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Abstract: This paper presents the results of hot smoke tests, which were conducted in a real road
tunnel. The tunnel is located within the expressway S69 in southern Poland between cities Żywiec
and Zwardoń. Its common name is Laliki tunnel. It is a bidirectional non-urban tunnel. The length of
the tunnel is 678 m and it is inclined by 4%. It is equipped with the longitudinal ventilation system.
Two hot smoke tests have been carried out according to Australian Standard AS 4391-1999. Hot smoke
tests corresponded to a Heat Release Rate (HRR) equal to respectively 750 kW and 1500 kW. The fire
source was located in the middle of the road lane imitating an initial phase of a car fire (respectively
150 m and 265 m from S portal). The temperature distribution was recorded during both tests using
a set of fourteen thermocouples that were mounted at two stand poles located at the main axis of
the tunnel on windward. The stand poles were placed at distances of 5 m and 10 m. The recorded
data were applied to validate a numerical model, which was built and solved using Ansys Fluent.
The calculated temperature distribution matched the measured values.
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1. Introduction

The development of a fire in a road tunnel is always a huge threat. The appearance of large
amounts of toxic smoke makes it very difficult to evacuate people and to operate by rescue teams.
The limited space of the tunnel means that the rapidly increasing temperature is also a threat.

Evacuation of people from the tunnel should start as soon as possible. It begins just after noting
the fire—but this applies to direct observers. However, it concerns all the other endangered users of
the tunnel only after activation of the fire emergency system. Activation of the fire system takes place
after receiving a signal from a smoke detector, laser fiber sensor or tunnel technical service through
video monitoring. The triggered fire signal activates sound and light systems that signal the necessity
of evacuation. At the same time, the location where the signal was triggered informs the technical
service and the emergency services about the place of fire development. This is of great importance
for the operation of emergency services and for the activation of the fire ventilation system. Often,
the fire ventilation system in the road tunnel is activated according to a specific emergency operation
pattern, depending on the location of the fire. Such a working system is usually found in bidirectional
tunnels. The safety of endangered people in the tunnel depends, to a large extent, on the speed of
activation of the emergency system and the proper operation of the fire ventilation system under the
given conditions. During common daily operation of the tunnel, the fans are turned on for ventilation
purposes or dilution of pollutants. The signal aroused by exceeding the permissible concentrations of
traffic pollution or a decrease in visibility will cause the fans to switch on in the normal mode [1].

All road tunnels should be equipped with fire ventilation systems. Depending on the length
of the tunnel and whether the road traffic is one or bidirectional, it can be equipped with natural
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ventilation, longitudinal ventilation, transverse ventilation, or semi-transverse ventilation. For tunnels
up to 1000 m long, longitudinal ventilation systems are most often designed. For longer tunnels,
transverse ventilation is designed. The operation of longitudinal ventilation is based on the operation
of axial fans that are located under the tunnel ceiling. A design of a longitudinal ventilation system
involves determining the number and arrangement of axial fans.

The correct operation of longitudinal ventilation in a road tunnel is when the air accelerated by
axial fans reaches the critical velocity and hot fumes are discharged through the nearest portal. In the
initial growth phase of a fire, the critical velocity should be sufficient to ensure that both smoke and
heat flow in the required direction. On the other hand, it should not disturb the natural stratification of
smoke and air layers in the tunnel [2]. Smoke flow in the opposite direction is defined as backlayering.
Backlayering can lead to the complete smokiness of a tunnel. This phenomenon is strongly undesirable
because it causes smoke to contaminate the entire tunnel despite the operation of the longitudinal
ventilation [3]. Researchers are conducting a lot of studies to avoid this phenomenon during the
operation of fire ventilation. Gannouni used numerical analyses to study the impact of ventilation
air velocity and the power of fire on the phenomenon of backlayering [4]. Studies on backlayering
have shown that it can also occur locally in situations where the air velocity decreases near the tunnel
walls or at its bend [5,6]. On the other hand, Yao investigated the appearance of reverse smoke flow in
tunnels with vertical ventilation ducts [7].

