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Abstract: The operation problem of a micro-grid (MG) in grid-connected mode is an optimization
one in which the main objective of the MG operator (MGO) is to minimize the operation cost with
optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use
incentive-based demand response programs (DRPs) to pay an incentive to the consumers to change
their demands in the peak hours. Moreover, the MGO forecasts the output power of renewable
energy resources (RERs) and models their uncertainties in its problem. In this paper, the operation
problem of an MGO is modeled as a risk-based two-stage stochastic optimization problem. To model
the uncertainties of RERs, two-stage stochastic programming is considered and conditional value
at risk (CVaR) index is used to manage the MGO’s risk-level. Moreover, the non-linear economic
models of incentive-based DRPs are used by the MGO to change the peak load. The numerical studies
are done to investigate the effect of incentive-based DRPs on the operation problem of the MGO.
Moreover, to show the effect of the risk-averse parameter on MGO decisions, a sensitivity analysis is
carried out.

Keywords: demand response programs; micro-grid; renewable energy resources; risk-management;
two-stage stochastic programming

1. Introduction

1.1. Motivation and Aim

Distributed energy resources (DERs) are a suitable solution to address economic, environmental,
and technical issues of power systems.

DERs consist of distributed generations (DGs), energy storages (ESs), and demand side
management (DSM), which are utilized to meet the demand locally in distribution networks [1].
The MG concept is proposed to operate these resources properly in both grid-connected and
stand-alone modes [2,3].

Recently, several studies have been done in the field of MGs, including control and stability,
voltage imbalance, fault current limit, the impact of maximum power point tracking (MPPT)
of renewable energy resources (RERs), dynamic operation and so on. Dynamic operation and control
of MGs are studied in [4]. A designed novel intelligent damping controller (NIDC) is used to improve
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the transient stability in a hybrid power multi-system in [5]. The MPPT of various types of DERs are
explained and discussed in [6]. Various fault current analyses of MGs are investigated using novel
methods and algorithms in [7,8]. Energy management and optimal operation of MGs using stochastic
programming and robust methods are presented to control RER uncertainties in [9,10]. Connection
decisions of transformers are done using a modified optimization approach in [11]. Regarding the
mentioned subjects related to the MG studies, one of the main problems of MGs is to meet its demand
with minimum cost during the operation period with optimal scheduling of its local resources and
optimal energy trading with the main grid in the grid-connected mode. This problem is modeled from
the viewpoint of the MG operator (MGO) as an optimization problem.

In this context, demand response programs (DRPs) are suitable tools for the MGO to decrease the
demand in the peak hours and minimizing its operation cost. DRPs are divided into the incentive-based
and the time-based programs which of which detailed description are presented in [12]. The MGO can
use the incentive-based DRPs to pay incentives to the consumers to reduce or cut their consumptions in
the peak hours. On the other hand, MG loads (MGLs) consist of inelastic loads and elastic (controllable)
ones. Controllable loads can participate in these DRPs to decrease or shift their consumption to achieve
the revenue from these programs.

Due to the high penetration of RERs and uncertainties of their output power, the MGO faces
a high risk in its operation problem. The aim of this paper is to model the operation problem of an MG
considering the different non-linear economic models of DRPs as well as the uncertainties of RERs.
For this purpose, the problem is modeled as a risk-based two-stage stochastic optimization one which
uses the conditional value at risk (CVaR) index to control the uncertainties as well as their impacts on
the MGO decisions.

1.2. Literature Review and Contributions

The operation problem of MGs in the presence of DRPs and RERs is investigated in many
studies. In [13], an optimal scheduling of an MG consisting of wind turbine (WT), photo-voltaic (PV)
array, and ES is proposed to minimize the operation cost while the technical constraints are satisfied.
The impact of different weather conditions on the operation cost of a renewable energy-based MG is
investigated in [14]. The MG’s operation problem is modeled considering RERs and incentive-based
DRP in [15] in which the main objective of the MGO is to minimize the fuel cost of DGs with DRPs.
Energy management of an MG consisting of PV, fuel cell (FC), and battery is discussed in [16].
The operation problem of MGs is investigated using deterministic approaches in [13–16] in which the
uncertain parameters are not modeled in the problems.

