function

The objective function for the optimization of a multi-stage hydraulically fractured horizontal
well can be:

• Maximize cumulative gas production
• Minimize treatment cost
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In this study, we aim at finding the optimal combination of seven parameters for cumulative gas
production. The treatment cost is not in consideration. Therefore, the objective function is:

U∗ = argmax(J(U)) (1)

The objective function GRR is defined as the ratio between cumulative gas production and the
total mass of gas in reservoirs at the initial condition:

GRR =
CGP

VRψ(pi)/ρga
× 100% (2)

where CGP is the cumulative gas production, ψ(pi) is the initial total gas mass in shale gas reservoir
including the adsorbed gas in matrix and the free gas in matrix and natural fractures:

ψ(pi) =

(
φ f + φm − (1− φm)

ρga

ρads

VL pi
pi + PL

)
Mpi
ZRT

+
(

1− φm − φ f

)
ρga

VL pi
pi + PL

(3)

The gas recovery rate is a function of multi-parameters such as matrix apparent diffusivity, initial
NF aperture, NF density, NF orientation, initial HF conductivity, HF half-length and HF spacing.
The objective is to find a combination of these parameters to achieve the maximum GRR.

3. Brief Description of Numerical Forward Model for Shale Gas Reservoir Simulations

3.1. Fully Coupled Hydro-Mechanical FEC-DPM

3.1.1. Reservoirs Deformation

For fractured reservoirs, the total elastic compliance tensor Te
ijkl of each cell is contributed by both

fractures and matrix as:
Te

ijkl = Me
ijkl + Ce

ijkl (4)

where Me
ijkl is the isotropic elastic compliance tensor at each cell, and Ce

ijkl is the anisotropic compliance
tensor from the fractures at each cell. The FEC-DPM considers the effect of fractures on the deformation
through an equivalent elastic compliance tensor at each cell. As such, each cell has its own elastic
compliance tensor (a symmetric 6 × 6 matrix) of 21 independent components. These components are
related to the normal stiffness, the shear stiffness, and the orientation of truncated fractures in this cell.

Generally, the deformation equation of FEC-DPM is expressed as:

∇ ·
[

D(cell, Kn, Ks) :
(
∇u +∇Tu

2

)]
+ αBI∇pm + F = 0 (5)

3.1.2. Gas Flow in Matrix

The gas flow in shale matrix is governed by a pseudo-steady diffusion equation [14]:

AA
∂pm

∂t
= FsDapp

ZRT
Mg

[
ψ(pm)− ψ

(
p f

)]
− BB

∂εv

∂t
(6)

where:
AA =

[
pm +

ρga
ρads

VL p2
m

pm+PL
− paVL pm

pm+PL

]
αB−φm0

Ks(1+εv−εv0+(pm−pm0)/ks)
2 + (1− φm)[

φm
1−φm

+ paVLPL

(pm+PL)
2 −

ρga
ρads

VL p2
m−2PLVL pm

(pm+PL)
2

] (7)

BB =

[
pm +

ρga

ρads

VL p2
m

pm + PL
− paVL pm

pm + PL

]
αB − φm0

(1 + εv − εv0 + (pm − pm0)/ks)
2 (8)
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where Fs is the shape factor to reflect the geometry of the matrix elements, which controls the
gas exchange between matrix and fracture and depends on the truncated fractures in the matrix
element [25].

3.1.3. Gas Flow in Natural Fracture Network

The governing equation for gas flow in the natural fracture network is written as:

∂
(

φ f ρ f

)
∂t

+∇
(
−ρ f

Kij(cell, σ′n, τn)

µ
∇p f

)
= FsDapp

[
ψ(pm)− ψ

(
p f

)]
(9)

where Kij is the permeability tensor in whole domain, which is the integration of all Ke
ij of cells:

Ke
ij =

1
12

λ
(

Pkkδij − Pij
)

(10)

where tensor Pij is related to the fracture geometry intersecting this cell in a 2D problem and is given by:

Pij =
1
Se

NFIE

∑ lew3
f ninj (11)

where λ is a correction factor for the single parallel plate fracture model which is related to the fracture
tortuosity and surface roughness. In this study, λ = 1. lewf/Se is a dimensionless factor for the revision
of equivalent flux. The permeability tensor over the entire flow domain is obtained by adding the
permeability tensor of every fracture to the cell truncated by the fracture. It is noted that the Ke

ij is
overestimated by Equation (10) and should be modified by a flow-based DFM method [14].