The basic requirement for properly operating fire ventilation in the tunnel is to generate a flow
with a specified critical velocity. However, it turns out that many factors affect the value of this velocity.
The one of them is the inclination of a tunnel. It causes additional airflow that is related to the natural
stack effect. It is assumed, that if the inclination is greater than 1–2%, then this fact should be taken into
account when designing the ventilation system and determining the critical velocity [8–10]. The natural
stack effect can be strengthened by the action of the wind [11]. It is obvious that if the slope of the
tunnel and the wind blowing outside the tunnel affect the critical velocity value, these factors will also
affect the flow of smoke in the initial phase of the fire. It may happen that the fire does not outbreak at
once with very high power and in the initial stage the smoke does not reach high temperatures. Smoke
of a low temperature, in the initial phase of a fire can float just over the road surface. This will result in
an uncontrolled flow of smoke and consequently a delayed activation of the fire emergency system.

Studying the phenomena occurring in the tunnel during the fire development is difficult.
Both model studies [12–15] and numerical analyses [16–19] are used for this purpose. Many authors
point to the lack of data from research in real tunnels, which could be the basis for the validation of
numerical models [17,19]. Undoubtedly, numerical analyses are the cheapest and are most willingly
used way to study phenomena accompanying the development of fire and the operation of fire
ventilation systems [20–23].

Two leading aims were set for the presented work: examining the operation of the fire detection
system and acquisition the experimental data for validation of a numerical model. As was mentioned
above, such tests in a real tunnel are valuable for the community of researches that are dealing with
the issues of tunnel safety. However, such tests are burdened with the difficulties resulting mainly
from the very short time that is available for experiments. It is due the necessity of temporarily traffic
shutdown. The next difficulties results from high variability of flow conditions in a real tunnel, despite
continuous monitoring of air velocity inside the tunnel and weather conditions at both portals the
turbulent nature of air flow causes local fluctuations, which disturb the measurements.

At the beginning the article presents a short description of the tunnel, then the carried out tests
with hot smoke are discussed in detail. Some observations on operation of fire detection system
and fire ventilation system are pointed out. Then, the numerical model of the examined road tunnel
was detailed described. The model was used to study the hot gases flow in the tunnel under wind
conditions. The model was validated using the results of tests that were carried out in a real road
tunnel. The presented experimental research was actually wider and included the measurements of air
flows that were forced by fans [11].
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2. Description of the Tunnel

The tunnel is located within the S69 road and it links Żywiec and Zwardoń. The length of the
tunnel is 678 m, the width is 11.9 m, and the height is 6.55 m. The gradient (inclination) of the tunnel is
4%. The tunnel is not rectilinear (Figure 1). The northern portal has an elevation of 669 m a.s.l. and the
southern portal has an elevation of 642 m a.s.l.
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The main rule was to remove smoke instead of allowing it to flow through the tunnel. For example,  
a fire in zone 1 should activate fans 1V2 and 1V1 to blow in the N direction. A fire in zone 2 should 
activate fans 2V2 and 2V1, also to blow in the N direction.  

The fans can also work in normal mode. The fans will turn on when the concentration of harmful 
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Figure 1. The overlay of the tunnel and location of the fans.

The tunnel is divided into five zones where the first is near the northern portal. Each zone has
two fans mounted. The emergency operation pattern of the fans is set up to activate them in a given
zone depending on the location of fire ignition. Figure 2 shows the division of the tunnel into zones
and assignment of the fans. It presents also a part of the emergency operation pattern of the fans.

Energies 2018, 11, x FOR PEER REVIEW  3 of 16 

 

tunnel. The presented experimental research was actually wider and included the measurements of 
air flows that were forced by fans [11].  

2. Description of the Tunnel 

The tunnel is located within the S69 road and it links Żywiec and Zwardoń. The length of the 
tunnel is 678 m, the width is 11.9 m, and the height is 6.55 m. The gradient (inclination) of the tunnel 
is 4%. The tunnel is not rectilinear (Figure 1). The northern portal has an elevation of 669 m a.s.l. and 
the southern portal has an elevation of 642 m a.s.l. 

 
Figure 1. The overlay of the tunnel and location of the fans. 

The tunnel is divided into five zones where the first is near the northern portal. Each zone has 
two fans mounted. The emergency operation pattern of the fans is set up to activate them in a given 
zone depending on the location of fire ignition. Figure 2 shows the division of the tunnel into zones 
and assignment of the fans. It presents also a part of the emergency operation pattern of the fans. 

 
Figure 2. Zones in the tunnel. Dimensions are given in meters; the figure is not in scale. Red spot 
denotes fire localization, blue arrows denote working fans and flow direction. 