In [17], the probabilistic approach is used to model the energy management of an MG considering
uncertainties of demand, energy price, wind speed, and solar radiation. Time series data is employed
to model the uncertainties of wind speed and demand in the operation problem of MGs. The operation
problem of an MG in stand-alone mode is modeled using probabilistic approach in [18]. Moreover,
in [19], to mitigate the impact of RER’s uncertainties, a novel approach to optimal energy and reserve
scheduling of DGs and ESs is proposed. In [20], the stochastic approach is used to model the operation
problem of an MG consisting of WT, PV, ES, and responsive loads. The DRPs and RERs are modeled in
the operation problem of an MG considering the uncertainties of wind speed and solar radiation [21].
The uncertainties of WT, PV, and load are modeled in the operation problem of an MG using interval
optimization approach in [22]. Although the MGO faces high risks in decision making in the presence
of RERs, the appropriate models are not proposed to deal with these uncertainties in the literature.
For this purpose, in this paper, a two-stage stochastic optimization approach is proposed to model the
RERs uncertainties. The CVaR index is applied to the proposed model to control the uncertainties as
well as the MGO’s risk-level in the operation decisions.

The non-linear economic models of the time-based DRPs are proposed in [23] and they are
extended in [24] as the form of the incentive-based DRPs to apply to the economic dispatch problem.
It should be noted that the mentioned DRPs models have been not applied to the operation problem
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of MGs. Therefore, in this paper, the operation problem of an MG consisting of RERs, DGs, and ES
is modeled considering the non-linear economic models of incentive-based DRPs. The non-linear
economic models of the time-based DRPs in [23] are developed to model the incentive-based DRPs in
the operation problem of MGs.

Therefore, considering the MG operation models proposed in the literature and described in
Table 1, the main contributions of this paper are as follows:

1. Modeling the operation problem of an MG considering the non-linear economic models of the
incentive-based DRPs and uncertainties of RERs as a risk-based two-stage optimization problem.

2. Control the effects of RERs uncertainties on the optimal decisions of the MGO using the
CVaR index.

Table 1. Comparison between the micro-grid (MG) operation models reported in the literature.

Ref. MG‘s Resources The Type of Model Demand
Response Model Risk Management Approach

[1] PV, WT, DG, ES, DR Probabilistic Load shifting (linear) No Mixed Integer Linear
Programming (MILP)

[2] PV, WT, DG, ES Probabilistic - No MILP

[3] PV, WT, DG, ES, DR One-stage stochastic Interruptible load
(linear) Yes MILP

[14] PV, DG, ES Deterministic - No Non-Linear
Programming (NLP)

[15] PV, WT, DG, DR Deterministic Incentive-based
(linear) No NLP

[16] PV, DG, ES Deterministic - No MILP

[17] PV, WT, DG ES
(stand alone MG) Probabilistic - No NLP

[18] Load shedding One-stage stochastic - Yes MILP

[20] PV, WT, DG, ES, DR Probabilistic Price-based (linear) No MIP

[21] PV, WT, DG, ES, DR Probabilistic
Incentive-based

payments as price offer
packages (linear)

No NLP

This paper PV, WT, DG, ES, DR Two-stage stochastic Incentive-based
(linear and non-linear) Yes MILP/MINLP

The rest of the paper is organized as follows. Section 2 describes the problem description.
The problem is formulated in Section 3. The numerical results are represented in Section 4 and the
conclusion is given in Section 5.