The evolution of natural fracture aperture with stress is given in the following piecewise function
after considering both normal closure and shear dilation:

w f = w f 0 − δn + δdil =


w f 0 − σ′nδm

σ′n+Kn0δm
τn < τc & σ′n > 0

w f 0 − σ′nδm
σ′n+Kn0δm

+
(τn−τc) tan φ

e f f
dil

Ks1
τc < τn ≤ τp &σ′n > 0

w f 0 − σ′nδm
σ′n+Kn0δm

+
(τn−τp) tan φ

e f f
dil

Ks2
τn > τp & σ′n > 0

(12)

3.1.4. Gas Flow in Hydraulic Fractures

The gas flow in a hydraulic fracture is modeled using directional derivatives along the fracture.
The governing equation of gas flow in a hydraulic fracture is:

wF
∂

∂t
(φFρF) +∇T ·

(
−ρF

kF
µ

wF∇T pF

)
= wFQm (13)

where ∇T denotes the gradient operator along the fracture. The gas pressure in the hydraulic fracture
is the dependent variable for solution.

3.2. Proppant-Pack Hydraulic Fracture Conductivity

The proppant-pack in the hydraulic fracture is critical to maintain fracture conductivity and
allow gas to flow through to the production well [26,27]. The hydraulic fracture filled with proppant
packs is a composite fracture. Its permeability depends on the fracture properties (aperture, intensity,
tortuosity, connectivity etc.), the proppant pack properties (concentration, size and stiffness), and their
interactions (proppant embedment) [28,29]. The compaction of the proppant pack under the confining



Energies 2018, 11, 654 8 of 29

stresses of the reservoir leads to a reduction in the porosity of the proppant pack. The porosity, ϕF, of
the proppant pack can be expressed as:

φF =
Vp

Vb = 1− Vs

Vb = 1− Vb0

Vb (1− φF0) = 1− wF0

wF
(1− φF0) (14)

The compressive behavior of proppant pack, the non-linear relationship between σe and wF, is
described using the Terzaghi’s one-dimensional consolidation theory [30]. Fracture conductivity is
significantly reduced in the shale formations if severe proppant embedment occurs. The relationship
between the deformation of the proppant pack and the compressive stress acting on the proppant pack
can be written as:

wF = wF0 − CwF0 ln
(

σe

σe0

)
− ησe

λ (15)

For a proppant pack, the Kozeny–Carman equation is used to describe the relationship between
permeability and porosity [30]. The shale flakes induced by proppant embedment and broken parts of
proppants affect and clog seepage channels. This modifies the ratio of the residual permeability of the
proppant pack (after compaction) to the initial permeability (before compaction). A crushing rate η of
proppants is introduced into the Kozeny–Carman equation as:

kF
kF0

= (1− η)

(
φF
φF0

)3(1− φF0

1− φF

)2
(16)

Figure 3 presents the curve fitting of this formula to experimental data.
Further, the fracture conductivity is defined as the product of fracture width and fracture

permeability, an important index to evaluate the effect of fracturing:

Fc = wFkF (17)
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3.3. Model Setup and Numerical Implementation Procedure

The computational domain of the gas reservoir with discrete fracture network is 1500 m× 600 m in
the horizontal plane and 100 m in the vertical direction (see Figure 1). The reservoir is located at 2000 m
deep. The horizontal well length is 1000 m and locates at the center of the reservoir. The transverse
hydraulic fractures, which are perpendicular to the horizontal well, are evenly distributed along the
horizontal wellbore. The domain is divided into 2250 square cells (each cell is 20 m × 20 m) to overlap
both fractures and matrix. The finite elements are coincident with the square cells, thus also containing
2250 elements.

For rock deformation, top and right boundaries are subjected to in-situ stress. They are in
maximum and minimum (horizontal) stress directions, respectively. Bottom and left boundaries are
fixed in the normal direction. The initial displacement in the whole domain is set as zero. For the gas
flow in natural fractures and matrix, the initial reservoir pressure is pi. No flux is applied along all
external boundaries. The internal boundaries represent hydraulic fractures and their flow is described
by Equation (13). The pressures at the intersection points between all hydraulic fractures and the
horizontal wellbore are all given as constant pw. All computational parameters are summarized in
Table 3.

The fully coupled hydro-mechanical FEC-DPM is implemented by solving the nonlinear partial
differential equations of Equations (4)–(17) and the corresponding constitutive laws. A finite element
code is developed within the platform of COMSOL Multiphysics with MATLAB (a commercial partial
differential equations solver). Firstly, the information of discrete fractures (fracture density, trace length,
initial aperture, and orientation) is generated based on the Monte-Carlo method. Secondly, both initial
(stress free) elastic compliance tensor and permeability tensor are calculated for each cell. These two
tensors consider both geometrical and mechanical properties of each fracture within this cell. Thirdly,
the governing equations for the rock deformation of Equation (5), for the gas flow of Equations (6)
and (9) in matrix and natural fracture domain, and for the gas flow of Equation (13) along a hydraulic
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fracture are simultaneously solved by COMSOL Multiphysics with MATLAB. It is noted that the
equation for the gas flow in a hydraulic fracture is implemented through a weak form in the code.
Both elastic compliance tensor and permeability tensor are expressed by a MATLAB script. The fracture
aperture, normal stiffness and shear stiffness (i.e., elastic compliance tensor and permeability tensor)
are updated based on the numerical results at the previous time step. A new fully coupled process
is restarted until the specified calculation time. At each time step, both gas production rate and
cumulative gas production are calculated. Finally, the objective function GRR is calculated according
to Equations (2) and (3).