The work of the fans was determined in such a way to avoid smokiness of whole the tunnel. 
The main rule was to remove smoke instead of allowing it to flow through the tunnel. For example,  
a fire in zone 1 should activate fans 1V2 and 1V1 to blow in the N direction. A fire in zone 2 should 
activate fans 2V2 and 2V1, also to blow in the N direction.  

The fans can also work in normal mode. The fans will turn on when the concentration of harmful 
substances in the tunnel is exceeded or when the visibility decreases. The direction of operation of 

Figure 2. Zones in the tunnel. Dimensions are given in meters; the figure is not in scale. Red spot
denotes fire localization, blue arrows denote working fans and flow direction.

The work of the fans was determined in such a way to avoid smokiness of whole the tunnel.
The main rule was to remove smoke instead of allowing it to flow through the tunnel. For example,
a fire in zone 1 should activate fans 1V2 and 1V1 to blow in the N direction. A fire in zone 2 should
activate fans 2V2 and 2V1, also to blow in the N direction.

The fans can also work in normal mode. The fans will turn on when the concentration of harmful
substances in the tunnel is exceeded or when the visibility decreases. The direction of operation of
the fans in the normal mode is consistent with the direction of the natural draught in that tunnel,
i.e., S→N.
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3. Experimental Method

3.1. Air Velocity Measurements

Air velocity was continuously recorded by the ultrasonic gauge FLSE200H. The gauge that was
manufactured by SICK MAIHAK Company (Reute, Germany) was mounted under the tunnel ceiling
at the distance of 114 from northern portal. Its measurement range was from −20 to 20 m/s, with an
accuracy of ±0.1 m/s.

3.2. Weather Condition Monitoring

Wind strongly influences airflow and smoke flow in a tunnel (especially in a long one). Thus,
wind velocity and direction were measured at both portals of the tunnel during the tests. An Ultrasonic
anemometer WindMaster Pro, manufactured by Gill Instruments was used at the N portal. It allows
for the measurement of wind velocity in three dimensions by determination of particular vectors in
three-dimensions (3D). However, only the horizontal velocity was taken into further consideration.
The range was from 0 to 45 m/s. Accuracy was 1% RMS with resolution 0.01 m/s. The meteorological
station Kestrel 4500 was used at the S portal. The range of measured wind velocity was from 0.4
to 40 m/s. Accuracy was 5% with resolution 0.1 m/s. Both of the devices were also able to record
continuously the atmospheric pressure and the air temperature. Both devices were placed close to the
portals to measure the actual wind parameters at the portals.

3.3. Hot Smoke Tests

Two hot smoke tests have been conducted. They were based on the Australian Standard AS
4391-1999 [24]. Five smoke generators that were made by the Vulcan Company and two or four
fire trays (containing ethanol) were in use. According to the above standard, two fire trays of A1
size filled with 16 dm3 of ethanol give a heat output (HRR) of 700 kW, whereas four fire trays the
same size produce a heat output (HRR) of 1500 kW. Such trays configuration and the amount of fuel
should assure the following burning sequence: 3 min of fire growth, 10 min of stable fire and 3 min of
decay [24]. The trays were placed in the middle of the road lane (Figure 3).
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Figure 3. Configuration of the generators and trays during both hot smoke tests (left—two trays,
right—four trays).

Fourteen thermocouples that were mounted at two stand-poles were used for continuous
monitoring of the air temperature. A hand-held Flir thermo-vision camera was used for snatch
measurements of the temperature at ceiling and walls. The stand-poles were located along the tunnel
axis at the distances of 5 m and 10 m from the last tray on leeward towards the S portal (Figure 4).
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The fire detection and ventilation systems were switched to automatic mode in the first test to
examine their operation. Both of the systems were switched to manual mode in the second test, which
is what allowed for the undisturbed fire development. The details of the hot smoke tests are given in
Table 1.

Table 1. Hot smoke tests—details.

Test No. Start Hour Location of Measuring Stand Number of Generators Number of Trays Fuel

1 17:17 150 m from S portal 5 × Vulcan 2 × A1 Ethanol
2 18:10 265 m from S portal 5 × Vulcan 4 × A1 Ethanol

4. Results

4.1. Ambient Conditions during the Tests

Both of the tunnel portals are located in a deep ravine; therefore, the weather conditions in their
vicinity might differ from those at the upper lands. However, the recorded values exactly described
the wind conditions at the portals. The variations of wind velocity and wind direction during the tests
are given in Table 2.