2. Problem Description

The MG consists of PV array, WT, micro-turbine (MT), FC, and ES, with all these resources
connected to the low voltage network as shown in Figure 1. Moreover, the MG is connected to
the distribution network via a distribution transformer to make energy interact with distribution
company (Disco). Disco participates in the wholesale energy market to purchase its required energy.
For this purpose, when Disco acts as a price-taker player in the day-ahead market, it forecasts the
market prices for the next day using different forecasting methods reported in detail in the literature.
Then, Disco determines the price of trading energy with the MG as the percent of these forecasted
prices considering the power losses of the transmission and distribution networks and its profit.
Regarding these prices, the MGO schedules its power resources and decides about purchased power
from Disco since the main objective of the MGO is to supply the MGL with minimum costs as shown
in Figure 2. Then Disco purchases this required energy from the market. This process is done in the
previous day of the real operation and the results are sent to the power system and the distribution
system operators. The power system and the distribution system operators are responsible for meeting
the required energy of Disco and the MG, respectively. In the proposed model, the economic viewpoint
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of Disco is considered. To model the technical and environmental aspects of Disco, Disco will be
considered responsible for supplying the demand of the MG with optimal scheduling of DERs and
purchasing power from the market. Also, in the presence of the RERs in the distribution network,
Disco purchases lower energy from the market to meet the demand of the MG and other demand
consumption of consumers.
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To model the uncertainties of the output power of WT and PV array, the operation problem of
the MGO is modeled as a risk-based two-stage stochastic optimization problem as shown in Figure 2.
In this problem, the decision variables of the first-stage problem are power exchange with Disco and
DRPs, which are independent from scenarios. The decision variables of the second-stage problem are
output power of RERs and DGs and power charging/discharging of the ES, which depend on scenarios;
the MGO decides about these variables in each scenario based on the optimal amount of the first-stage
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decision variables. In this context, the MGO can mitigate the impact of the RERs’ uncertainties and
manage its risk by changes the amount of decision variables in the first-stage decisions. Moreover,
the MGO with high risk prefers the second-stage decisions to achieve a lower total operation cost.
The proposed framework for the MGO which is shown in Figure 2 is modeled as a mathematical
optimization problem in the next section.

3. Mathematical Modeling

In this section, mathematical modeling of the operation problem of the grid-connected MG is
presented in detail as follows.

3.1. Assumptions

Two assumptions are considered in this model as follows:

• The RERs’ uncertainties are only modeled in the MG operation problem and modeling the
equipment failures; the factors that make interrupt the MG connection to the distribution network
are beyond the scope of this paper.

• It is assumed that the end users are equipped with smart meters and the appropriate
communication infrastructure is designed between the MGO and end-users to implement
the DRPs.

3.2. Demand Response Models (DRMs)

The demand response mechanism used in this paper is an interruptible/curtailable (I/C) service
as one of the incentive-based demand response programs described in [4]. To consider responsive
loads at the customer’s side, the elasticity is defined as the sensitivity of responsive loads to the price
in Equations (1)–(3) as follows:

Elasticity =
∂D/Dinitial

∂π/πinitial =
∂D
∂π

πinitial

Dinitial (1)

where Dinitial , πinitial are the initial load and initial price before defining a new price, and D is the
demand level after introducing the new price and π is the new price.

Elasticityt,t =
DDRM

t − Dinitial
t

πPBDR
t − πinitial

t
× πinitial

t

Dinitial
t

≤ 0 (2)

Since some loads such as lighting have single period sensitivity, they are not transferred to the
other time periods and they are defined as “self-elasticity” and have negative values. Equation (2)
is the self-elasticity at time t.

Elasticityt,t′ =
DDRM

t − Dinitial
t

πPBDR
t′ − πinitial

t′
×

πinitial
t′

Dinitial
t

≥ 0 (3)

Other loads can be transferred to other periods and have multi-period sensitivity, hence, they are
called “cross-elasticity” and they have positive values. Equation (3) is the cross elasticity between
time t and t′, where DDRM

t and πPBDR
t are the demand level and the new electricity price after

implementation of DRPs.
According to Equations (4)–(7), the cross-elasticity defined in Equation (3) is used to determine

the amount of the MG’s demand after implementing each type of the DR model. The economic models
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of responsive loads are presented in four types including linear, power, exponential, and logarithmic,
respectively as follows:

DDRM−lin
t = Dinitial

t ×
(

1 + ∑
t′

πPBDR
t′ − πinitial

t′ + At′ + pent′

πinitial
t′

× Elasticityt,t′

)
∀t (4)

DDRM−Pow
t =

Dinitial
t ×∏

t′

(
πPBDR

t′ + At′ + pent′

πinitial
t′

)Elasticityt,t′
 ∀t (5)

DDRM−EXP
t = Dinitial

t × Exp

(
∑
t′

πPBDR
t′ − πinitial

t′ + At′ + pent′

πinitial
t′

× Elasticityt,t′

)
∀t (6)

DDRM−Log
t = Dinitial

t ×
(

1 + ∑
t′

(
ln

(
πPBDR

t′ + At′ + pent′

πinitial
t′

))
× Elasticityt,t′

)
∀t (7)

3.3. Modeling Uncertainties

To model the uncertainties of the output power of RERs, the Weibull and irradiance distribution
models are used as probability distribution functions (PDFs) of wind speed and solar radiation,
respectively. Then, 10,000 scenarios are generated and are reduced to 15 scenarios using the
General Algebraic Modeling System/Scenario Reduction (GAMS/SCENRED) package (24.1.2, GAMS
Development Corporation, Washington, DC, USA) and the fast-forward scenario reduction technique.
These scenarios determine the stochastic output power of the WTs and PVs and are considered as
the operation scenarios. Each scenario consists of wind speed and solar radiation data for the time
period of operation. Then, the output power of RERs is calculated in each scenario as presented in the
next sub-section.

