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Abstract: Power Grids face significant variability in their operation, especially where there are
high proportions of non-programmable renewable energy sources constituting the electricity mix.
An accurate and up-to-date knowledge of operational data is essential to guaranteeing the optimal
management of the network, and this aspect will be even more crucial for the full deployment of
Smart Grids. This work presents a data analysis of the electricity production at the country level,
by considering some performance indicators based on primary energy consumption, the share of
renewable energy sources, and CO2 emissions. The results show a significant variability of the
indicators, highlighting the need of an accurate knowledge of operational parameters as a support
for future Smart Grid management algorithms based on multi-objective optimization of power
generation. The renewable share of electricity production has a positive impact, both on the primary
energy factor and on the CO2 emission factor. However, a strong increase of the renewable share
requires that the supply/demand mismatching issues be dealt with through appropriate measures.

Keywords: electricity generation; primary energy; renewable energy sources; data analysis;
CO2 emissions

1. Introduction

The penetration of electricity in energy consumption has risen in recent years, and the increasing
amount of electricity production from Renewable Energy Sources (RES) is changing the traditional
approach used in monitoring and managing the Power Grids. High shares of intermittent RES in the
network involve several challenges that need to be tackled before Smart Grids will be able to deploy
their full potential. The basis for the design and operation of Smart Grids’ algorithms is the availability
of live, accurate and detailed information of multiple parameters.

The role of data is currently gaining momentum in energy systems analyses and applications.
An increasing number of studies are dealing with the advantages provided by Information and
Communication Technology (ICT) infrastructure in terms of data measurement, storage, elaboration
and analysis. Energy data are used in a wide range of applications. Among the most successful
applications is the consumption profile forecast in buildings [1], which can have a number of
advantages, including failure predictions and the optimization of energy management systems [2].
The energy characteristics of buildings are often included in energy certifications, and a proper data
analysis on large datasets can provide useful insights for energy planning at an urban scale [3]. Heating
and cooling in buildings is often provided by distributed generators, which are generally tested every
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few years to guarantee their combustion performance [4]. Data are also used for the analysis of
energy production systems [5] and the prediction of energy consumption in power networks [6,7].
The importance of accounting for the variability in relation to the building–network interaction has
also been analysed in some studies [8], and the use of data-driven approaches is required for the
operation of Smart Grid algorithms [9,10].

Electricity networks are characterized by an intrinsic variability in their multiple operational
parameters. The importance of data analysis is currently related to the possibility of optimizing
business intelligence solutions for marketing purposes in wholesale electricity markets [11]. Some
applications include correlation and clustering to analyse the structure of market data [12]. Most
applications have been developed with the aim of providing a tool for price forecasting in electricity
markets as a support to companies that operate in the day-ahead market. The development of models
based and tested on real data has resulted in viable solutions for optimizing the operation of power
plants [13].

While current data analyses are mostly related to power demand and production profiles and
electricity prices, Smart Grid development could require additional information related to the Primary
Energy Factors (PEFs) and CO2 emissions, as well as to the share of RES in the electricity mix.
Decarbonization of electricity production will have a major impact on energy systems [14], by
making achievable some sustainability targets through the application of multiple technologies [15,16].
The availability of low-carbon electricity from the Power Grid could foster the diffusion of heat pumps
over the traditional technologies for space heating in buildings [17]. Moreover, low PEFs associated
with electricity production could produce a major shift in the analysis of Combined Heat and Power
(CHP) with respect to separate production. High-performance heat pumps running on electricity
produced with low primary energy consumption could question the traditional assumption the CHP
development is based on [18].