Table 2. The variations of wind velocity and wind direction during the tests.

S Portal N Portal

Time Wind Velocity (m/s) Wind Direction (◦) Wind Velocity (m/s) Wind Direction (◦)

17:00 0.9 −124 0.7 −160
18:00 0.7 −131 0.3 −126
19:00 0.8 −118 0.4 −145

Direction 0◦ corresponds to wind from N, 90◦ to E, ±180◦ to S, and −90◦ to W. The atmospheric
pressure was 942 hPa and was almost unchanged during the whole day. The temperature was also
stable and varied between 7 ◦C and 8 ◦C.
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4.2. Hot Smoke Tests—Temperature Distribution

Two hot smoke tests were carried out. During the first test, two trays containing ethanol
were burned and this provided an HRR that was equal to 700 kW, according to the Australian
Standard [24]. Two stand-poles with mounted thermocouples were in use. They were placed on
windward, respectively 5 m and 10 m from the edge of the last tray. During the test, it turned out that
the natural stack effect and wind influence produced a strong natural airflow, forcing the smoke to
flow almost horizontally (Figure 5), and no temperature increase at the thermocouples was detected
(on windward).
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Figure 5. Horizontal direction of smoke flow during the first hot smoke test.

During the first test, the fire ventilation system was expected to turn on automatically. The first
level of alarm was triggered in the 4th zone instead of the 5th (Figure 6). The smoke was flowing
towards the N portal due to the natural stack effect and wind impact. The temperature of the smoke
was too low to trigger the ventilation system in fire mode (second level alarm). Instead, the ventilation
system was switched on in normal mode because moving smoke caused a decrease of visibility. Hence,
the visibility sensor in the neighboring section gave a signal to start the ventilation system. As a result,
the fans started working in the 3rd zone in the normal operation mode.
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Figure 6. Operation pattern of fans with the operating status of devices during the test (red square—fire,
yellow cross—visibility detector, filled arrows—actual fans operation, dotted arrows—expected
fans operation).

The location of the trays with burning ethanol is shown in Figure 6. The position of the visibility
sensor in zone 4 is also marked. The expected reaction of fire ventilation system is marked by dotted
arrows, filled arrows shows the actual operation of the ventilation system in normal mode. As the
trays with burning alcohol were located in the 5th zone, the proper fire detection should indicate the
fire in this section. Therefore, the fans in the 1st section should be activated in the fire mode. However,
eventually the fans were activated in the 3rd zone in normal mode operation, which is what caused
smokiness in whole tunnel.

Four trays were applied in the second test. This provided an HRR equal to 1500 kW according to
the Australian Standard [24]. The location of the test point was also moved (see Table 1), although the
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relative configuration of stand-poles was the same as during the first test. Preliminary test carried out
in an empty hall showed the high sensitivity of convection plume on even weak gusts. Furthermore,
the wind on the day of experiment, although weak, blew almost along the tunnel axis, which is what
strongly influenced the first test. Therefore, when considering the strong natural stack effect and wind
influence [11], it was decided to cover partially the portal S by a curtain. The curtain covered 90%
of the cross-section area of S portal, so the natural draught was diminished to the average value of
0.6 m/s. During the second test, automatic detection of fire ventilation was turned off to allow the
fire to develop in an undisturbed way. Then a temperature increase was detected by thermocouples
(on windward). The temperature distribution at 5 m and 10 m is given in Figures 7 and 8.
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As the second hot smoke test showed an increase of temperature on the windward side, evidently
the upstream flow of hot gases was forced by the released heat. A reading of 46 ◦C was recorded at a
height of 5.6 m, 5 m from the last tray. As was already mentioned, a residual natural flow remained,
thus despite covering the S portal, smoke flow to the N portal was detected. Therefore, during this
test, the leeward part of the tunnel was completely filled with smoke.

Due to the relatively short time of the hot smoke test, the tunnel ceiling was not warmed
up significantly—the temperature of the tunnel ceiling just above the fire, as measured by the
thermo-vision camera, did not exceed 20 ◦C in both tests. This value is beneath the temperature
threshold of fibro-laser sensor activation (about 40 ◦C), but in the first test, this sensor should be also
triggered by the rapid temperature rise (about 5 ◦C/60 s).