Table 3. Computational parameters used in simulations.

Parameters Value

Model size, m 1500 × 600 × 100
Elastic modulus, E (GPa) 20.68
Solid bulk modulus, ks (GPa) 37.82
Poisson’s ratio, ν 0.25
Bulk density, ρ (kg/m3) 2400
Maximum horizontal stress, (MPa) 43.34
Minimum horizontal stress, (MPa) 39.01
Initial reservoir pressure, pi (MPa) 28.27
Bottom hole pressure, pw (MPa) 15
Biot coefficient, αB 0.64
Fracture shear stiffness, K f racture

s (GPa/M) 434
Initial normal stiffness, Kn0 (GPa/M) 434
Friction angle, (◦) 24.9
Dilation angle, (◦) 5
Methane dynamic viscosity, µ (Pa·s) 2.01 × 10−5

Reservoir temperature, T (K) 350
Langmuir pressure constant, PL (MPa) 10
Langmuir volume constant, VL (m3/m3) 10
Density of adsorbed gas in the organic pores, ρads (kg/m3) 370
Matrix porosity ϕm 0.04
Hydraulic fracture porosity ϕF 0.3

3.4. FEC-DPM Model Validation

In order to validate the reliability of this FEC-DPM forward computation model, the history
matching is conducted based the multi-stage fractured horizontal well in the Barnett shale reservoir.
The field data are taken from [33]. As shown in Figure 4a, the horizontal well includes four hydraulic
fractures. Hydraulic fracture maps (half-length) were obtained by geophones installed in offset
wells [33]. The initial reservoirs pressure is 26.2 MPa and the bottom-hole pressure is 10.3 MPa.
The parameters related the natural fractures are taken from [14,34] because they had not been reported
in [6,33]. Other simulation parameters can be found in Table 3. Figure 4b compares the field data
with calculated results by our FEC-DPM model, Yu et al.’s model [6], and Grieser et al.’s model [33].
Furthermore, the corresponding cumulative gas productions are obtained to analyze prediction error.
From Figure 4b, Yu et al. [6] almost perfectly predicted the gas production rate in the first three-year
production. However, according to the tendency of prediction curve, the gas production is highly
likely to be overestimated after three years production. In addition, Grieser et al. [33] overestimated
approximately 30% in the cumulative gas production after about 1900 days. This phenomenon may be
induced by two main reasons. One is that they did not consider the effect of geomechanics and the
other is that their models were single porosity models that did not well reflect the multi-scale gas flow
in shale gas reservoirs. Due to low diffusivity in matrix and a little free gas stored in natural fractures,
gas production rate showed a rapid decline. Our model included these mechanisms, and thus has a
more reasonable matching with field data in short-term and long-term gas productions.
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Figure 4. (a) Numerical model with four hydraulic fractures in the Barnett Shale and (b) history
matching for gas production rate and accumulative gas production.

4. Results and Discussions

Hydraulic fracturing in combination with horizontal drilling has had a profound impact on the
enhancement of gas recovery in low permeability formations. However, current extraction efficiency
is low. It has been observed that hydraulic fracturing treatments still leave behind 70–80% of the
estimated gas in place [7]. At the early stage of production, the methane in large fractures (hydraulic
fracture) and their adjacent natural fracture networks is released quickly, which leads to the rapid
initial decline in production [7]. Next, matrix block with high gas exchange rate that depends on the
distribution of natural fracture sustains the production at intermediate stage of production. The matrix
block with low gas exchange rate has a low diffusion and slow desorption process and contributes
to and controls long-term production. To understand parameter interaction from multi-scale flow
mechanisms further, we develop an optimization model considering stress sensitivity to characterize
the key phenomena involved in hydraulic fracturing and subsequent production. RSM combining with
present reservoir simulation model is not only an optimization method, but also a tool for parameter
sensitivity analysis.

