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Abstract: This study first explored the effect of shading on the output characteristics of modules
in a photovoltaic module array. Next, a modified particle swarm optimization (PSO) method was
employed to track the maximum power point of the multiple-peak characteristic curve of the array.
Through the optimization method, the weighting value and cognition learning factor decreased with
an increasing number of iterations, whereas the social learning factor increased, thereby enhancing
the tracking capability of a maximum power point tracker. In addition, the weighting value was
slightly modified on the basis of the changes in the slope and power of the characteristic curve to
increase the tracking speed and stability of the tracker. Finally, a PIC18F8720 microcontroller was
coordinated with peripheral hardware circuits to realize the proposed PSO method, which was then
adopted to track the maximum power point of the power–voltage (P–V) output characteristic curve
of the photovoltaic module array under shading. Subsequently, tests were conducted to verify that
the modified PSO method exhibited favorable tracking speed and accuracy.

Keywords: photovoltaic module array; maximum power point tracking; particle swarm optimization;
photovoltaic module array

1. Introduction

The output power of a photovoltaic module array is affected by daylight intensity and temperature
and thus exhibits a nonlinear characteristic. Therefore, a maximum power point tracking (MPPT)
controller can be used to maintain the output power of such an array at the highest level. Currently,
common tracking methods include the voltage feedback, constant voltage, power feedback, perturb and
observe (P&O), and incremental conductance (INC) methods [1–5]. In particular, the voltage feedback
method [1,2] requires first measuring the voltage at the maximum power point of an array under a
specific temperature. This method is advantageous for simple interpretation but, when the atmospheric
conditions change substantially, it cannot track the updated maximum power point. On the basis of
the characteristic that the maximum power point is associated with similar voltage under various
irradiations, the constant voltage method [1] tracks the maximum power point and involves easy
control and simple calculation. However, this method also cannot track the updated maximum power
point after the atmospheric conditions change substantially. The power feedback method [3] adopts
the variation rates of the output power and voltage (dP/dV) to determine the maximum power point.
This method decreases energy consumption and exhibits high overall efficiency, but the accuracy of
the sensory modules involved is undesirable. The P&O method [4] perturbs a photovoltaic system
by increasing or decreasing the voltage during a fixed cycle. When the output power is increased
with increasing voltage during a cycle, the subsequent cycle involves further increasing the voltage;
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otherwise, the voltage is reduced. This method is advantageous for a simple framework and few
measurement parameters, but it cannot accurately track the maximum power point. In addition,
the solution obtained using the P&O method can oscillate near the maximum point, thus increasing
tracking losses. The INC method [5] compares the static conductance and dynamic conductance of
a photovoltaic array to determine the tracking direction. This method enables accurate control and fast
responses but involves high computation and expensive controllers. Hence, a simpler fast-converging
technique [6] is proposed to improve the drawbacks of INC method. The aforementioned maximum
power point tracking method is inadequate for examining a photovoltaic module array with shaded
or malfunctioning modules because the power–voltage (P–V) curve of the array can exhibit multiple
peaks [7]; hence, using the aforementioned convention tracking methods might mistakenly identify
a regional maximum point as the global maximum point.

In recent years, various scholars have proposed smart maximum power tracking techniques for
photovoltaic module arrays, including the fuzzy control (FC) [8,9], genetic algorithm (GA) [10], neural
network (NN) [11], artificial neural network (ANN) [12,13], and ant colony algorithm (ACA) [14,15]
methods. In particular, the FC, NN, and ANN methods involve complex control processes and
computation; hence, they are difficult to execute. The GA and ACA methods [10,14,15] can only
be used to examine photovoltaic module arrays with single-peak output characteristic curves or
nonshaded modules. The work proposed in [16] suggests a simple relationship to predict the correct
position of the global maximum power point. However, this method can only be used to examine PV
module array with two-peak output characteristics. A maximum power point tracking scheme based
on the ripple correlation control (RCC) algorithm was proposed in [17]. However, this method can
only be applied for multilevel inverters. Compared with the conventional methods, these methods
enable higher success rates of identifying the global maximum power point.

Because the aforementioned MPPT techniques can only be used to examine photovoltaic module
arrays with single-peak or two-peak output characteristic curves, this study employed and modified
a particle swarm optimization (PSO) method. Under dissimilar shading ratios, the modified PSO
method enabled effective identification of the global maximum power point of a photovoltaic module
array with double-peak, triple-peak, and quadruple-peak P–V curves.