However, a high penetration of RES in the electricity network generates many technical
challenges related to their variability and limited predictability, mainly for photovoltaics and wind [19],
as well as the non-negligible further environmental impact associated with the construction of new
infrastructures [20]. As a matter of fact, a main concern is the increase of the flexibility needs of
the power network [21], achieved through the operation of backup and integration power plants
and the development of electricity storage technologies [22]. Other technologies that support the
increase of RES penetration by compensating for their variability are the power to heat [23] and the
power to gas [24]. These technologies are still at an early stage, but their potential is considerable [25].
However, while wide adoption at system level could compensate for the high penetration of RES [26],
proper design and planning is needed to avoid environmental impacts and sub-optimal operation [27].
The costs are decreasing and prompting a wider adoption of these solutions, but non-economic barriers
should be taken into account as well [28], including the need of proper regulations at national and
international level.

Due to the high variability of electricity characteristics over the time, a high resolution is required
to provide accurate results. Spatial resolution is another key aspect to be considered, especially when
aiming at optimizing the Transmission Network during potential congestion related to particular
operating conditions (e.g., excess of RES production) [29]. The availability of real consumption and
production profiles can also support the simulation of power reserve needs [30] for the purposes of
choosing the best solutions for a given network.

The use of real operation data for the modelling of Power Systems can lead to more accurate results
for the simulation of system behaviour [31]. Unfortunately, often the required data are not available
with a high time resolution. Thus, most models are based on a lower time resolution (e.g., daily or
monthly values) or on the use of standardized profiles. The availability of real patterns, reflecting
all the possible variability that occurs, could lead to an accurate quantification of the performance of
power generation, thus supporting energy modelling and optimal energy management in Smart Grids.
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This paper presents an application of data analysis of the electricity production at the country
level, to calculate relevant performance indicators (i.e., PEFs, CO2 emission factors and share of RES)
of the electricity supplied by the National Power Grid. The primary energy consumption, the share
of RES and the CO2 emissions are considered, in accordance with the main sustainability targets set
worldwide. The availability of actual data on an hourly basis over multiple years is a valuable support
for the design and development of Smart Grid logics.

The novelty of this approach is the comparison of multiple performance indicators for the
electricity generation and supply to the power grid. The proposed application to a real test case,
consisting of the Italian electricity generation and supply system, highlights the variability of the
power generation performance with different time cycles. The availability of time-dependent indicators
could lead to more focused analysis and modelling of any energy system that interacts with the Power
Grid (e.g., heat pumps compared to other heating technologies, cooling chillers, etc.), and it can be
a valuable resource for local energy planning and comparisons of different technologies. Moreover,
the availability of electricity performance indicators for each hour can become a support for future
smart grids where the optimization algorithms may aim at the primary energy consumption or other
environmental impacts minimization of the entire network, thus requiring such information for each
generation unit.

2. Methodology

The calculation of performance indicators related to the electricity supplied to the Power Grid
requires a well-defined methodology, as a number of hypotheses are required. The steps to be
performed for the analysis are described below. An aspect worth mentioning is the approximation of
the results due to the current limitations in the quality of the input data. As will be further described in
the following paragraphs, some hypotheses have been formulated to compensate for unavailable data
and data gaps in the dataset. Higher accuracy in the analyses could be achieved with the availability
of better data, which are in part already existing but not publicly available.

2.1. Energy Production Data Acquisition and Pre-Processing

The data used in this work is publicly available from the Italian Transmission System Operator
(Terna Transparency Reports [32]). The data is provided through a single spreadsheet for each day,
which includes the electricity production divided by source and bidding area with an hourly time
resolution. Six bidding areas are included, based on the topology of the Italian network (North,
Center-North, Center-South, South, Sardinia and Sicily) and related to the prices of the wholesale
market. The sources include thermoelectric, hydro, photovoltaic (measured and estimated), geothermal
and wind.

Every spreadsheet can be publicly accessed, but an organized collection of the entire dataset
requires some effort, due to the change of format over the years, as well as the absence of a coherent
naming pattern of the files and the folders. For these reasons, a dedicated scraping script has
been developed to automate the data acquisition from the website, by using the R programming
environment [33]. However, some daily files are missing, and in some cases, existing files showed
some gaps or data errors. Table 1 reports a summary of the available records for each year of analysis
and a calculation of the missing hours, which represent a percentage of 0.0–4.3% depending on the
year. Based on the authors’ estimations, missing data appear to be limited, and they should not have a
significant impact on the results of the calculations.
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Table 1. Power generation input data—available records from web scraping procedure.