4.1. Simulation Results

Fully coupled FEC-DPM and RSM techniques have been simultaneously employed to investigate
the shale gas horizontal well performance during production process and thus to optimize these
multi-scale parameters. As there are seven variables, 46 numerical simulations (or runs) are first
performed without consideration of geomechanics, and then additional 46 numerical simulations are
performed incorporating consideration of geomechanics. Figure 5 compares the GRR of each run
with and without geomechanics. The reduction in production due to considering geomechanics is
chaotic for different Runs. As shown in Table 2, each Run corresponds to a distribution of natural
fractures, which induces different stress redistribution during gas production. Moreover, the responses
of 46 Runs obtained by I-optimal method determined the fitted response surface. It is observed that
the fitted response surface without geomechanics is different from that with geomechanics. This may
induce different optimization results. In addition, the first three reductions in production are Run 7,
11 and 26. They are much bigger than others. From Table 2, the matrix apparent diffusivities reach
their minimum value in these three Runs. Therefore, the properties of natural fractures play the most
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important role for GRR and the GRR without geomechanics is higher. Furthermore, the production
reduction can reach 47%. On this sense, the effect of stress on gas production is significant and cannot
be ignored. Figure 6 compares the gas productions in short-term and long-term if the geomechanics
is considered. Their difference indicates that fitting equations are different for short- and long-term
gas productions. It is observed that for long-term production, Run 11 has the minimum GRR and Run
31 has the maximum GRR. The gas pressures in the matrix and fractures are shown in Figure 7 for
partial selected cases with various designs in Table 2. This figure shows that gas pressures in both
matrix and fractures significantly vary with the set of parameters. The gas pressure in the matrix
of Run 11 is much higher than that of Run 31. It is therefore reasonable to assume that there is a
close relationship between the distribution of matrix pressure and the hydraulic fracture properties
(conductivity, spacing, and half-length), natural fracture properties (orientation, density, and aperture).
The next section will explore this relationship employing the RSM method.
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4.2. Regression Model and Statistical Analysis

4.2.1. Fitting Equations

In this study, the Design-Expert software (Stat-Ease, Inc., Minneapolis, MN, USA) is employed
to build the GRR response surface model. The relationships of the objective functions with the seven
independent variables were explored by using the least squares regression. The polynomial models,
such as the linear model, the two-factor interaction model (2FI), the fully quadratic model, and the
cubic model, are statistically evaluated. The results for both short-term and long-term productions
are presented in Table 4. The response surface model is then used to select an appropriate model
which satisfies the following criterion: the highest polynomial model with additional significant terms
but not aliased. The cubic model has the highest polynomial model but is aliased. This means that
there are not enough unique design points to independently estimate all the coefficients for this model.
Using an aliased model will result in coefficients that are unstable and graphs that are not accurate.
Thus, the aliased model cannot be selected [2]. In addition, other criteria are applied to the selection of
model such as the maximum “adjusted R-squared” and “predicted R-squared”. The “Pred R-Squared”
is in reasonable agreement with the “Adj R-Squared”. The difference is less than 0.2 (see Table 4).
Thus, the fully quadratic model is finally selected to build the response surface in the subsequent
optimization process. In addition, the transformation of the response is an important component of
any data analysis. The transformation is needed if the error is a function of the magnitude of the
response (predicted values). Design-Expert (a statistical software package from Stat-Ease Inc.) provides
extensive diagnostic capabilities to check if the statistical assumptions underlying the data analysis are
met. Both models can be used to navigate the design space. In following two objective functions, square
root transformations are recommended. The

√
GRR response surface in the short-term production is

given by:

√
GRR = 1.54 + 0.60× A + 0.11× B + 0.068× C + 0.026× D + 0.10× E + 0.22× F

−0.075× G− 0.018× AB + 0.17× AC + 0.013× AD + 0.025× AE
+0.064× AF−0.034× AG + 0.039× BC + 0.066× BD + 0.053× BE
+0.014× BF + 0.02× BG−0.027× CD + 0.041× CE−0.018× CF
−0.033× CG + 0.022× DE + 2.816× 10−4 × DF− 0.041× DG + 0.046× EF
+0.076× EG− 0.04× FG−0.29× A2+0.085× B2+0.20× C2

−0.034× D2−0.19× E2−0.023× F2 + 0.071× G2

(18)

The
√

GRR response surface in the long-term production is given by:

√
GRR = 4.54 + 1.47× A + 0.31× B + 0.54× C + 0.09× D + 0.14× E + 0.41× F

−0.09× G + 0.063× AB + 0.16× AC− 0.052× AD + 0.051× AE
+0.11× AF− 0.08× AG + 0.11× BC + 0.20× BD + 0.18× BE
−1.812× 10−3 × BF− 2.745× 10−3 × BG + 0.025× CD + 0.047× CE
+0.14× CF− 0.099× CG + 0.13× DE−0.012× DF−8.547× 10−3 × DG
+0.082× EF + 0.059× EG− 0.077× FG−0.88× A2 + 0.19× B2−0.091× C2

−0.23× D2−0.36× E2+0.053× F2 + 0.053× G2

(19)

These equations can be used to predict the responses for given levels of individual factors.
By default, the high levels of the factors are coded as +1 and the low levels of the factors are coded
as −1. By comparing the factor coefficients, the coded equation is useful in identifying the relative
impact of the factors.
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Table 4. (a) Statistics approach to select the RSM model for short-term production. (b) Statistics
approach to select the RSM model for long-term production.

