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Abstract: Current power grids in many countries are not fully prepared for high electric vehicle
(EV) penetration, and there is evidence that the construction of additional grid capacity is constantly
outpaced by EV diffusion. If this situation continues, then it will compromise grid reliability and
cause problems such as system overload, voltage and frequency fluctuations, and power losses.
This is especially true for densely populated areas where the grid capacity is already strained with
existing old infrastructure. The objective of this research is to identify the zip-code level electricity
consumption that is associated with large-scale EV adoption in New York City, one of the most
densely populated areas in the United States (U.S.). We fuse the Fisher and Pry diffusion model
and Rogers model within the agent-based simulation to forecast zip-code level EV diffusion and
the required energy capacity to satisfy the charging demand. The research outcomes will assist
policy makers and grid operators in making better planning decisions on the locations and timing of
investments during the transition to smarter grids and greener transportation.

Keywords: agent-based model; electric vehicle; innovation diffusion; electricity consumption;
New York City

1. Introduction

Electric Vehicles (EVs) consist of Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric
Vehicles (PHEVs), and both are required to be charged from the power grids [1–3]. The overall sales of
EVs have been steadily rising [4]. The worldwide sales of EVs have passed the one-million milestone
in 2015, as shown in Figure 1 [4,5]. As EV sales boom, the market share of EVs is also increasing, and
the energy consumption of the transportation sector is gradually shifting from fossil fuels to electricity.
However, the current power grids in many countries are not fully prepared for high EV penetration,
and the construction of additional grid capacity is constantly outpaced by EV diffusion [6–9]. If this
situation continues, it will compromise grid reliability and cause problems, such as voltage and
frequency fluctuations and power losses [10–12]. This is especially true for densely populated areas,
as shown in Figure 2 [13,14], where the grid capacity is already strained with the existing infrastructure.
For example, a recent study showed that charging EVs in households of San Francisco could potentially
triple the peak load [15].
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In order to estimate the overload risks, some researchers have characterized the diffusion of EVs 
at the national level. However, the national level estimation may greatly underestimate these risks 
because it does not take into account local heterogeneity. The sales of EVs and the expected additional 
load are usually unevenly distributed, and so are the needs for adding more grid capacity. As a result, 
the risks are expected to be higher for some areas than others [8,15], and a national average cannot 
accurately reflect the local situations, hence the need for more research that is able to offer useful local 
information for both planning and operation. 

To address the abovementioned issues, this paper contributes to the literature by expanding the 
current knowledge base and establishing a new method to characterize the zip-code level electricity 
consumption associated with large-scale EV diffusion over the next several decades. We perform a 
case study using the proposed method on the 175 zip codes in New York City (NYC), one of the most 
densely populated areas in the U.S.A. We fuse Roger’s [16] as well as Fisher and Pry’s [17] diffusion 
models with the agent-based simulation to forecast zip-code level EV diffusion and the required 
energy capacity to satisfy the charging demand. 

The diffusion model reflects the process of how a new technology or product gets adopted 
among a group of people who interact with each other. It describes the exemplary effects of current 
adopters’ behaviors on potential adopters [18]. The effects can be caused by word-of-mouth or just 
seeing the product in the neighborhood. More recent studies of diffusion patterns have drawn great 
attention in social science (e.g., socioeconomics) and management science (e.g., marketing) [19,20]. 
This research is based on and will advance the tradition methods. 

A key step of building the diffusion model is to estimate the innovation and imitation parameters 
that jointly determine the cumulative adoption over time. Agent-based modeling (ABM) will be used 
to estimate these parameters at the zip-code level. We see each zip code as an agent that is 
characterized by different properties. Agent-based modeling has proven capability of simulating the 
dynamic interactions among discrete agents in a social network [21–28]. We will observe the diffusion 
progress resulted from the dynamic and interactive behaviors of agents. 

The model will use geocoding data of NYC to display the spatial results. Previous studies have 
already emphasized the importance of the geographic information system (GIS) data for studies 
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In order to estimate the overload risks, some researchers have characterized the diffusion of EVs
at the national level. However, the national level estimation may greatly underestimate these risks
because it does not take into account local heterogeneity. The sales of EVs and the expected additional
load are usually unevenly distributed, and so are the needs for adding more grid capacity. As a result,
the risks are expected to be higher for some areas than others [8,15], and a national average cannot
accurately reflect the local situations, hence the need for more research that is able to offer useful local
information for both planning and operation.