5. The Numerical Analysis of a Fire Development

5.1. Numerical Modeling of Combustion Process

The process of combustion is a very complex phenomenon. It involves many chemical reactions
between the components of the fuel and the oxidant, which produce various intermediate and final
products and release large amounts of energy. Complex turbulent flows must be also taken into account.
This is a reason why some simplifications and pre-assumptions are required. The more so, because
the research is focused on conditions inside the object in fire rather than on details of the combustion
process. There are two fire models that are available when using Ansys Fluent software [25]:

• Species transport—the fire is modeled as a source emitting predefined combustion products.
The mass flow rate and temperature of emitted species should be adjusted to fit the required fire
heat release rate (HRR). This model only requires solving the additional transport equations for
each taken into account specie. This approach entirely omits the details of combustion chemistry,
thus it is unable to model the fire development controlled by ventilation.

• Non-premixed combustion—with the main assumption that chemical reactions of combustion
run very quickly, therefore they can be regarded as immediate in comparison with the flows of
all of the considered chemical compounds. This assumption allows for treating the combustion
products (intermediate or final) and released heat as depending only on local composition of
gases mixture and its temperature.

5.2. Numerical Model

The model consists of a tube representing the whole tunnel. Due to simplification, the curvature
of the tunnel was neglected, but its inclination of 4% and shape were kept. Both portals were modeled
as pressure boundary condition. It did not matter whether ‘pressure outlet’ or ‘pressure inlet’ type was
finally selected. It was so because pressure boundary conditions of both types allow also for backflow.
Thus, the resulting flow is determined by the pressure difference at portals and other phenomena
occurring inside the tunnel instead of being predefined by boundary conditions.

The moving force of the examined phenomena was buoyancy, so gravity had to be taken into
account in the model. In such circumstances, the variability of atmospheric pressure with the height
could not be neglected. Therefore, the atmospheric pressure was generated using User Defined
Function (UDF), according to the formula describing the pressure decrease with the height:

p = p0 − ρgh (1)

Additionally, a dynamic pressure component was added to the pressure at southern portal to
model the wind influence:

pdyn =
ρv2

wind
2

(2)

The C++ codes of UDF functions modeling the gauge static pressure at both portals are
listed below:
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Portal N #define GACC 9.81 //gravity acceleration

DEFINE_PROFILE(phstat_n,thread,i)

{ face_t f;

real z;

real vec[3];

begin_f_loop(f, thread)

{ F_CENTROID(vec,f,thread);

z = vec[2];

F_PROFILE(f, thread, i) = −C_R(f, thread)*GACC*z;

}end_f_loop(f, thread)

}

Portal S #define PDYN 0.21 //dynamic pressure of wind

DEFINE_PROFILE(phstat_s,thread,i)

{ face_t f;

real z;

real vec[3];

begin_f_loop(f, thread)

{ F_CENTROID(vec,f,thread);

z = vec[2];

F_PROFILE(f,thread, i) = −C_R(f, thread)*GACC*z + PDYN;

}end_f_loop(f, thread)

}

The chemical reaction of combustion of ethanol in atmospheric oxygen runs according to the
following expression:

C2H5OH + 3O2 → 2CO2 + 3H2O (3)

Because the fire power in the considered case was rather low and the fire development was
controlled by amount of fuel, it is no need to analyze the details of combustion process. So, the model
of species transport was adopted. The net calorific value of ethanol is 27.2 MJ/kg, therefore to obtain
HRR equal to 1.5 MW 0.055 kg of ethanol must burned per second. As the result of combustion process,
according to reaction (3) 0.105 kg of CO2 and 0.065 kg of H2O is produced per second. Such values are
assumed when defining the fire source as mass flow inlet. The temperature of emitted gases was so
adjusted to achieve the required HRR. According to Australian Standard [24], the initial phase of fire
growth should last about 3 min and this wasqualitatively confirmed using the thermo-vision camera
during the tests. Therefore, this fact was taken into account by applying an UDF, which controlled the
amount of emitted combustion products in the relevant way. The C++ code is listed below:

#define T0 (3.0*60.0) //time of fire growth

#define MFMAX 0.174 //mass flow rate of combustion products

DEFINE_PROFILE (fire, thread, i)

{ face_t f;

real t, m;

t = CURRENT_TIME;

if (t < T0) m = (t/T0 )* MFMAX;
else m = MFMAX;

begin_f_loop(f, thread)

{ F_PROFILE (f, thread, i) = m;

} end_f_loop(f, thread)

}
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Because of relatively low fire power, the effect of radiative heat transport can be neglected.
It was checked with the use of thermo-vision camera. In such circumstances there was no radiation
model used.