Year Records Missing Hours (Total) Missing Hours (%)

2012 8724 60 0.7%
2013 8382 378 4.3%
2014 8725 35 0.4%
2015 8567 193 2.2%
2016 8782 2 0.0%
2017 8663 97 1.1%

The data used for this study is limited to domestic power production in Italy. No information is
currently available on the characteristics of the electricity imported from abroad (France, Switzerland,
Austria, Slovenia). A common framework for electricity data acquisition is being implemented at
European level by ENTSO-E (European Network of Transmission System Operators for Electricity),
but there are currently only limited historical data series available.

2.2. Renewable Share

The calculation of the renewable share in the electricity generation is based on a simple ratio of
electricity production from RES (EERES) to total electricity production (EETOT):

RESshare = EERES/EETOT (1)

RES in Italy include hydropower, photovoltaics, wind, geothermal and bio-energies (including
wood biomass, biogas and the biodegradable share of municipal solid waste). The total electricity
from RES reached 33.2% of the total electricity consumption in Italy in 2016 [34], with hydropower
being the most used source, with 13.1%, followed by PV (6.8%), bio-energy (6.0%), wind (5.4%) and
geothermal (1.9%).

The energy produced from RES is available with an hourly detail for each source, while
thermoelectric generation is registered as an aggregate production (i.e., there is no information on
the share of fuels, including bio-energies) [32]. The share of fuel is required for the calculation of the
indicators presented in this study. The only available fuel share is given by the National TSO on an
annual basis [34–36], and the authors applied it to each hour of operation of the system. The annual
electricity production from thermoelectric plants, divided by fuel, is reported in Table 2.

Table 2. Annual gross electricity generation from thermoelectric plants by fuel (authors’ calculation
based on [34–36]).

Fuel Natural Gas Coal Oil Bio-Energy Others

2012 59.5% 22.7% 3.2% 5.8% 8.8%
2013 56.6% 23.5% 2.8% 8.9% 8.2%
2014 53.4% 24.8% 2.7% 10.7% 8.4%
2015 57.9% 22.6% 2.9% 10.1% 6.5%
2016 63.5% 17.9% 2.1% 9.8% 6.7%

While this approximation should not significantly impact the results for most of the operational
hours, it reduces the variability of the calculated indicators. Consequently, the results presented in
this study underestimate the variability of the electricity indicators. More accurate results require the
availability of data with a better time resolution for thermoelectric energy production.

2.3. Primary Energy Factor

Primary energy consumption is one of the main aspects of interest for energy and climate goals at
international level. For this reason, the Primary Energy Factor (PEF) represents a relevant indicator for
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the support of multiple applications, including energy planning, policy making and energy systems
simulation. PEF is calculated as the ratio between of the primary energy consumption (EP) to the
useful energy (EU), for any energy flow of interest:

PEF = EP/EU (2)

In this research work, PEF is calculated considering as useful energy the electricity produced by
Italian power plants and supplied to the National Power Grid. The primary energy is therefore the
primary energy consumption of the power plants.

The calculation of the PEF indicator requires an accurate knowledge of the performance of each
power plant involved in the analysis. However, seldom is such data available at a detailed time
resolution, and therefore some approximations are due. In this research work, some hypotheses have
been developed to compensate for the lack of accurate information. Average values on an annual basis
have been used both for the fuel share in thermoelectric power plants and for conversion efficiencies,
based on the operational data provided by the National Transmission System Operator [34–36].
The PEF values of thermoelectric plants vary in the range 2.047–2.176, depending on the year.
The aggregated value has been used, as the calculation of the contribution of each fuel would have
given a less accurate result. These are the major approximations of this research study, as different fuels
in power plants can result in very different conversion. The future availability of more detailed and
accurate data could lead to better results by applying the same methodology presented in this study.