To address the abovementioned issues, this paper contributes to the literature by expanding the
current knowledge base and establishing a new method to characterize the zip-code level electricity
consumption associated with large-scale EV diffusion over the next several decades. We perform a
case study using the proposed method on the 175 zip codes in New York City (NYC), one of the most
densely populated areas in the U.S.A. We fuse Roger’s [16] as well as Fisher and Pry’s [17] diffusion
models with the agent-based simulation to forecast zip-code level EV diffusion and the required energy
capacity to satisfy the charging demand.

The diffusion model reflects the process of how a new technology or product gets adopted among
a group of people who interact with each other. It describes the exemplary effects of current adopters’
behaviors on potential adopters [18]. The effects can be caused by word-of-mouth or just seeing the
product in the neighborhood. More recent studies of diffusion patterns have drawn great attention in
social science (e.g., socioeconomics) and management science (e.g., marketing) [19,20]. This research is
based on and will advance the tradition methods.

A key step of building the diffusion model is to estimate the innovation and imitation parameters
that jointly determine the cumulative adoption over time. Agent-based modeling (ABM) will be
used to estimate these parameters at the zip-code level. We see each zip code as an agent that is
characterized by different properties. Agent-based modeling has proven capability of simulating the
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dynamic interactions among discrete agents in a social network [21–28]. We will observe the diffusion
progress resulted from the dynamic and interactive behaviors of agents.

The model will use geocoding data of NYC to display the spatial results. Previous studies have
already emphasized the importance of the geographic information system (GIS) data for studies related
to energy and society [29]. Our research highlights the geographical interest of the pattern recognition
and calibrates the computational approach for modeling the overload risks.

The proposed research will become one of the fundamental building blocks of the future research
on EV integration in smart grids, which aims to improve the quality, reliability, and sustainability of
power systems, while satisfying the needs of all the participants. The research outcomes will assist
policy makers and grid operators in making better planning decisions on the locations and timing
of investments during the transition to smarter grids and greener transportation. The issue of grid
overload that is associated with large-scale EV adoptions is indeed a common problem for many
populous cities. The case study of NYC can be customized in the future for data of other areas.

The rest of the paper is organized as follows: First, an introduction to the innovation diffusion
theories and a brief literature on agent-based modeling and its application in EV diffusion are reviewed.
Then, data gathering, the methodologies, and the assumptions are explained. After that, the results
and analysis are presented. Finally, the conclusions and future work are provided.

2. Innovation Diffusion Theories

According to Fisher and Pry [17], diffusion of innovation follows an S-curve pattern. The Fisher
and Pry model is used for technologies that do not require significant behavioral changes.
The innovation diffusion rate in Fisher and Pry’s model is given by:

f (t) = {1 + tanh [α(t− t50)]}/2 (1)

where

• f (t): the rate of market growth by the new technology at a given time t;
• α: the half of fractional growth in early years of diffusion; and
• t50: the time taken to reach a 50% of market share.

Calculating t50 depends on the starting time of the simulation (t0) and the whole planning horizon
(T). Herein, t50 is equal to t0 + T/2.

Eising et al. [30] have applied Fisher and Pry’s model to a case study in the Netherlands to assess
the EV diffusion using empirical data. The study helps to identify the potential places with higher
risks regarding the required electricity demand. According to their study, recognizing patterns of EV
adoption can provide insights about better planning on how to invest and consequently how to fulfill
required power grid demand.

Rogers [16] has categorized potential consumers in five classes, as it is shown in Figure 3. It has a
descending order of adoption: 2.5% innovators, 13.5% early adopters, 34% early majority, 34% late
majority, and 16% laggards. In general, it is shown that innovators and early majority are among
the consumers with higher income and higher social class in society. Rogers has indicated that early
adopters influence later adopters in adoption decision through increasing the observability of the new
technology. More consumers are willing to adopt the innovation if they see it in their nationhood.
As mentioned in [31], spatial remoteness, for example in rural areas, lessens the observability of the
innovation and leave negative influences in adoption decision. In contrast, urbanization, as studied
by [32], is considered as a positive impact on the diffusion of PHEVs.
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In this paper, Rogers’ innovation diffusion theory is used to define a threshold model to study
consumers’ adoption behavior. We set a planning horizon of 34 years (2016–2050). This duration would
be long enough to allow for us to observe the adoption pattern of several decades, any longer would
make it hard to anticipate other factors which might be influential in the long run. Three different
scenarios are defined to obtain a low, medium, and high penetration pattern, and their impacts are
analyzed on power consumption over the defined planning horizon.