For tube-shaped objects, like tunnels, the effects of walls vicinity should be taken into account,
therefore k-omega SST turbulence model was adopted. The quality of results of numerical modeling,
especially when modeling fluid flows with RANS (Reynolds Averaged Navier-Stokes) approaches
strongly depends on numerical mesh used. To assure the proper reproducing of the flows close to
the fire the volume surrounding the fire and the convective plume above was meshed with denser
grid. Five inflation layers were added in the vicinity of the tunnel walls, ceiling and floor. The mesh
was generated using the cut cell assembly method, what allowed for almost regular mesh. The mesh
sensitivity of the model was checked in steady calculation mode. Figure 9 shows the comparison of
the results for three meshes of different densities, which are described in Table 3. Table 3 contains also
the mass flow rate balances for obtained solutions.

Table 3. Preliminary test meshes and the overview mass flow rate balances.

Mesh No. of Elements No. of Nodes
Mass Flow Rate (kg/s)

Portal S Portal N Fire Σ

Coarse 184,980 189,026 41.0016 −41.1509 0.1740 0.0247
Medium 319,799 324,590 40.1908 −40.3776 0.1740 −0.0128

Fine 486,257 494,184 39.4473 −39.6211 0.1740 0.0002
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As it can be seen, the temperature distributions for medium and fine meshes are almost the
same. The mass flow rates through tunnel portals differ by 1.5%. All of the mass fluxes should be
balanced—their sum should be very close to zero. Finally, taking into account the accuracy of mass
flow rate balance the fine mesh was selected for successive calculations. The obtained results can be
regarded as mesh independent.

The height of wall roughness for tunnel walls and ceiling was tuned to model the effective flow
resistance of details of tunnel infrastructure (lamps, sensors, signs, cables, and fans) [11]. Table 4
contains the summary of the numerical model.
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Table 4. Numerical model summary.

Feature Value

Turbulence model k-omega SST

Fluid material Air + CO2 + H2O (ideal gas)

Combustion model Species transport

Fuel/combustion products Ethanol C2H5OH/CO2 + H2O

Radiation model none

Operating pressure 94,200 Pa

Gravitational acceleration 9.81 m/s2

Solver Pressure based

Pressure spatial discretization Body force weighted

Calculation mode Transient

Time step Adaptive (0.01 s–0.1 s)

Pressure/velocity coupling PISO

Under-relaxation factors

Pressure 0.5
Momentum 0.2 *
Energy 0.95
Species 0.8
Others Default

Wall roughness Walls, ceiling 0.1 m
Street 0.002 (natural for tarmac)

* Higher (default) values of momentum under-relaxation factors were also examined, but it led to significantly
slower convergence while the calculated results were the same.

5.3. Numerical Results and Validation

The main aim of numerical analyzes was to reproduce the temperature distribution. Figures 10
and 11 show the comparison of the measured temperatures with the calculated ones (the experimental
data are the same as in Figures 7 and 8). The period of first 180 s of hot smoke test was taken into
account. It was because, in this period, the fire developed in an undisturbed way (after then the fans
were switched on manually to check the efficiency of smoke removal system).

Energies 2018, 11, x FOR PEER REVIEW  11 of 16 

 

Table 4. Numerical model summary. 

Feature Value
Turbulence model  k-omega SST 
Fluid material  Air + CO2 + H2O (ideal gas) 
Combustion model  Species transport 
Fuel/combustion products  Ethanol C2H5OH/CO2 + H2O 
Radiation model  none 
Operating pressure  94,200 Pa 
Gravitational acceleration  9.81 m/s2 

Solver  Pressure based 
Pressure spatial discretization  Body force weighted 
Calculation mode  Transient 
Time step  Adaptive (0.01 s–0.1 s) 
Pressure/velocity coupling  PISO 

Under-relaxation factors 

Pressure 0.5 
Momentum 0.2 * 
Energy 0.95 
Species 0.8 
Others Default 

Wall roughness  
Walls, ceiling 0.1 m 
Street 0.002 (natural for tarmac) 

* Higher (default) values of momentum under-relaxation factors were also examined, but it led to 
significantly slower convergence while the calculated results were the same. 