Source Std.
Dev. R-Squared Adjusted

R-Squared
Predicted

R-Squared PRESS Fit or Not

(a)

Linear 0.25 0.8495 0.8218 0.7799 3.38 -
2FI 0.26 0.9265 0.8054 −0.0031 15.40 -

Quadratic 0.065 0.9972 0.9874 0.8706 1.99 Suggested
Cubic 0.025 0.9999 0.9982 - - Aliased

(b)

Linear 0.51 0.8862 0.8653 0.8296 14.96 -
2FI 0.63 0.9235 0.7975 −0.3208 115.93 -

Quadratic 0.097 0.9989 0.9952 0.9485 4.52 Suggested
Cubic 0.029 1.0000 0.9996 - - Aliased

4.2.2. Analysis of Variance (ANOVA)

ANOVA evaluations of both models in Table 5 imply that both models can describe the
numerical experiments. In order to measure how well the suggested model fits the experimental data,
the parameters F-value, R2, p-value, and lack of fit are used. The p-value (the values of “Prob > F”)
is the probability that the given statistical model is the same as or greater magnitude than the actual
observed results when the null hypothesis is true. If the p-value is small, the probability of the null
hypothesis occurrence is small. Therefore, smaller p-value corresponds to more significant result.
As seen in Table 5, F-values of model term are 101.97 and 267.44 for short-term and long-term gas
productions, respectively. The p-values < 0.0001 of model shows that there is only a 0.01% chance
that two large F-values could occur due to the noise in experiment, which implies that two quadratic
models are significant.

The p-value less than 0.0500 indicates that the corresponding model terms are significant.
From Table 5 (a) and (b), model terms A, B, C, E, F, G, AC, AF, BD, BE, DG, EF, EG, FG, A2, B2,
C2, E2, G2 are significant model terms in the short-term model. For the long-term model, A, B, C, E, F,
G, AB, AC, AF, AG, BC, BD, BE, CF, CG, DE, EF, FG, A2, B2, C2, D2, E2 are significant model terms. A lot
of significant quadratic terms indicate that the effect of these variables on the GRR can be convincingly
modeled with the quadratic term. For short-term model, the quadratic terms for the NF orientation
(D2) and HF half-length (F2) are insignificant. However, HF half-length (F2) and HF spacing (G2) are
not significant for the long-term model. In addition, many significant interaction terms, such as AB
(interaction of matrix apparent matrix and NF aperture) indicate their close relationship.

Moreover, the F-values of Lack of Fit (Lack of Fit is also an important index to evaluate the
reliability of model) are 0.1112 and 0.0690 for short-term and long-term which indicates that lack of
fits is not significant compared to the actual pure error. The regression equation and coefficient of
determination are evaluated to test the fit of model. Residuals are the deviation between predicted and
actual values and expected to follow a normal distribution if the experimental errors are random. Thus,
the adequacy of the model should be firstly evaluated by determining whether the residuals follow
a normal distribution. The straight line in Figure 8 indicates that the Studentized residuals follow
a normal distribution. A significant S-shape curve is usually formed, if the residuals do not follow
a normal distribution. This type of curve is often formed due to the use of an inappropriate model,
which indicates whether an additional transformation of the response is necessary. The actual and
predicted GRR are plotted in Figure 9. The actual values are data for square root of each specific run
from Figure 6, and the predicted values are produced by the model. From Figure 9, both models can
predict actual GRR well. Figures 10 and 11 illustrate the independence verification of the errors that
clarified some plots of the residuals versus predicted values and run order, respectively. The predicted
values and run number of the responses versus Studentized residuals are depicted. These graphs
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are able to detect the response variables. The observation from these figures indicates that there is
no unusual configuration such as sequences of positive and negative residuals or megaphone shape.
They further indicate that there is no reason to suspect any violation of independence, nor is there any
evidence pointing to possible outliers [35,36].

Table 5. (a) ANOVA for GRR in short-term response surface with quadratic model. (b) ANOVA for
GRR in long-term response surface with quadratic model.

Source Sum of Squares df Mean Square F Value p-Value
Prob > F Significant or Not

(a)

Model 15.31 35 0.44 101.97 <0.0001 significant
A 8.85 1 8.85 2061.94 <0.0001 -
B 0.26 1 0.26 59.46 <0.0001 -
C 0.10 1 0.10 23.76 0.0006 -
D 0.016 1 0.016 3.73 0.0823 -
E 0.23 1 0.23 52.56 <0.0001 -
F 1.22 1 1.22 285.53 <0.0001 -
G 0.14 1 0.14 33.69 0.0002 -