3.4. RERs Model

The output power of WT is calculated using the wind speed in each scenario, the WT’s power
curve, and other characteristics of the WT. According to references [25,26], to model wind speed
behavior, a Rayleigh distribution function is used. In Weibull distribution when the shape index is
equal to 2, it changes to the Rayleigh distribution. For specific wind energy system, the output power
is defined in [21].

PV cells convert the solar irradiance energy to electrical energy, that the output power of them in
each scenario depends on the number of cells, direction of cells, temperature and weather conditions
which are given in [21].

3.5. Operation Cost

The expected total cost (ETC) and the total cost of the MG in each scenario is given as follows:

ETC =
S

∑
s=1

ρscosts (8)

costs =
T

∑
t=1

[
G

∑
g=1

CDG
g PDG

g,t,s + Cgrid−in
t Pgrid−in

t − Cgrid−out
t Pgrid−out

t + CESPES
t,s + S

(
DDRM

t

)]
∀s (9)

The first term of Equation (9) is the operation cost of DGs. The second and third terms model the
cost/revenue of purchasing/selling electrical energy from/to Disco, and the fourth term represents
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the operation cost of the ES. Since the operation cost of RERs is very low, they are not modeled in the
operation cost. The last term is the cost of DRPs consisting of three parts as follows:

S
(

DDRM
t

)
= S1

(
DDRM

t

)
+ S2

(
DDRM

t

)
+ S3

(
DDRM

t

)
∀t (10)

S1

(
DDRM

t

)
= −πPBDR

t DDRM
t ∀t (11)

S2

(
DDRM

t

)
= At

(
Dinitial

t − DDRM
t

)
∀t (12)

S3

(
DDRM

t

)
= pent

((
Dinitial

t − DDRM
t

)
− Dcontract

t

)
∀t (13)

The first term of Equation (10) is related to the revenue from selling power to the MGL after
implementation of DRPs considering different DRMs. The second term is used to model the total
payment to the responsive MGL due to its participation in voluntary incentive-based DRPs in peak
period. The MGO contracts with end-users which participate in incentive-based DRPs in a previous
day before the real operation. In the real operation, the energy consumptions by end users in each
hour are measured by smart meters and are sent to the MGO via a designed communication system.
Then, the difference between the initial demand (Dinitial

t ) and the demand after implementation
of DR (DDRM

t ) is compared with the amount of demand assigned in the contract to be curtailed
(Dcontract

t ) and the third term is used to model the total penalty of customers that participate in forced
incentive-based DRPs and the responsive MGL penalized due to not decreasing their loads.

3.6. Risk Management

In this paper, the CVaR index is used to control the impact of uncertain parameters on the
operation problem of the MGO. The CVaR at the α confidence level (α-CVaR) can be defined as the
expected cost in (1− α)× 100% worst scenarios as follows [27]:

CVaR = δ− 1
1− α

NS

∑
S=1

ρs λs (14)

λs ≥ δ− costs ∀s (15)

λs ≥ 0 ∀s (16)

where δ, α, Ns, ρs, and λs are the value at risk, confidence level, number of scenarios, probability
of each scenario, and an auxiliary positive variable equal to value at risk minus cost at each
scenario, respectively.