3. Agent-Based Modeling and Its Applications in EV Diffusion

Consumers’ behaviors while adopting EVs can be modeled using an agent-based modeling
approach, which is known as a bottom-up simulation methodology [21]. ABM has its roots in
Complex Adaptive Systems. It is a computational method that involves independent, self-organized,
autonomous entities interacting with each other within an environment under defined rules [33].
This methodology is useful since it allows a micro-level simulation of simple agents that exhibit
emergent behaviors, while leading to a subtle conclusion by aggregating individual behaviors of
agents. ABM has many applications in a variety of fields of studies, such as economics, social sciences,
ecology, biology, physics, etc. Recently, this methodology has been used to model innovation diffusion.
In the field of vehicle technology adoption, there are some studies that used ABM to study the diffusion
of EVs as well [21,34,35].

Eppstein et al. [23] have developed a spatial agent-based model to capture dynamic and nonlinear
interactions of some influential factors in EVs market share. The model considers social and spatial
consequences, such as threshold effects, heterogeneity, or similarity influences, besides the media
effects. Cui et al. [36] have introduced a multi-agent based simulation network for demonstrating
the spatial distribution of PHEV ownership in a neighborhood in a local region and assessing the
effect of PHEVs’ charging load on a private electric distribution network. McCoy et al. [25] have
proposed a threshold model for the adoption decision-making process of consumers. Agent-based
modeling is used to study agents’ interactions in a micro-simulation perspective. Bale et al. [37]
have studied the adoption of energy technologies in the domestic sector under the influence of social
networks. A threshold approach is proposed for analyzing the behavior of agents in the social network,
where the local authorities play the dominating role in the adoption of EVs. In another study by [38],
an agent-based decision support system is proposed to distinguish various designs in residential EV
ownership and to aid in decision making for the expansion of new charging infrastructures. Linder and
Wirges [39] embedded the Bass model into an ABM to simulate the adoption of EVs among households
of Stuttgart in 2020. Using available micro-data different adopter types are defined and simulated
in various scenarios of spatial diffusion. Results indicate that EV adoption is more concentrated in
urban areas where less spatial differences are apparent by 2020. Noori and Tatari [40] have built up
the Electric Vehicle Regional Market Penetration tool to assist decision makers and transportation
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organizers to distinguish the future market share of EVs in the United States. An agent-based model is
proposed using different preferences for consumers for different types of EVs.

This paper is inspired by a number of other studies in which agents are allowed to have a utility
function in association with the adoption process. The focus is to identify the zip-code level electricity
consumption associated with large-scale EV adoption in New York City, which is one of the most
densely populated areas in the U.S. Considering the complexity of the problem, there are many
uncertainties regarding the factors affecting the market share of EVs [41]. Herein, we are trying to
verify the effect of word of mouth on consumer purchase behavior. To do this, we have integrated an
agent-based framework with a threshold model to simulate the spatial distribution of EV adoption
in a local populated area and assessed the impacts of EV charging load on the electric distribution
grid. ABM is used to estimate the diffusion of EVs in each zip code when considering Fisher and Pry’s
diffusion model and Rogers model. The threshold approach proposed by Eising et al. [30] will be
integrated within the ABM.

4. Methodology

4.1. Data Gathering

We consider the case of NYC since it is one of the most densely populated cities and its electricity
use is among the top in the U.S. Besides, it has the highest number of power outages [42]. However,
the issue of power overload due to large-scale EV adoptions could be a potential problem for many
other populated cities.

According to The Official Website of New York State [43], there are 175 zip codes in all the five
boroughs of NYC. We consider each zip code as an agent, which has its own local characteristics.
These spatial characteristics help us identify influential factors on EV adoption using multiple
regression analysis. Based on the zip-code level data provided by [44], we have considered population
(pop), population density (popd), housing units (hu), median home values (mhv), land area (la),
water area (wa), occupied housing units (ohu), median household income (mhi), median age (ma),
gender (gen), different races (i.e., white (rw), black or African American (rb), American Indian or
Alaskan native (ra), Asian (ras), native Hawaiian & other pacific islander (rnh) and, other races (roth)),
families (fam)/singles (sing), households with or without kids (nkid), housing occupancy (owner
(own) or renter (rent)), employment status (full-time, part-time (wpop), or unemployed (unpop)),
means of transportation (use of car, truck, or van (ctv) vs. public transportation (pubt)), and educational
status (high education (he) vs. lower education (le)) in the regression model for all of the zip codes.
Results indicate that influential factors in consumers’ adoption of EVs are the land area, the use of
car/truck/van and, and the median home value. These factors are chosen based on the p-values.
Multiple regression analysis is performed in R and the results are provided in Table 1.