2. Characteristics of Photovoltaic Module Array

In a photovoltaic power generation system, photovoltaic modules are connected in parallel and
series into an array to increase the output power of the system. However, when the module array is
shaded by external factors such as clouds, trees, buildings, or stains, the output power curve of the
system exhibits nonlinear variations and multiple peaks.

To investigate the output characteristic of a photovoltaic module array with several modules
(connected in parallel or series) being shaded, this study connected Sanyo (Moriguchi, Osaka, Japan)
HIP2727 modules to form a 4-series 1-parallel photovoltaic module array. Figures 1 and 2 respectively
illustrate the current–voltage (I–V) curve and power–voltage (P–V) curve simulated using Solar Pro
software (R3.1, Laplace Systems, Kyoto, Japan) [18] when one, two, three, and four modules were at
25% shading. The results revealed that when several modules in the array were shaded, the output
characteristic curve exhibited multiple peaks, and the maximum power point decreased with the
increasing number of shaded modules.
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Figure 1. Current–voltage (I–V) curves of the 4-series 1-parallel array when different numbers of
modules were at 25% shading.
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Figure 2. Power–voltage (P–V) curves of the 4-series 1-parallel array when different numbers of
modules were at 25% shading.

3. Particle Swarm Optimization

PSO is a swarm intelligence optimization theory proposed by Eberhart and Kennedy [19] in 1995
and is categorized as a branch of evolutionary algorithms. The theory was inspired when the two
scholars observed the foraging behavior of bird colonies; it is typically employed to solve related
search and optimization problems [20,21]. In this theory, each flying bird in space is called a particle,
and each moving particle is associated with an adequate value reflected through an objective function.
In addition, the velocity of each particle determines its displacement and direction. When moving in
space, the particles are affected by two types of memory value. Each particle searches and memorizes
its individual current optimal location. The memory of each particle is accessible to other particles,
enabling the particles to select the swarm optimal location from various individual optimal locations.
Through this method, the particle swarm continuously modifies its velocity to quickly converge to the
global optimal solution.

3.1. Conventional Particle Swarm Optimization

The process of the conventional PSO algorithm is described as follows:

Step 1 Configure the number of particles, maximum number of iterations, weighting value,
and learning factors.

Step 2 Initialize the particle swarm and randomly configure the location and velocity of each particle.
Step 3 Substitute the initial location of each particle into an objective function to assess the fitness

function value of each particle.
Step 4 Compare the fitness function value of each particle with its individual optimal memory location

(Pbest,i) to select the more favorable value to update Pbest.
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Step 5 Compare each Pbest value with the group optimal memory value (Gbest); if a Pbest value is more
favorable than the Gbest value, the Gbest value is updated to the Pbest value.

Step 6 Use the kernel equations of PSO to update the particle velocity and location, as shown in
Equations (1) and (2).

V j+1
i = W × V j

i + C1 × rand1(•)× (Pbest − Pj
i )

+C2 × rand2(•)× (Gbest − Pj
i )

(1)

Pj+1
i = Pj+1

i + Pj
i (2)

Step 7 Terminate the tracking process if the stop criterion is fulfilled. Otherwise, repeat Step 4 to 6
until fulfilling the stop criterion (identifying the global optimal solution) or researching the
maximum iteration.

The parameters of the conventional PSO algorithm are elucidated as follows:

Weighting value W: The W value of a particle is associated with its previous movement distance.
Cognition learning factor (C1): The C1 value of a particle is related to itself.
Social learning factor (C2): The C2 value of a particle is related to other particles.

V j
i : the velocity of ith particle in jth iteration.

Pj
i : the location of ith particle in jth iteration.

rand1(•): the first random number generator, the value of which is between 0 and 1.
rand2(•): the second random number generator, the value of which is between 0 and 1.
Pbest,i: the individual optimal solution of ith particle.
Gbest: the group optimal solution.

The weighting value and learning factors of the PSO algorithm affects the success rate and tracking
efficiency of the algorithm [22]. An excessively small weighting value yields an insufficient particle
movement distance, and thus is unable to determine a global optimal solution from the regional
optimal solutions of a multiple-peak curve. By contrast, an excessively large weighting value yields an
extensive particle movement distance and thus fails to accurately identify the object function. Therefore,
the weighting value is usually selected according to the object function. In addition, an excessively
large learning factor requires additional iterations and thus decreases the overall tracking efficiency.
Accordingly, the C1 and C2 values should not be overly large.