Biomass and municipal solid waste are included in the energy produced by thermoelectric power
plants, and therefore the relevant efficiency has been used for PEF calculation. For other RES sources,
a 100% value has been considered for hydro, wind and solar, in accordance with the common practice
in world energy statistics. Geothermal plants have been accounted for, assuming an efficiency of
10%, based on operational values for power plants in Italy and other Counties, mainly limited by
the turbine inlet temperatures in these plants. These assumptions are consistent with the common
methodologies used for electricity PEF calculation from RES at an international level (including
Eurostat and IEA approaches).

2.4. CO2 Emissions Factor

The third indicator considered in this work is related to the specific emissions of CO2 for electricity
generation. The study is limited to the emissions during the operation phase, i.e., the lifecycle emissions
are not considered. This aspect is of primary concern, and some calculations are similar to those
discussed for PEF in Section 2.3.

There is no common ground for the emission factors of fuels when burnt, as multiple parameters
affect the CO2 emissions during the combustion phase (e.g., the fuel type, composition, unit layout
and size, the combustion efficiency, etc.). Moreover, a number of hypotheses are required to estimate
the actual conversion efficiency of power plants, as already discussed in the previous section.

In this study, the CO2 emissions have been calculated by considering only the emissions from
thermoelectric plants, as non-thermal RES (i.e., hydro, wind, solar) and geothermal sources have
no operation emissions. The thermoelectric emissions have been accounted for based on the values
provided by a report by the Italian Institute for Environmental Protection and Research (ISPRA) [37]
(in the range 489–528 g/kWh, depending on the year). These values are calculated on an annual
basis, based on the actual operation of power plants in Italy. The CO2 emission factors given
by [37] are already calculated on the real fuel mix of each year, and therefore these values have
been used, instead of re-applying the fuel distribution of Table 2, which would have led to unnecessary
approximations. The most recent data is from 2016, and these values have also been used for 2017.

Finally, a comparison with the economic value of the electricity in the Day-Ahead Electricity
Market has been included. Hourly data of market prices for Italian Electricity Market (IPEX) [38]
has been considered to highlight any potential relation with the other performance indicators. Other
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economic aspects may have an impact on electricity generation and dispatching (including incentives,
capacity market, zonal prices, etc.). Since the focus of this work is not on the economic aspects,
a simpler approach has been chosen.

3. Results and Discussion

The analysis of the electricity production data of the last six years makes it possible to describe
a synthesis of the main aspects of Power generation in Italy. The data presented below does not
represent the final user demand, for which electricity imports and Power Grid losses should be taken
into account.

A first glance of the total electricity generation in Italy is presented in Figure 1, where all the hourly
values of an entire year (in this case, 2015) have been plotted. The figure shows the significant variation
in the request made to the power plants, with both daily and seasonal cycles. Electricity production
reached its peak during the month of July, which was characterized by extreme weather conditions
requiring an outstanding cooling demand for most of that month. Conversely, the lowest demand,
in the central weeks of August, was related to the shutdown of industries and other commercial
facilities during the summer holidays across the country. With regard to the other seasons, winter shows
a consumption slightly higher than spring and autumn, due to the energy demand for space heating.
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Figure 1. Hourly power production of electricity in Italy in 2015.

The largest variability to be faced occurs on a daily basis. Some daily generation profiles over
the entire year 2015 have been reported in Figure 2. The figure shows the profiles of each Wednesday,
which is usually used in Italy to represent the average working day. The aim of the plot is to present
the occurrence of similar patterns over the year, although some differences can be noticed from one
month to another. The above-mentioned anomaly of July is clearly noticeable, with constant higher
consumption both during the daylight and night hours.
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Figure 2. Daily power profiles of electricity production in Italy in 2015, Wednesdays only.

Despite the seasonal differences, the patterns show the duality of daylight/night hours, together
with a morning peak common to all of the seasons. Conversely, the afternoon peak seems to show a
larger seasonality, appearing generally later in winter and earlier in summer, probably due to the effect
of lighting demand during working hours and cooling appliance demand, respectively.