Based on the report of Clark [45], there are 2787 EVs in NYC as of December 2016. Figure 4 shows
the number of BEV and PHEV in the zip codes of each NYC borough ((a) through (e)). We combined
the numbers of BEVs and PHEVs for each zip code to use as local observability at the beginning of
the simulation.
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Table 1. Influential local-factors in EV adoption behavior.

Parameter Estimate Std. Error t Value Pr(>|t|)

(Intercept) 9.44 15.9 0.594 0.553534
pop −97,400 0.00546 −0.178 0.858661

popd −11,500 0.0000817 −1.403 0.16267
hu 0.00301 0.00277 1.084 0.280251

mhv 0.0000255 0.0000147 1.738 0.008437
la 7.86 2.16 3.648 0.000367

wa −0.284 23.5 −1.207 0.229384
ohu −237 0.0177 −1.34 0.182395
mhi −10,800 0.0000841 −1.281 0.202055
ma −17.9 0.344 −0.52 0.604067
gen 0.00456 0.00291 1.571 0.118294
rw −1960 0.00481 −0.408 0.684106
rb −1210 0.00487 −0.247 0.804964
ra −7000 0.0299 −0.234 0.815324
ras −1270 0.00486 −0.262 0.793924
rnh −14.8 0.11 −1.351 0.178874
roth 0.000123 0.00497 0.025 0.980256
fam 0.00314 0.00496 0.634 0.526823
sing −78,500 0.00354 −0.222 0.824763
nkid 0.00234 0.00383 0.611 0.541949
own 0.0225 0.0166 1.355 0.177377
rent 0.0207 0.0165 1.253 0.212281

wpop −14,400 0.000871 −0.166 0.86873
unpop −40,800 0.00115 −0.354 0.723624

ctv −2610 0.00144 −1.807 0.01287
pubt 0.000349 0.000966 0.362 0.718217

le −2000 0.00187 −1.065 0.288733
he −0.001743 0.00256 −0.681 0.496768

Observation 175
R-Square 0.7553
Adj R-Sq 0.6523

4.2. Utility Function Formulation

Rogers [16] indicates that new technology adoption in a new environment is influenced by the
degree of observability of the technology. Consumers are more inclined to adopt a new technology
after they actually observe others using it around themselves. We assume EVs as a new technology
when compared with fossil fuel powered vehicles [46]. Spatial remoteness or closeness will affect
consumers’ choice of adoption [16]. Subsequently, in local diffusion of EVs, observability and word of
mouth are influential factors. According to [25], there are studies that have defined a utility function
for EV adoption. Herein, we defined a utility function based on word of mouth as an observability
factor for each agent. It is characterized by three weighted elements. First, the influence of each
zip code on itself. This means how each zip code affects its population on adoption of another EV.
Second, how each zip code’s neighbors affect its adoption decision making. Third, how the whole NYC
influences each zip code’s decision process. The idea of using a weighted utility function is inspired
by [47]. The utility function is defined, as follows:

Uit = W1Xit + W2Xit + W3Xit (2)

where

• Uit: the utility value for zip code i at iteration t;
• W1 + W2 + W3 = 1; and,
• Xit: the number of EVs for zip code i in each weight elements in each iteration.
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In order to define neighbors of each zip code, we have defined a neighborhood radius.
When considering the coordinates of zip codes, and based on different trials and errors, we have
chosen 0.02 (decimal degrees—a unit that is being used in GIS to express latitude and longitude
of geographic coordinates) as the neighborhood radius. Different weight values between 0 and 1
represent different importance of observability factors. The weight values are selected after some
trials and errors considering other factors such as adoption threshold, reaching to an S curve shape,
and the defined neighborhood radius. We have chosen 8.9, 1.01, and 0.09 as W1, W2, and W3 values,
respectively, and they perform well in the proposed model. The Euclidian method is used to calculate
the neighborhood distances. After calculating the utility for each zip code, they are ordered based on
Rogers’ [16] adoption categories, which means that the higher the utility, the more likely they are to
adopt a new EV.