3.7. Objective Function

In this paper, the decision-making framework of the MGO is modeled as a risk-based two stage
stochastic model. The objective function of the model is to minimize the ETC and the expected cost of
(1− α%) of the worst scenarios. The objective function is as follows:

Minimize
S

∑
s=1

ρscosts + βCVaR (17)

where β is the risk aversion parameter. The MGO is risky when β is equal to zero and with increasing
β, the MGO becomes a more risk-averse player.
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3.8. Equality and Inequality Constraints

Power Balance Constraint

The power balance between MG’s energy resources and the MGL is defined as follows:

G

∑
g

PDG
g,t,s + PWT

t,s + PPV
t,s + Pgrid−in

t + PES
t,s = DDRM

t + Pgrid−out
t ∀t, s (18)

Upper/Lower Output Power Limits of the DGs:

PDG
g ≤ PDG

g,t,s ≤ PDG
g ∀g, t, s (19)

Minimum/Maximum Output Power of WTs:

0 ≤ PWT
t,s ≤ PWT

t,s ∀t, s (20)

Maximum/Minimum Output Power of PVs:

0 ≤ PPV
t,s ≤ PPV

t,s ∀t, s (21)

Constraints (20) and (21) are used to limit the upper bounds of the output power of the RERs
(i.e., PV and WT). The MGO uses these resources regarding its risk-aversion parameter.

Power Exchange Limits between the MG and the Main Grid:

0 ≤ Pgrid−in
t ≤ Pgrid−inugrid

t ∀t (22)

0 ≤ Pgrid−out
t ≤ Pgrid−out

(
1− ugrid

t

)
∀t (23)

The Energy Storage Constraints:

PES
t,s = PES−charge

t,s + PES−dicharge
t,s ∀t, s (24)

0 ≤ PES−charge
t,s ≤ PES−charge

t,s uES
t,s ∀t, s (25)

0 ≤ PES−discharge
t,s ≤ PES−discharge

t,s

(
1− uES

t,s

)
∀t, s (26)

EES ≤ EES
t,s ≤ EES ∀t, s (27)

EES
t.s = EES

t−1.s + ηESPES−charge
t,s −

PES−discharge
t,s

ηES ∀t, s (28)

where Equation (24) is the output power of ES consisting of power charging/discharging, Equations (25)
and (26) are the limitations of power charging/discharging of ES, and uES

t,s is a binary variable
which shows that the ES cannot charge and discharge in time step t and scenario s, simultaneously.
Energy stored in ES and its limitations are defined in Equations (27) and (28).

3.9. The Limitation of the Adopted Model

The above model has the following limitations:

• The MG equipment failure rate and its uncertainties are not considered.
• The proposed scenario generation approach only used to model the uncertainties of RERs and

cannot model the uncertainties of parameters with unknown PDF.
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The operation problem of the MG is modeled as a mixed-integer linear program (MILP)
considering the linear model of DR and as mixed-integer non-linear programs (MINLP) considering
the other types of DR models. The model is implemented in GAMS environment and solved by CPLEX
and SCIP solvers on a Pentium IV, 2.6-GHz Core i7 with 6GB RAM.

4. Numerical Results

4.1. Input Data

The operation problem time period is 24 h. The forecasted initial MGL and the output power of
WT and PV are given in Figures 3–5, respectively [28]. The output power data of the RERs consisting
of the forecasted data and the stochastic output power in each scenario are shown in Figures 4 and 5.
The operation problem of the MG is solved by MGO in 15 scenarios regarding the stochastic output
power of the RERs.

Disco forecasts electricity prices of the wholesale day-ahead energy market and sends the
prices of trading energy to the MGO. Then, the MGO decides on the purchased power from
Disco according to these prices. The electricity prices of a sample day which is extracted from
Pennsylvania-Jersey-Maryland (PJM) market is considered as the forecasted prices by Disco as shown
in Figure 6 [21].

Two types of conventional DGs consisting of FC and MT are considered as MG’s DGs.
Characteristics of these DGs, characteristics of the ES and other technical data consisting of the
capacity of the MG responsive load, the price and the maximum amount of the power exchange
between the MG and Disco, and the incentive/penalty payment/cost of the DRPs are given in Table 2.
The maximum capacity of the distribution transformer is 300 kW. If the maximum energy consumed by
a residential consumer is considered equal to five kilowatts, this MG can meet the energy consumption
of approximately 60 residential consumer. Moreover, the self- and cross-elasticity related to DRMs are
represented in Table 3 [4].Energies 2018, 11, x FOR PEER REVIEW  9 of 16 
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Table 2. Characteristics of the DGs, ES and other MG technical data.