Figures 1 and 2 give an overview of the generation patterns of the Italian power plants, for which
the performance indicators are presented, below. Although the amount of import can reach significant
percentages in Italy (an additional 13–16% of the gross production in the years from 2012 to 2016 [32]),
it has no significant impact on the load profiles.

The primary energy consumption is the aspect that has been evaluated in the most detail, as the
PEF calculation can give significant insights into the efficiency of the power plants used in Italy for
electricity generation. As already mentioned, the findings of this analysis highlight the importance of
including PEF variability in every energy analysis in order to account for the use of electricity from the
Power Grid. The use of average annual values could lead to a strong bias in any result, as the PEF can
range over a large interval.

Figure 3 reports the chronological variations of PEF over the entire range of analysis, from 1
January 2012 to 31 December 2017. The colours of the points represent the share of renewables in the
electricity production, and a correlation can be qualitatively noticed from the figure: the higher the
renewable share is, the lower the PEF. The reason for this is the higher conversion efficiency of hydro,
wind and solar plants, being the main share of RES in Italy, while geothermal and bioenergy represent
only a minor part.

The results presented in Figure 3 and in the following are the best approximation of hourly values
that can be obtained, due to the unavailability of hourly values for the fuel share in thermoelectric
power plant operation. Since the annual average has been used, this approximation results in stronger
biases for the minimum and maximum values, but this has a lower effect on the median values.
The reader should consider that the real operation has, therefore, an even larger variability. This latter
cannot be more accurately calculated with the operation data available.
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The variability noticeable in Figure 3 is the combination of the seasonal and daily cycles described
for the power production in the previous sections. This combined effect can be analysed separately by
means of two boxplots, as shown in Figures 4 and 5.Energies 2018, 11, x FOR PEER REVIEW  8 of 14 
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Figure 5. Hourly variation of Primary Energy Factor and Renewable share (Italy, years 2012–2017).

Each boxplot shows the variation of the parameter under analysis with respect to the categories of
the x-axis. The coloured box is made up of the first and third quartile, while the black line in the middle
represents the median value. The outer lines include the values that are lower than 1.5*IQR (with IQR –
Interquartile Range being the difference between the third and the first quartile). The remaining points
are considered to be outliers.

In detail, Figure 4 represents the variability across the months, whereas Figure 5 represents the
variability across the hours of the day. In summer hours and daylight hours, the higher share of RES
results in a generally lower PEF, with medians as low as 1.8 (and average renewable share slightly
lower than 0.5). Conversely, the PEF values in winter and in the night hours have medians higher than
2.0–2.1 and average renewable shares as low as 0.35.

The third indicator in this study is the specific CO2 emission factor for the electricity generated
in Italy. Figure 6 shows the distribution of the hourly values for each year considered in this work.
The distributions have some slight differences, mainly caused by the share of RES in the annual
production, as well as the weight of each specific source. In 2014, the amount of electricity produced
from hydro reached an historical maximum, mainly thanks to favourable weather conditions. The plot
shows that the median of 2014 is lower than the other years, and the entire distribution is shifted
towards lower values. In contrast, 2012 shows higher values, mainly because the RES penetration was
still low.
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Finally, minimum, median and maximum values of each indicator per year of analysis are
summarized in Table 3. As already described in the previous comments, the hypotheses made to
compensate the unavailability of some input data leads to an approximation of the values, especially
for the minimum and maximum ones. For this reason, the values of Table 3 are not real values, but the
best possible approximation based on the data currently available. The approximations have a lower
impact on the median value, which is statistically more accurate.

Table 3. Calculated values for Renewable share, Primary Energy Factor and CO2 Emissions Factor.