As the input values, we use neighborhood characteristics to define an adoption threshold model.
Also, current numbers of EVs in each zip code is used to define the utility function in the beginning
of the simulation. Zip codes with zero EV are randomly assigned to the next iteration, with 1 EV
as the beginning number. Then, Rogers’ model is applied to classify different adopters. After that,
we estimate the number of EVs for each year (from 2016 to 2050). The EV values that were obtained
from the simulation are used as the local adoption for each zip code. Afterwards, the required electricity
consumption for each zip code is calculated.

4.3. Agent-Based Approach

In this section, agents are defined and different assumptions are described. We consider each
zip code as an agent with different spatial characteristics. Each agent has an adoption threshold that
allows it to be recognized in different categories as defined by Rogers’ model. In addition, each agent
has a utility value based on the adoption rate (observability of EVs). The utility increases as more
agents adopt EVs. The observability effect could be from EVs in the zip code itself, from the zip code’s
neighbors, and from the whole NYC. The utility is the weighted value of these three components,
as described in Equation (2).

After calculating the utility values for each agent based on Equation (2) and putting the values in
order, the values were then placed in Rogers’ distribution curve. Consumers adjust to each category
and adopt a new vehicle based on the probabilities of the curve. The simulation is being continued
until the maximum iteration is met. The maximum number is when the saturation is reached in 2050.
Steps are described in the flowchart in Figure 5.

EV diffusion for each agent is calculated using Fisher and Pry’s model. Since this model provides
the rate of the innovation diffusion, we use the following equation proposed by [30] to obtain an
absolute number of EVs for each zip code.

Di f f usion(t) = local adoption× {1 + tanh[α(t− t50)]}/2 (3)

According to Equation (3), the di f f usion in each year t is obtained based on the local adoption,
α values, t, and t50. As we explained earlier in Equation (1), t50 is equal to t0 + T/2 (which is
2017 + 34/2 = 2034), tanh(·) is the hyperbolic tangent function. The local adoption in each zip code
is obtained from the ABM results. The α value needs to be determined. The α value is the slope
of the cumulative curve of EV diffusion over the years. We have defined an adoption threshold
(at) for each zip code using the significant factors that were obtained from the multiple regression
analysis. The coefficients of significant factors of median home values (a1), land area (a2), and use of
car/truck/van (a3) we obtained in Section 3 are used here to define the threshold for each zip code
using the following equation:

at = 0.0000255·a1 + 7.86·a2 − 0.00261·a3 + 9.44 (4)
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The obtained adoption thresholds follow a normal distribution that can be applied to the
Rogers’ [16] model to define five different categories of adopters. Different values for each category
have obtained from [30] with an average value equals to 0.2, as described in Table 2. Based on
this assignment, fewer values are given to the innovators and early-adopters when compared to
other groups. That means, the cumulative S-curve is steeper for these agents. These zip codes are
characterized by higher median home values, land area, and less use of other modes of transportation.
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Table 2. α values obtained by adoption threshold using Rogers’ model.

Adopter Category (% of Total) Adoption Threshold Score α

Innovator (2.5%) 1.45 ≤ at 0.1
Early-adopter (13.5%) 1.03 ≤ at ≤ 1.45 0.15
Early-majority (34%) 0.47 ≤ at ≤ 1.03 0.175
Late-majority (34%) 0.141 ≤ at ≤ 0.47 0.225

Laggards (16%) at < 0.141 0.25

Three different scenarios (low, medium, and high) are defined based on different maximum
adoption number of EVs in the simulation. The medium scenario is in line with a market share of
30% of car fleet when considering NYC population growth. Low and high penetrations of EVs are
considered as other scenarios so that we are able to analyze other possibilities. In each run, all of the
agents will be updated and the total number of EVs is enumerated to update the whole population
and to rerun the simulation. The simulation is run until the planning horizon timeline is met.