3.2. Modified Particle Swarm Optimization

The PSO algorithm proposed in this study involves modifying the weighting of the conventional
PSO. Specifically, Equation (3) is used to adjust the basic weighting and apply larger particle movements
during the early iterations; this enables transcending of regional optimal solutions. However, as the
number of iterations increases, the particles begin to closely approximate the global maximum power
point; hence, the particle movement is reduced during this period to accurately track the global
maximum power point.

W = Wmax −
(
(Wmax − Wmin)×

(
j
n

)2
)

(3)

As shown in Figure 3, the power feedback method can be adopted to examine the slope (m)
and changes in power (∆P) of the P–V characteristic curve of a photovoltaic module array. Figure 4
illustrates the trend of the weighting value according to m and ∆P, and Table 1 lists the criteria for
adjusting the weighting value. Specifically, ∆W = [(Wmax − Wmin)/2]/11 is used as the reference value
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for increasing or decreasing the weighting value, which is linearly adjusted according to the 11 ranges
of the P–V curve slope. m and ∆P are defined using Equations (4) and (5):

m ∆
=

P(j+1) − P(j)

V(j+1) − V(j)
(4)

∆P ∆
= P(j+1) − P(j) (5)

(1) m > 0 and a positive ∆P value indicate that the particles lie to the left of the maximum power
point, with the tracking direction toward the maximum power point. A large m value implies
that the particles are far away from the maximum power point; hence, the weighting value is
increased to accelerate the tracking speed.

(2) m < 0 and a positive ∆P value indicate that the particles lie to the right of the maximum power
point, with the tracking direction toward the maximum power point. A small m value implies that
the particles far away from the maximum power point; hence, the weighting value is increased to
accelerate the tracking speed.
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Table 1. Weighting value adjustment according to the slope and changes in power of the characteristic curve.

Conditions Items m ∆
=

P(j+1)−P(j)
V(j+1)−V(j)

∆P > 0

1 m > 2 W + 3∆W
2 2 ≥ m > 1.5 W + 2∆W
3 1.5 ≥ m > 1 W − ∆W
4 1 ≥ m > 0.5 W − 2∆W
5 0.5 ≥ m > 0 W − 3∆W
6 m = 0 W
7 0 > m ≥ −0.5 W − 3∆W
8 −0.5 > m ≥ −1 W − 2∆W
9 −1 > m ≥ −1.5 W − ∆W

10 −1.5 > m ≥ −2 W + 2∆W
11 m < −2 W + 3∆W
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Parameters related to the weighting values are described as follows:
Upper limit of weighting (Wmax): the Wmax value of a particle is the maximum weighting value

associated with its previous movement distance.
Lower limit of weighting (Wmin): the Wmin value of a particle is the minimum weighting value

associated with its previous movement distance.

j: the current number of iterations.
n: the maximum number of iterations.
P(j+1): the power yielded through j + 1 iterations.

V(j+1): the voltage yielded through j + 1 iterations.

Regarding the learning factors, Equation (6) decreases the cognition learning factor C1 as the
iteration number increases, indicating that reference to individual optimal locations is reduced with
increasing iteration number. By contrast, Equation (7) increases the social learning factor C2 as the
iteration number increases, indicating that reliance on the global optimal location is increased with
increasing iteration number. Accordingly, the trends of the learning factors are displayed as in Figures 5
and 6. Figure 7 illustrates the flowchart of the modified PSO algorithm. In this study, to ensure that the
configured parameters of the modified PSO are not overly similar to those of the conventional PSO
(Table 2) and thus affecting subsequent experimental interpretations, the upper limits of the weighting
value, cognition learning factor, and social learning factor of the modified PSO were at least twice the
values of the lower limits (Table 3).

C1 = C1,max −
(
(C1,max − C1,min)×

(
j
n

)2
)

(6)

C2 = C2,max +

(
(C2,max − C2,min)×

(
j
n

)2
)

(7)

Parameters related to the learning factors are defined as follows:

C1,max: upper limit of cognition learning factor.
C1,min: lower limit of cognition learning factor.
C2,max: upper limit of social learning factor.
C2,min: lower limit of social learning factor.
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Table 2. Parameter configuration of the conventional PSO.

Parameter Configured Value

Particle number 4
Iteration number 100

Weighting (W) 0.4
Cognition learning factor (C1) 2

Social learning factor (C2) 2

Table 3. Parameter configuration of the modified PSO.