Type of DG Marginal Cost (¢/kWh) Pmin (kW) Pmax (kW)

MT 4.67 6.00 60.0
FC 3.40 3.00 60.0

Number of ES Operation cost (¢/kWh) EES (kWh) EES (kWh) PES−charge
t,s /PES−discharge

t,s (kW) ηES

1 2 9 50 30 0.95

Pgrid−in/Pgrid−out

(kW)
Capacity of the MG

responsive loads Cgrid−in
t /Cgrid−out

t (¢/kWh)
The incentive/penalty

payment/cost

300 30% MG load (MGL) 1.2 of the forecasted electricity market prices
by Disco 30% (Cgrid−in

t /Cgrid−out
t )

Table 3. Self and cross elasticity related to DRMs.

Peak Off-Peak Low Load

Peak −0.100 0.016 0.012
Off-peak 0.016 −0.100 0.010
Low load 0.012 0.010 −0.100
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Figure 6. The forecasted electricity market prices by Disco.

4.2. Case Studies

The initial demand and the load profile of the MG after applying various DRMs are shown in
Figure 7. According to the results, the linear model has the highest and the power model has the
lowest load reduction among the proposed four DRP models.

Other results related to the impact of the various types of the DRMs on the MG’s decision variables
are given in Table 4. The first-stage decisions of the MGO are changed in the presence of DRPs. In fact,
the first-stage decisions consisting of the power trading with the main grid (Disco) and load reduction
are different in the four types of DR models. According to Table 4, in the DR power model, since the
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less load reduction is occurred, the purchased power from the main grid by the MGO is increased
and the power sold to the main grid is decreased. Therefore, its revenue from implementation of DR
power model is increased and also its ETC is greater than the other DR models. On the other hand,
since the highest load reduction occurred in the linear model, the highest sold power to the main grid
is obtained in this model. In other words, using the highest amount of load reduction due to paying
the incentive cost to the MG’s demand by the MGO does not necessarily guarantee the highest profit
for the MGO.
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Figure 7. MG load consumption without/with using DRMs.

Table 4. Output results of the MG operation problem in the fourth scenario.

Linear Model Power Model Exponential Model Logarithmic Model

∑
t

Pgrid−in
t (kW) 642.650 677.780 666.785 657.579

∑
t

Pgrid−out
t (kW) 352.385 290.973 313.450 323.568

∑
t

PWT
t,s (kW) 502.170 502.170 502.170 502.170

∑
t

PPV
t,s (kW) 174.372 174.372 174.372 174.372

∑
t,g

PDG
g,t,s (kW) 1322.038 1322.038 1322.038 1322.038

∑
t

PES−charge
t,s (kW) 81.916 81.916 81.916 81.916

∑
t

PES−dcharge
t,s (kW) 8.474 8.474 8.474 8.474

Total load reduction (kW) 494.913 398.37 431.842 451.167
Expected total cost (ETC) (¢) −43.351 −43.631 −43.528 −43.482

∑
t

s
(

DDRM
t

)
(¢) −90.157 −95.724 −93.733 −92.730

The ETC of the MGO is presented in Table 5 wherein four types of DRP models and two
conditions—with and without applying DRPs on the proposed model—are considered. As shown in
this table, the ETC increases considering DRP in the operation problem of the MGO and also between
different types of the DR models; the ETC in the DR power model has the highest profit for the MGO.

Table 5. Sensitivity of ETC to the DRP for each type of DRM.

DRMs Linear Model Power Model Exponential Model Logarithmic Model

ETC (¢)
Without DR −42.618 −42.618 −42.618 −42.618

With DR −43.351 −43.631 −43.528 −43.482

The total operation cost of the MGO in all scenarios in the DR power model is shown in Table 6.
As mentioned, (1− α)% of the scenarios are defined as the worst scenarios. In this paper, regarding
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the amount of the confidence-level (α) which is equal to 0.8, three scenarios can be named as the worst
ones (scenarios 2, 3 and 8).

Table 6. Total cost of MG in each scenario in DR power model.

# Scenario 1 2 3 4 5

Total cost (¢) −43.054 −41.405 −42.057 −43.666 −43.222
# Scenario 6 7 8 9 10

Total cost (¢) −44.741 −46.351 −41.814 −42.663 −43.642
# Scenario 11 12 13 14 15

Total cost (¢) −43.019 −44.558 −45.897 −42.907 −43.087

The power balance of the MG in the DR power model is shown in Figure 8. In hours 12–19 with
high energy prices, the purchased power from the main grid by the MGO is zero. Moreover, due to load
reduction in these hours and decreasing the demand of MG, the power generation by conventional
DGs increases and the MGO sells energy to the main grid. On the other hand, in hours 1–10, 23,
and 24 with low energy prices, the purchased power by the main grid increases.Energies 2018, 11, x FOR PEER REVIEW  12 of 16 
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Figure 8. Share of power resources to supply MGL (DR power model).