AB 3.759 × 10−3 1 3.759 × 10−3 0.88 0.3713 -
AC 0.43 1 0.43 99.09 <0.0001 -
AD 2.101 × 10−3 1 2.101 × 10−3 0.49 0.5000 -
AE 8.553 × 10−3 1 8.553 × 10−3 1.99 0.1883 -
AF 0.071 1 0.071 16.62 0.0022 -
AG 0.017 1 0.017 4.06 0.0714 -
BC 0.019 1 0.019 4.47 0.0607 -
BD 0.061 1 0.061 14.33 0.0036 -
BE 0.038 1 0.038 8.85 0.0139 -
BF 3.217 × 10−3 1 3.217 × 10−3 0.75 0.4068 -
BG 5.927 × 10−3 1 5.927 × 10−3 1.38 0.2670 -
CD 0.011 1 0.011 2.53 0.1430 -
CE 0.021 1 0.021 4.96 0.0500 -
CF 4.226 × 10−3 1 4.226 × 10−3 0.99 0.3443 -
CG 0.015 1 0.015 3.42 0.0943 -
DE 6.599 × 10−3 1 6.599 × 10−3 1.54 0.2432 -
DF 1.172 × 10−6 1 1.172 × 10−6 2.733×10−4 0.9871 -
DG 0.030 1 0.030 6.98 0.0247 -
EF 0.028 1 0.028 6.62 0.0278 -
EG 0.081 1 0.081 18.85 0.0015 -
FG 0.025 1 0.025 5.94 0.0350 -
A2 0.52 1 0.52 121.85 <0.0001 -
B2 0.036 1 0.036 8.37 0.0160 -
C2 0.24 1 0.24 56.93 <0.0001 -
D2 6.635 × 10−3 1 6.635 × 10−3 1.55 0.2420 -
E2 0.19 1 0.19 44.65 <0.0001 -
F2 2.860 × 10−3 1 2.860 × 10−3 0.67 0.4333 -
G2 0.032 1 0.032 7.46 0.0211 -

Residual 0.043 10 4.290 × 10−3 -
Lack of Fit 0.042 8 5.207 × 10−3 8.36 0.1112 not significant
Pure Error 1.246 × 10−3 2 6.230 × 10−4 -
Cor Total 15.35 45 -

(b)

Model 87.68 35 2.51 267.44 <0.0001 significant
A 53.13 1 53.13 5672.42 <0.0001 -
B 2.18 1 2.18 232.70 <0.0001 -
C 6.45 1 6.45 689.12 <0.0001 -
D 0.19 1 0.19 20.42 0.0011 -
E 0.44 1 0.44 46.94 <0.0001 -
F 4.37 1 4.37 466.98 <0.0001 -
G 0.21 1 0.21 22.32 0.0008 -

AB 0.048 1 0.048 5.08 0.0478 -
AC 0.36 1 0.36 38.06 0.0001 -
AD 0.035 1 0.035 3.76 0.0810 -
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Table 5. Cont.

Source Sum of Squares df Mean Square F Value p-Value
Prob > F Significant or Not

AE 0.035 1 0.035 3.75 0.0816 -
AF 0.21 1 0.21 22.53 0.0008 -
AG 0.099 1 0.099 10.55 0.0088 -
BC 0.14 1 0.14 15.11 0.0030 -
BD 0.57 1 0.57 61.09 <0.0001 -
BE 0.44 1 0.44 46.61 <0.0001 -
BF 5.167 × 10−5 1 5.167 × 10−5 5.516 × 10−3 0.9423 -
BG 1.154 × 10−4 1 1.154 × 10−4 0.012 0.9138 -
CD 9.434 × 10−3 1 9.434 × 10−3 1.01 0.3392 -
CE 0.028 1 0.028 3.03 0.1126 -
CF 0.25 1 0.25 26.87 0.0004 -
CG 0.13 1 0.13 13.88 0.0039 -
DE 0.22 1 0.22 23.34 0.0007 -
DF 2.136 × 10−3 1 2.136 × 10−3 0.23 0.6432 -
DG 1.290 × 10−3 1 1.290 × 10−3 0.14 0.7183 -
EF 0.092 1 0.092 9.78 0.0107 -
EG 0.049 1 0.049 5.27 0.0446 -
FG 0.095 1 0.095 10.14 0.0098 -
A2 4.82 1 4.82 514.41 <0.0001 -
B2 0.17 1 0.17 18.27 0.0016 -
C2 0.049 1 0.049 5.20 0.0457 -
D2 0.31 1 0.31 32.94 0.0002 -
E2 0.72 1 0.72 76.44 <0.0001 -
F2 0.015 1 0.015 1.64 0.2290 -
G2 0.018 1 0.018 1.90 0.1984 -

Residual 0.094 10 9.367 × 10−3 -
Lack of Fit 0.092 8 0.012 13.86 0.0690 not significant
Pure Error 1.660 × 10−3 2 8.300 × 10−4 -
Cor Total 87.77 45 -
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Figure 11. Studentized residuals versus run number at different production periods.