Year Renewable Share Primary Energy Factor CO2 Emissions Factor
(g/kWh)

Min Median Max Min Median Max Min Median Max

2012 13.6% 33.6% 61.1% 1.603 2.005 2.322 218 372 484
2013 20.7% 40.6% 73.8% 1.491 1.932 2.256 146 330 440
2014 22.9% 46.0% 78.0% 1.494 1.925 2.356 127 310 443
2015 19.1% 40.3% 73.8% 1.539 1.954 2.372 143 325 440
2016 18.9% 38.4% 72.5% 1.535 1.929 2.314 149 334 440
2017 16.4% 36.2% 73.8% 1.532 1.947 2.265 142 346 453

However, the values of Table 3 give qualitative information on the range of variability, with a
conservative approach: the real variability is expected to be even higher. These results highlight the
importance of performing such analyses, and of increasing the quality and accuracy of the available
operational data in order to provide valuable support for local energy planning and energy systems
modelling and simulation. The high variability emerging from Table 3 for the performance indicators
highlights the importance of high time resolution analyses, instead of relying on average values on an
annual or monthly basis. The variability of performance indicators with respect to the time domain
is an aspect that cannot be neglected in energy analyses that aim at a holistic system optimization,
and accurate data analyses will become a precious support for the development of future Smart
Grid operational algorithms based on the optimization of power production and not limited to the
economic optimum.

Finally, a further aspect that is worth mentioning is the electricity price, based on the energy price
on the Day-Ahead Electricity Market in Italy. As a general trend, the high availability of electricity from
RES is generally associated with lower prices, due to some mechanisms of Italian regulations, including
incentives to electricity production from RES and dispatch priority over fossil-based power plants.

A preliminary analysis of Electricity Price compared to the indicators that have been calculated
in this work is reported in Figure 8. The plot shows significant point scattering, highlighting a weak
relation between the electricity price and the Renewable share, as well as the PEF. The scattering of
the point cloud is due to many additional parameters that influence the Electricity Price, and a more
complex analysis would be needed. While such research is beyond the scope of this paper, the trend of
Figure 8 suggests that the share of RES is among the aspects that influence the price of electricity in
the market.
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4. Conclusions

This research work presents an analysis of performance indicators of the electricity production in
Italy, by considering the share of renewable energy sources, the primary energy consumption and the
CO2 emissions.

The results of the study provide interesting insights, and the main findings are:

• The accuracy and quality of the data needed for the analysis have a major impact on the precision
of the results. A huge amount of data is required for the calculation of performance indicators, and
its unavailability leads to approximations in the results. Improved detail in the monitored data is
required to increase the reliability of the indicators, with further benefits on multiple applications.

• The variability of the electricity mix, both on a seasonal and daily basis, has a strong influence on
all of the energy systems that use electricity from the Power Grid, affecting the sustainability of
the final energy consumed by the users.

• The RES share in Italy is a major driver of the power production variability. It shows higher
values in summer, and during daylight hours, up to a value of 80%, while in winter and night
hours it decreases to 20%.

• The Primary Energy Factor shows annual median values in the range of 1.92–2.00, but with a
variation reaching as low as 1.49 and as high as 2.37, respectively. The primary energy consumed
for the electricity supply to the users is therefore highly dependent on the generation mix.

• The CO2 emissions are strictly related to both renewable share and PEF, due to the intrinsic
features of the energy sources of Italian power plants. The results show emission factors in the
range of 127–484 g/kWh, with annual median values from 310 to 372 g/kWh.

• The electricity price on the day-ahead electricity market shows a very weak relation to the
renewable share of the Power Grid. A proper quantification of this relation would need a deeper
economic analysis, including multiple aspects and market data.
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Further improvements of this work, involving a larger availability and a better quality of the
input data, could lead to an increase in the accuracy of the results presented. Moreover, the authors
envisage the possibility of performing comparisons with other countries, which would require a careful
evaluation of the peculiar conditions of the energy network and power plants, including the average
efficiencies and emission factors used in the hypotheses. Moreover, each country has its own protocols
related to data collection, such that a common and standardized organization of the datasets will
be required.
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