5.3. Numerical Results and Validation 

The main aim of numerical analyzes was to reproduce the temperature distribution. Figures 10 
and 11 show the comparison of the measured temperatures with the calculated ones (the experimental 
data are the same as in Figures 7 and 8). The period of first 180 s of hot smoke test was taken into 
account. It was because, in this period, the fire developed in an undisturbed way (after then the fans 
were switched on manually to check the efficiency of smoke removal system). 

 
Figure 10. Temperature increase on windward at 5 m from the last tray. Prefix M denotes measurement, 
prefix F denotes Fluent calculation. 

Figure 10. Temperature increase on windward at 5 m from the last tray. Prefix M denotes measurement,
prefix F denotes Fluent calculation.



Energies 2018, 11, 290 12 of 16
Energies 2018, 11, x FOR PEER REVIEW  12 of 16 

 

 
Figure 11. Temperature increase on windward at 10 m from the last tray. Prefix M denotes measurement, 
prefix F denotes Fluent calculation. 

As it can be seen the results of numerical analyses agree with the measurements, at least 
qualitatively. The temperature distribution and its variability in time are almost fully reproduced 
just under tunnel ceiling in close vicinity of the fire. It especially concerns the values of temperature 
measured by thermocouples that are mounted on the stand-pole at the distance of 5 m from the last 
tray at the heights of 4.9 m and 5.6 m. It can be explained while taking into account the fact that the 
buoyancy forces are significant there due to high temperature, so this portion of air is not susceptible 
to accidental gusts. Especially, data shown in Figure 11 cannot be regarded as satisfactory, but it is 
an effect of turbulent nature of airflow in tunnels. Just the average velocity that was recorded by 
FLSE200H gauge was adopted in the numerical model. Obviously, it would be potentially possible 
to take into account the momentary air velocity at many points if they were recorded. But, it would 
make the experiment much more complex, and what is more, the results would not be much more 
useful for the prediction of average conditions in the tunnel.  

Figure 12 shows the calculated temperature distributions in 160 s after the fire outbreak for two 
tunnel longitudinal cross-sections. The length of the shown tunnel zone is about 114 m. 

 
Figure 12. Temperature distributions in 160 s of fire development: (a) at a plane of fire source, (b) at 
the tunnel symmetry plane. 

According to the expectations, the gases moved towards the N portal because of the natural 
draught and the tunnel inclination. However, despite the relatively low fire power a portion of hot 
gases was able to move backward, what caused the measured temperature increase on windward. 
The extent of this backward movement of hot gases was estimated as about 20 m. 

Figure 11. Temperature increase on windward at 10 m from the last tray. Prefix M denotes measurement,
prefix F denotes Fluent calculation.

As it can be seen the results of numerical analyses agree with the measurements, at least
qualitatively. The temperature distribution and its variability in time are almost fully reproduced
just under tunnel ceiling in close vicinity of the fire. It especially concerns the values of temperature
measured by thermocouples that are mounted on the stand-pole at the distance of 5 m from the last
tray at the heights of 4.9 m and 5.6 m. It can be explained while taking into account the fact that the
buoyancy forces are significant there due to high temperature, so this portion of air is not susceptible
to accidental gusts. Especially, data shown in Figure 11 cannot be regarded as satisfactory, but it is
an effect of turbulent nature of airflow in tunnels. Just the average velocity that was recorded by
FLSE200H gauge was adopted in the numerical model. Obviously, it would be potentially possible to
take into account the momentary air velocity at many points if they were recorded. But, it would make
the experiment much more complex, and what is more, the results would not be much more useful for
the prediction of average conditions in the tunnel.

Figure 12 shows the calculated temperature distributions in 160 s after the fire outbreak for two
tunnel longitudinal cross-sections. The length of the shown tunnel zone is about 114 m.
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According to the expectations, the gases moved towards the N portal because of the natural
draught and the tunnel inclination. However, despite the relatively low fire power a portion of hot
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gases was able to move backward, what caused the measured temperature increase on windward.
The extent of this backward movement of hot gases was estimated as about 20 m.