4.3. Sensitivity Analysis

The effect of the risk parameter on the objective function of the MGO in different models of DRP is
investigated and the results are shown in Figure 9. In all models, when the risk parameter is increased,
the ETC is increased (minus ETC is decreased) and the CVaR is decreased (minus CVaR is increased).
This behavior of the MGO occurs because when the risk parameter increases, the MGO is more risk
averse and thus its CVaR is decreased.

The effect of the risk-aversion parameter on the optimal decision making of the MGO in different
DRMs is given in Table 7. In other words, the risk-averse (β > 0) MGO changes its first-stage decisions
with the aim of achieving less CVaR (expected cost of the worst scenarios) through controlling the
results of the MG operation problem in scenarios 2, 3, and 8. When the value of the risk-aversion
parameter increases, the MGO increases the purchased power from the main grid and decreases the
sold power to the grid. On the other hand, the utilization of DERs is increased so that the power
generation of DGs and power charging/discharging is increased. However, due to uncertainties of
WT and PV, utilization from this resource is decreased. Therefore, the results show that when the risk
parameter increases, the MGO is more risk averse and so its ETC is decreased in all DRMs. It should
be noted that the decision variables related to the amount of the power resources in Table 7 represent
the total value in the 24 h of the fourth scenario and the ETC represents the expected value in the 24 h
of all scenarios.
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Figure 9. Sensitivity of ETC and conditional value at risk (CVaR) to the risk aversion parameter for
each type of DRM: (a) Linear DRM; (b) Power DRM; (c) Logarithmic DRM; and (d) Exponential DRM.

Table 7. Sensitivity of output results of the MG operation problem to risk-aversion parameter in the
fourth scenario.

Linear Model Power Model Exponential Model Logarithmic Model

β = 0 β = 1 β = 100 β = 0 β = 1 β = 100 β = 0 β = 1 β = 100 β = 0 β = 1 β = 100

∑
t

Pgrid−in
t (kW) 642.650 654.603 655.569 677.780 689.734 690.700 666.785 678.739 679.705 657.579 669.533 670.499

∑
t

Pgrid−out
t (kW) 352.385 352.385 350.823 290.973 290.973 289.410 313.450 313.450 311.887 323.568 323.568 322.005

∑
t

PWT
t,s (kW) 502.170 502.170 497.857 502.170 502.170 497.857 502.170 502.170 497.857 502.170 502.170 497.857

∑
t

PPV
t,s (kW) 174.372 174.372 174.372 174.372 174.372 174.372 174.372 174.372 174.372 174.372 174.372 174.372

∑
t

PDG
g,t,s (kW) 1322.038 1309.97 1311.20 1322.038 1309.97 1311.20 1322.038 1309.97 1311.20 1322.038 1306.97 1311.20

∑
t

PES−charge
t,s (kW) 81.916 83.051 88.740 81.916 83.051 88.740 81.916 83.051 88.740 81.916 83.051 88.740

∑
t

PES−dcharge
t,s (kW) 8.474 9.498 14.633 8.474 9.498 14.633 8.474 9.498 14.633 8.474 9.498 14.633

ETC (¢) 494.913 −43.318 −43.237 398.37 −43.597 −43.517 431.842 −43.495 −43.414 451.167 −43.449 −43.368
∑
t

s
(

DDRM
t

)
(¢) −43.351 −90.157 −90.157 −43.631 −95.724 −95.724 −43.528 −93.733 −93.733 −43.482 −92.730 −92.730

5. Conclusions and Future Works

In this paper, a risk-based two-stage stochastic optimization approach is employed to model
the operation problem of a grid-connected MG in the presence of DERs as well as the non-linear
economic models of the incentive-based DRPs. Risk measurement is considered in the model to control
uncertainties of the RERs as well as managing decision-making of the risk-averse MGO. The main
conclusions from the proposed model obtained from numerical studies are as follows:

• The DRMs have various impacts on the MGL profile and the first-stage decisions of the MGO
wherein the power model has the highest profitable model for the MGO.