Parameter Configured Value

Particle number 4
Iteration number 100

Upper limit of weighting (Wmax) 0.9
Lower limit of weighting (Wmin) 0.2

Upper limit of cognition learning factor (C1,max) 4
Lower limit of cognition learning factor (C1,min) 2

Upper limit of social learning factor (C2,max) 4
Lower limit of social learning factor (C2,min) 2

The weighting W was chosen to be 0.4 in the conventional PSO method for comparison with the
modified PSO method using variable weighting. For the conventional PSO method, the weighting
W is fixed at 0.4. However, the weighting is adjustable between Wmax (=0.9) and Wmin (=0.2) for the
proposed modified PSO method according to the iteration times and the slope of P–V characteristic
curve. And W = 0.4 is between the maximum value Wmax and the minimum value Wmin.

In this paper, the maximum power point tracking performance of the proposed modified PSO
method and the conventional PSO method is compared. However, in the conventional PSO method,
C1 and C2 are all selected as 2. Therefore, in the modified PSO method, the lower limit of C1 and C2 is
also selected as 2, which is fair.

3.3. Framework of the Maximum Power Point Tracker of Modified Particle Swarm Optimization

Figure 8 illustrates the framework of the maximum power point tracker of the modified PSO
proposed in this study. The system includes a photovoltaic array arranged using Sanyo (Moriguchi,
Osaka, Japan) HIP2717 modules [23], the PIC18F8720 microcontroller (R2004, Microchip Technology,
Chandler, AZ, USA) [24], and a boost converter [25]. The modified PSO is used to control the duty
cycle of the boost converter, thus identifying the global maximum power point of the module array.
In particular, the tracking efficiency of this method is highlighted when the module array is shaded.
Table 4 lists the parameter values of each component in the boost converter circuit. Table 5 lists the
specifications of the HIP2717 module.
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Lower limit of social learning factor (C2,min) 2 

The weighting W was chosen to be 0.4 in the conventional PSO method for comparison with the 

modified PSO method using variable weighting. For the conventional PSO method, the weighting W 
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Table 4. Rated configuration values of the boost converter.

Component Name Specifications

Inductor L 1 mH
Input capacity Cin 470 µF/450 V

Output capacity Cout 470 µF/450 V
Switching frequency f 20 kHz

Power transistor IRF460 (500 V/20 A)
Diode DSEP30-12A (1200 V/30 A)

Table 5. Specifications of Sanyo HIP2717 module.

Parameter Value

Rated maximum power (Pmp) 27.8 W
Current at maximum output power point (Imp) 1.63 A
Voltage at maximum output power point (Vmp) 17.1 V

Short circuit current (Isc) 1.82 A
Open circuit voltage (Voc) 21.6 V

4. Testing Results of Conventional PSO and Modified PSO

In this study, the self-designed boost converter was integrated with the PIC microcontroller and
coordinated with a HIP2717 simulator to examine the tracking capabilities of the conventional PSO and
modified PSO trackers when they were applied to the photovoltaic module array under four cases of
shading conditions, as listed in Table 6. Moreover, to accurately analyze the tracking capabilities of the
two trackers under multiple peaks, the MP-170 measurement instrument was used [26]. Accordingly,
the P–V characteristic curve of each case was plotted using the HIP2717 simulator.

Table 6. Shading conditions of the four cases.

Case Shading Conditions Number of Peaks in the P–V Curve

1 2-series 1-parallel: 0% shading + 40% shading Double peaks

2 3-series 1-parallel: 0% shading + 30% shading + 70% shading Triple peaks

3 4-series 1-parallel: 0% shading + 30% shading + 50% shading + 70% shading Quadruple peaks

4 2-series 2-parallel: (25% shading + 0% shading) // (55% shading + 0% shading) Double peaks

Note: “+” indicates module connection in series; “//” indicates module connection in parallel.

(1) Case 1 (2-series 1-parallel: 0% shading + 40% shading)

Figure 9 displays the P–V characteristic curve of Case 1 measured using MP-170. The curve
exhibits two peaks, and the global maximum power point is located on the right peak (35.42 W).
Figures 10 and 11 illustrate the results obtained through the conventional and modified PSO algorithms,
respectively. Comparing Figures 10 and 11 revealed that the conventional PSO algorithm required
more time to track the global maximum power point than the modified PSO algorithm.
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(2) Case 2 (3-series 1-parallel: 0% shading + 30% shading + 70% shading)

Figure 12 illustrates the P–V characteristic curve of Case 2. The curve demonstrates three peaks,
with the global maximum power point located on the middle peak (37.52 W). Figures 13 and 14 display
the results obtained through the conventional and modified PSO algorithms, respectively. Observing
these two figures showed that when the conventional PSO algorithm was used, additional time was
required to transcend the regional solutions and track the global maximum power point (37.45 W).
By contrast, the modified PSO algorithm required less time to transcend the regional solutions and
accurately track the maximum power point (37.5 W).