4.3. Sensitivity Analysis

The percentage contribution of each term is obtained by adding up the total sum of squares in
each term divided by the total, see Table 5. When all terms have the same degrees of freedom, the
contributions can be used to determine which terms are more significant than the others. Figure 12
shows the influence of linear and quadratic terms on short-term and long-term GRR. The order of
influence of the seven linear terms for short-term is: A-Matrix apparent diffusivity > F-HF half-length
> B-Initial NF aperture > E-Initial HF conductivity > G-HF spacing > C-NF density > D-NF orientation.
The order of influence of the seven linear terms for the long-term production is: A-Matrix apparent
diffusivity > C-NF density > F-HF half-length > B-Initial NF aperture > E-Initial HF conductivity
> G-HF spacing> D-NF orientation. The term of matrix apparent diffusivity has the most significant
positive impact on GRR in both short-term and long-term gas productions though the quadratic
influence of this factor has a relatively large negative effect on GRR. The influence of linear term of
NF orientation is the weakest one for both models. The HF half-length plays a relative important role
and ranks the second only to matrix apparent diffusivity in short-term production. The impact of
NF density on GRR is more significant for the long-term production compared to the short-term one.
This is because a larger NF density can enhance gas diffusion from the shale matrix to natural fractures.

According to the above study, the 3D response surface plots are shown in Figure 13a–f to describe
the interaction of different variables on GRR for long-term gas production. All fixed parameters in
Figure 13 are set as their median values. Figure 13a indicates that the enhancement in the matrix
apparent diffusivity plays a more significant influential role in GRR while the GRR increases slightly
with the increase of natural fracture aperture. Though natural fractures dominate gas transport inside
reservoirs, higher matrix apparent diffusivity means higher flow capacity for gas transport towards
natural fracture and then hydraulic fractures for long-term production. With the increase of the
matrix apparent diffusivity, the GRR increases 412.5% when the initial NF fracture aperture is 10 µm.
This percentage decreases to 362.8% when initial NF fracture aperture is 20 µm. Figure 13b illustrates
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the relationship between initial NF aperture and NF density. A bigger NF density implies a shorter
distant between natural fracture and matrix block, thus inducing a larger GRR. The largest GRR occurs
where the initial NF aperture and NF density take the maximum simultaneously. Figure 13c reveals that
GRR increases with increasing NF density. Figure 13d shows the influence of initial HF conductivity
and NF orientation on GRR, with GRR first increases and then decreases with increasing initial HF
conductivity. Simultaneously, NF orientation has a very small impact on GRR because it mainly controls
NF permeability tensor. In addition, the NF orientation has an impact on the mechanical properties of
the reservoir, which may induce the shear dilation of natural fracture. Generally speaking, fracture
shear is thought to be enhanced when natural fractures are oriented at an angle to the maximum stress
direction, or when both vertical stresses and horizontal stress anisotropy are high [14]. Figure 13e
shows the influence of HF half-length and initial HF conductivity on GRR. In general, GRR increases
significantly with increasing HF half-length and with initial HF conductivity, but the rate of increase
decreases with increasing Initial HF conductivity. Figure 13f shows the relationship of HF spacing, HF
half-length and GRR. It is found that GRR increases with increasing HF half-length and decreasing
HF spacing. This can be attributed to the situation with larger HF half-length during gas production,
the HF half-length is mainly used to communicate with shale matrix, natural fracture and hydraulic
fracture. With the increase of HF half-length, the GRR increases 50.3% when HF spacing is 40 m.
The percentage decreases to 33.7% when HF spacing is 100 m. Sensitivity analysis indicates that this
methodology can provide some insights in the optimization of reservoir reformation to obtain the
maximum GRR. In conclusion, the sensitivity analysis results indicate that matrix apparent diffusivity
has the most significant positive impact on GRR. The enhancement of matrix diffusivity and gas
desorption is a key issue to sustain high gas production rate. Therefore, artificial treatments such as
heating recovery [37,38] to change the micro-structure of matrix are key to enhance the gas recovery
for long-term gas production.
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Figure 13. 3D surface for interaction effect of two-parameter on long-term GRR response at fixed
values of other parameters ((a) Influence of matrix apparent diffusivity and initial NF aperture on
GRR; (b) Influence of initial NF aperture and NF density on GRR; (c) Influence of NF density and NF
orientation on GRR; (d) Influence of NF orientation and initial HF conductivity on GRR; (e) Influence
of initial HF conductivity and HF half-length on GRR; (f) Influence of HF half-length and HF spacing
on GRR).
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4.4. Optimization Results