• The risk-averse MGO and the risky MGO prefer the first-stage and the second-stage decisions in
the proposed two-stage problem, respectively.
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• The risky MGO (risk neutral MGO) uses the whole capacity of RERs to meet its demand due to
their low operation costs. On the other hand, the risk-averse MGO uses the lower output power
of the RERs to control their uncertainties.

• In the presence of the MG, the energy mixes of an urban city ae changed so that Disco as the body
responsible for supplying the energy consumption of the urban city can meet its required energy
from the MG besides purchasing energy from the main grid.

The proposed approach in this paper to model the operation problem of MGs can be extended in
future works as follows:

• Modeling the MG operation problem in cooperation with Disco considering the objective functions
of both decision makers, i.e., Disco and the MG.

• Modeling the interaction between the MG with other decision makers in distribution networks
including other MGs, retailers, various types of aggregators, and virtual power plants.

• Modeling several MGs in the form of an MG aggregator and its participation in the wholesale
energy markets.

• The proposed model in this paper can be converted to a real-time application in which the
operation problem of the MG can be modeled in the day-ahead and the real-time operation
simultaneously. In this model, the stochastic optimization problem is changed so that the
first-stage decision variables of the MGO, which are determined in the previous day of the
operation, are purchased power from Disco and load interruption/shifting. The second-stage
decision variables are determined considering the occurrence of the scenarios in real time,
consisting of purchased power from Disco in real time, the power generation of DGs, and
power charging/discharging of the battery.
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Nomenclature

Acronyms
CVaR Conditional value at risk
DER Distributed energy resources
DG Distributed Generator
DR Demand response
DRM Demand response model
DRP Demand response program
ES Energy storage
MG Micro-grid
MGL Micro-grid load
PBDR Price-based demand response
PSO Particle Swarm Optimization
PV Photovoltaic System
RER Renewable energy resources
WT Wind turbine
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Indices and sets
g, G Index and set of DG
s, S Index and set of scenario
t, T Index and set of time period
Variables
DDRM

t The amount of MGL considering each type of DRM (kW)
EES

t,s Energy storage of ES (kWh)
PES

t,s Power charging/discharging of ES (kW)

PES−charge
t,s Power charging of ES (kW)

Pgrid−in
t The amount of power purchased from main grid (kW)

Pgrid−out
t The amount of selling power to main grid (kW)

PWT
t,s The output power of WTs (kW)

PPV
t,s The output power of PVs (kW)

PDG
g,t,s The output power of DG (kW)

PES−dcharge
t,s Power discharging of ES (kW)

S
(

DDRM
t

)
Revenue from using DRPs (¢)

S1
(

DDRM
t

) Revenue from selling power to MGL after (and before) considering
DRPs (¢)

S2
(

DDRM
t

)
Total incentive payment (¢)

S3
(

DDRM
t

)
Total penalty payment (¢)

ugrid
t

Binary variable (if equal to 1; MG purchases power from main grid and
if equal 0, MG sells power to it)

uES
t,s Binary variable (if equal to 1, ES is charging and equal 0 for otherwise)

Parameters
At Incentive cost of DRPs (¢)

Cgrid−in
t Cost of power purchased from main grid (¢/kW)

Cgrid−out
t Revenue from selling power to main grid (¢/kW)

CES, CDG
g Operation cost of ES and DGs (¢/kW)

Dcontract
t Value of demand assigned in the contract to be curtailed in DRPs (kW)

Dinitial
t Initial demand level (kW)

Elasticity Price elasticity of responsive load ($)

EES (EES) Minimum (maximum) capacity of ES (kWh)

PES−charge Maximum power charging of ES (kW)

PES−dcharge Maximum power discharging of ES (kW)

Pgrid−out Maximum selling power to main grid (kW)

Pgrid−in Maximum purchased power from main grid (kW)

PWT
t,s maximum WT output power (kW)

PPV
t,s maximum PV output power (kW)

PDG
g maximum DG output power (kW)

PDG
g minimum DG output power (kW)

Pent Penalty cost of DRPs in period t (¢)
ηES Efficiency of the ES
πinitial

t Initial price of electricity (¢/kWh)
πPBDR

t Electricity price in the price-based DRPs (¢/kWh)
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