5. Results

In this section, the outcome of the simulation is used to estimate electricity consumption by EVs in
each zip code. It is shown that under the low, medium, and high penetration scenarios, the cumulative
number of EVs in 2035 is equal to 485,992, 694,275, and 1,133,982, respectively. These values in 2050
are 748,150, 1,068,785, and 1,745,681, respectively. The gradually increasing trends of EVs and the
associated energy consumption over years are illustrated in Figure 6. This figure is the cumulative
result of all the 175 zip codes of the NYC. For each zip code, the diffusion curves have similar shapes
as those shown in Figure 6, but with much smaller magnitudes.
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The average electricity consumption by each EV is approximately 1.5 MWh per year [48]. Thereby,
by multiplying this value by the number of EVs, the estimated energy consumption by EVs is calculated.
The zip-code level distribution of energy consumption in 2035 and 2050 are shown in Figures 7 and 8,
respectively. These figures illustrate ten levels of electricity consumption for all the 175 zip codes.
Each figure shows the results of estimated electricity consumption with low, medium, and high
EV penetrations.
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For the cases of 2035 (i.e., Figure 7), in the low diffusion scenario, all the zip codes have less than
6125 MWh of energy consumption. In the medium diffusion scenario, all the zip codes have less than
8000 MWh of energy consumption. In the high diffusion scenario, all the zip codes have less than
11,300 MWh of energy consumption. Figure 6 shows that the cumulative energy consumption in 2035
in low, medium, and high EV diffusion scenario are 728,989 MWh, 1,041,412 MWh, and 1,700,974
MWh, respectively.

For the cases of 2050 (i.e., Figure 8), in the low diffusion scenario, all the zip codes have less than
10,287 MWh of energy consumption. In the medium diffusion scenario, all the zip codes have less than
14,503 MWh of energy consumption. In the high diffusion scenario, all the zip codes have less than
23,020 MWh of energy consumption. Figure 6 shows that the cumulative energy consumption in 2050
in low, medium, and high EV diffusion scenario are 1,119,368 MWh, 1,607,833 MWh, and 2,617,912
MWh, respectively. Such additional energy needs may put a burden on the exiting power system.
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Table 3 provides the number of zip codes in different categories of energy consumption for each
scenario in 2035 and 2050. In 2035, only in high penetration scenario there are some zip codes with
energy consumption exceeding 9675 MWh. In 2050 low scenario, all of the zip codes have the energy
consumption less than 15,000 MWh. Most of them have an energy consumption between 4350 MWh
and 9675 MWh. In 2050 medium scenario, about 64% of zip codes have electricity consumption less
than 9675 MWh. In 2050 high scenario, all zip codes have energy consumption higher than 9675 MWh,
43% of the zip codes have an electricity consumption higher than 15,000 MWh, and there are a few zip
codes with energy consumption higher than 20,325 MWh.

Table 3. Number of zip codes in each scenario with energy consumption.

Annual EC (MWh)

Low Medium High

2035
Zip Code

2050
Zip Code

2035
Zip Code

2050
Zip Code

2035
Zip Code

2050
Zip Code

# % # % # % # % # % # %

EC ≤ 9675 175 100 172 98 175 100 113 64 165 94
9675 < EC ≤ 15, 000 3 2 62 36 10 6 98 57

15, 000 < EC ≤ 20, 325 69 39
20, 325 < EC 8 4

Total 175 100 175 100 175 100 175 100 175 100 175 100
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6. Conclusions and Future Work

This paper identifies the zip-code level EV diffusion and the associated electricity consumption in
New York City, U.S. The spatial distribution of energy can bring awareness about when and where
electricity is needed to cover the increasing demand from EVs. The diffusion of EVs will affect the
zip-code level grid infrastructure. The case study using the established model on NYC demonstrates
that the energy consumption of EVs will have a substantial increase over the next few decades.
Widespread use of EVs in populated areas like NYC requires a more established grid infrastructure
with additional capacity. The results provide insights to grid administrators and decision-makers to
animate the progress to secure energy and transportation systems. Results can be used for strategic
planning regarding investment in grid infrastructure as well. The proposed research can serve as a
fundamental building block of the future research on EVs integration in smart grids, which aim to
improve the quality, reliability, and sustainability of power systems, while satisfying the needs of all
the participants.

An extension of this work could be considering the supply-side and comparing two sides (supply
and demand) to estimate overload risks while the number of EVs increases. Another effort to refine
the established model could be to consider the street block level distribution of EVs over NYC or other
populated areas. Insufficient data currently prevent us from performing a daily assessment of the
diffusion model, and our results come up with an annual estimation of EV diffusion and accordingly
the energy consumption. In the future, the block-level and daily estimation could potentially be
applied to the framework to provide finer-grained insights.
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