Figure 13 shows the calculated temperature distributions at the same time moment for two
perpendicular tunnel cross-sections, which were located on both sides of fire source at a distance of
5 m. Worth noting, is the fact that the point of the maximum temperature at the tunnel ceiling is not
located just above the fire, but rather is shifted to the other side. This observation can be explained
taking into account the velocity distribution shown in Figure 14.
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As it can be observed the convective plume is slanted due to the natural draught. When the hot
gases reached the ceiling, they spread to both sides and flowed downward due to the vault shape of
the ceiling. Then, the downward movement was stopped by the buoyancy. It caused the accumulation
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of the hot gases at a distance beneath the ceiling. Additionally, the results of calculations showed that
the fire caused the increase of the average longitudinal air velocity in the tunnel from about 0.60 m/s
to 0.66 m/s.

In last step of the numerical analyses, the validated model was applied to examine conditions
inside the tunnel in a case of fully developed car fire. The 4000 kW HRR was assumed [26] and
calculations were carried out in steady mode. The results are presented in Figure 15.
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The most important observation is that the whole leeward side of the tunnel is filled with hot
gases of temperature about 70–100 ◦C. It is a deadly threat to people in this zone. What is more, so hot
gases (90 ◦C) flow out from N portal. The released energy intensified the average airflow in the tunnel,
increasing the velocity to 0.84 m/s. Such conditions are expected to emerge after about ten minutes of
fire development.

6. Discussion and Conclusions

The described studies and tests allowed for a better understanding of phenomena thatoccurred in
tunnels in a case of fire. Obviously, the hot smoke tests and the measurements were limited by the
fact that they were carried out during the temporarily traffic shutdown in the real tunnel (commonly
in a normal operation). Furthermore, the maximum fire HRR was limited to 1500 kW, meanwhile
according to British Standard [26] the heat flux of typical passenger car burning is 400 kW/m2 and the
area of fire is approximately 10 m2, what gives 4000 kW for a fully developed fire. The average time
of fire increase is about 10 min, but it varies in very wide range: between 5 and 15 min, according to
experiments [27]. Furthermore, the value of HRR for a truck in fire can reach up to 30,000 kW. However,
as was mentioned in the Introduction section, the special attention must be paid to the initial phase of
a fire development. This phase and the time factor are crucial in taking into account the possibility
of evacuation of threatened people. In the initial phase of a fire, the most dangerous factor is not the
high temperature, but the toxic smoke. However, the temperature distribution influences the airflow,
so it determines indirectly the safety conditions in a tunnel. Thus, studies on low power fires that
have just started to develop are very important because their results allow for assessing the conditions
in a tunnel and the operation of live-saving systems. It was exactly the result of the first described
test, which revealed the wrong operation of fire detection system. The solution suggested here is to
replace or tune the fibro-laser sensor. It should trigger the fire alarm first of all when detecting a fast
temperature jump instead of waiting for a significant increase of temperature value (as was mentioned
the ceiling temperature did not exceed 20 ◦C). It should prevent an improper activation of visibility
sensor by the spreading smoke.
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The uniqueness of presented research stems from the fact that all the experiments were carried out
in real road tunnel, not in a laboratory. On the other side, the results were burdened with disturbances
that were impossible to avoid in such real world conditions.

The numerical analyses are nowadays willingly applied method of examining the operation of fire
ventilation systems in tunnels. It is because the real tests are difficult to carry out. However, one should
have in mind that numerical models without validation are not quite reliable. Despite the fact that the
presented experiment was only a simulation of a real fire, it gave a number of measured data, which
were utilized for validation of numerical model. The presented results show that the model is validated
correctly. Fire mapping in the numerical model seems to be accurate. The accordance of measured and
the calculated temperatures at a higher distance from the fire source looks worse, but the differences
does not change the overall view of the situation. As was mentioned in the results description, such
discrepancies resulted from turbulent nature of air flows in tunnels. It is almost impossible to take
into account the momentary features of air flows. Additionally, it would not significantly improve the
prediction ability of the model. The numerical model that was validated by experimental data can
be responsibly applied for further research on any fire configuration. As an example the conditions
inside the tunnel in a case of fully developed car fire were examined. The results are clear—the whole
leeward side of the tunnel was filled by hot gases, which were deadly threat for people who got stuck
in this zone.

The authors are aware of the imperfections afflicting the described experiments. The lessons
learned will allow for better preparing successive works, which are planned in the near future.
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