The index of GRR reflects the overall response of the formation subjected to short-term and
long-term gas production. Larger index implies more efficient gas production. This index is very
important to describe the shale gas productivity. In this study, the numerical optimization with the
response surface method is conducted to select the set of variables for the multi-scale gas flow that leads
to the maximum GRR. All variables are in their ranges. A total of 100 optimal projects are generated
after numerical optimization. Figures 14 and 15 show the top 10 solutions for the maximum GRR and
the corresponding responses of GRR. Figure 14 shows that the matrix apparent diffusivity, initial NF
aperture, NF density and HF half-length are close to their maximum and have smaller changes for all
the desirable solutions. HF spacing locates around the minimum value. NF orientation and initial HF
conductivity show higher uncertainty for the 10 solutions. Figure 15 shows the optimal GRRs in the
current ranges of parameters are 10% for short-term production and 60% for long-term production.
They are in reasonable ranges according to [2]. It is noted that this study did not investigate other
parameters such as bottom-hole pressure, in-situ stress, and gas adsorption parameters, although these
parameters are very important to gas production [2,39,40]. This optimization process indicated that
the optimization room is relatively small, but sensitivity analysis reveals that matrix diffusion plays an
incomparable role in gas production. Thus, the optimization results depend on matrix diffusion over
other parameters.
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5. Conclusions

In this study, the response surface methodology is combined with a fully coupled hydro-mechanical
FEC-DPM to explore the influence of seven uncertain factors (i.e., matrix apparent diffusivity, initial NF
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aperture, NF density, NF orientation, initial HF conductivity, HF half-length and spacing) on the gas
recovery rate (GRR) in short-term and long-term productions. An example is numerically analyzed in
details. Based on these investigations, the following insights and conclusions can be made.

First, the proposed approach is feasible and efficient for the design and optimization of multi-stage
hydraulically fractured horizontal wells with multi-parameters. The GRR response surface model is
reliable in the prediction compared with the actual values of GRR. RSM combining with reservoir
simulation model can be not only an alternative optimization method, but also a tool for parameter
sensitivity analysis.

Second, the influence of these seven uncertain factors for short-term production is ranked as:
A-Matrix apparent diffusivity > F-HF half-length > B-Initial NF aperture > E-Initial HF conductivity
> G-HF spacing > C-NF density > D-NF orientation. This ranking for long-term production becomes:
A-Matrix apparent diffusivity > C-NF density > F-HF half-length > B-Initial NF aperture > E-Initial HF
conductivity > G-HF spacing> D-NF orientation. Therefore, the matrix apparent diffusivity plays the
most important role in short-term and long-term gas productions although hydraulic fracturing is a
vital factor.

Third, optimization results show that the gas recovery rate can reach 10% in short-term and 60%
in long-term if the multi-factor optimization of these parameters is done for a multi-stage hydraulically
fractured shale gas horizontal well. Therefore, combining hydraulic fracturing with an auxiliary
method may be an effective alternative method for the maximum GRR in the development of shale gas.

As a final remark, this study conducted the optimal design solutions by RSM optimization for shale
gas production. The visualization of gas recovery rate evolution in the present numerical modeling
throws new lights on the understanding of interactions among multi-scale controlling variables.
These analyses provide a deep insight into the sensitivity analysis as well as the contributions of
different factors on maximizing the gas recovery rate through an optimization model. These analyses
also indicate that some artificial treatments, such as heating recovery, can be carried out to improve
gas recovery rate. This is a topic for our further study.
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Nomenclature

C Proppant pack compressibility index, dimensionless
D 4th order elasticity tensor which is the inverse of the total elastic compliance tensor, GPa
Dapp Gas apparent diffusivity in shale matrix, m2/s
F Body force, N/m3

Fs Shape factor, m−2

I Identity tensor
J(U) GRR objective function with key parameters, %
ks Solid bulk modulus of the grain, GPa
kF Permeability of hydraulic fractures, m2

Kn Fracture normal stiffness, GPa/m
Ks Total fracture shear stiffness, GPa/m
Ks1,Ks2 Shear stiffness before and after shear, respectively, GPa/m
Kij Permeability tensor of natural fracture, m2

Mg Apparent molecular weight of shale gas, kg/mol
pi Initial reservoir pressure, Pa
PL Langmuir pressure constant, Pa
pa Gas pressure at standard condition, Pa
pw Bottom hole pressure, Pa
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R Universal gas constant, J·mol−1·K−1

T Reservoirs temperature, K
u Displacement vector, m
U Vector of the unknown parameters
U∗ Optimal combination of the parameters
VR Reservoir volume, m3

VL Langmuir volume (at standard condition), m3/m3

w Fracture width, mm
Z Z-factor of shale gas, dimensionless
Greek symbols
φ Porosity for shale matrix, fractures system and hydraulic fracture, fraction
φ

e f f
dil Effective shear dilation angle, rad

σ Total stress, Pa
σ′n Effective stress acting on fracture surface, Pa
εv Volumetric strain, dimensionless
ρads Density of adsorbed gas
ρg Shale gas density, kg/m3

ρga Shale gas density at standard condition, kg/m3

η, λ Fitting parameters, dimensionless
δm Maximum closure of natural fracture
τ shear stress of fracture, Pa
τc shear strength of fracture, Pa
µ Gas viscosity, Pa·s
ψ Total gas content, kg/m3

Subscripts
m Matrix
f Natural fractures
F Hydraulic fractures
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