Energies 2018, 11, x 10 of 16 

 

Figure 9. P–V characteristic curve of Case 1. 

 

Figure 10. Maximum power point of Case 1 determined through the conventional PSO algorithm. 

 

Figure 11. Maximum power point of Case 1 determined through the modified PSO algorithm. 

(2) Case 2 (3-series 1-parallel: 0% shading + 30% shading + 70% shading) 

Figure 12 illustrates the P–V characteristic curve of Case 2. The curve demonstrates three peaks, 

with the global maximum power point located on the middle peak (37.52 W). Figures 13 and 14 

display the results obtained through the conventional and modified PSO algorithms, respectively. 

Observing these two figures showed that when the conventional PSO algorithm was used, additional 

time was required to transcend the regional solutions and track the global maximum power point 

(37.45 W). By contrast, the modified PSO algorithm required less time to transcend the regional 

solutions and accurately track the maximum power point (37.5 W). 

 

Figure 12. P–V characteristic curve of Case 2. 

10W

2A

20V

1s

Ppv : 35.36 (W)

Vpv

Ipv

10W

2A

20V

1s

Ipv

Vpv

Ppv : 35.37 (W)

0

10

20

30

40

0 10 20 30 40 50 60
Vpv(V)

37.52 (W)

19.16 (W)

28.34 (W)

Ppv

(W)

Figure 12. P–V characteristic curve of Case 2.



Energies 2018, 11, 567 11 of 16

Energies 2018, 11, x 11 of 16 

 

 

Figure 13. Maximum power point of Case 2 determined through the conventional PSO algorithm. 

 

Figure 14. Maximum power point of Case 2 determined through the modified PSO algorithm. 

(3) Case 3 (4-series 1-parallel: 0% shading + 30% shading + 50% shading + 70% shading) 

Figure 15 displays the P–V characteristic curve of Case 3. The curve exhibits four peaks, and the 

global maximum power point is located on the middle peak (42.9 W). Figures 16 and 17 display the 

results obtained through the conventional and modified PSO algorithms, respectively. Comparing 

these two figures revealed that when the conventional PSO algorithm was used, the configured 

iteration number failed to transcend the local solutions, and the global maximum power point was 

inaccurately determined to be 35.38 W. By contrast, the modified PSO algorithm enabled quick 

transcending of regional solutions and tracking of the maximum power point (42.59 W), with 

favorable accuracy. 

 

Figure 15. P–V characteristic curve of Case 3. 

10W

2A

20V

1s

Ipv

Vpv

Ppv : 37.45 (W)

10W

2A

20V

1s

Ipv

Vpv

Ppv : 37.5 (W)

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80

Vpv(V)

42.9 (W)

18.94 (W)

34.22 (W)
37.84 (W)

Ppv

(W)

Figure 13. Maximum power point of Case 2 determined through the conventional PSO algorithm.

Energies 2018, 11, x 11 of 16 

 

 

Figure 13. Maximum power point of Case 2 determined through the conventional PSO algorithm. 

 

Figure 14. Maximum power point of Case 2 determined through the modified PSO algorithm. 

(3) Case 3 (4-series 1-parallel: 0% shading + 30% shading + 50% shading + 70% shading) 

Figure 15 displays the P–V characteristic curve of Case 3. The curve exhibits four peaks, and the 

global maximum power point is located on the middle peak (42.9 W). Figures 16 and 17 display the 

results obtained through the conventional and modified PSO algorithms, respectively. Comparing 

these two figures revealed that when the conventional PSO algorithm was used, the configured 

iteration number failed to transcend the local solutions, and the global maximum power point was 

inaccurately determined to be 35.38 W. By contrast, the modified PSO algorithm enabled quick 

transcending of regional solutions and tracking of the maximum power point (42.59 W), with 

favorable accuracy. 

 

Figure 15. P–V characteristic curve of Case 3. 

10W

2A

20V

1s

Ipv

Vpv

Ppv : 37.45 (W)

10W

2A

20V

1s

Ipv

Vpv

Ppv : 37.5 (W)

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80

Vpv(V)

42.9 (W)

18.94 (W)

34.22 (W)
37.84 (W)

Ppv

(W)

Figure 14. Maximum power point of Case 2 determined through the modified PSO algorithm.

(3) Case 3 (4-series 1-parallel: 0% shading + 30% shading + 50% shading + 70% shading)

Figure 15 displays the P–V characteristic curve of Case 3. The curve exhibits four peaks, and the
global maximum power point is located on the middle peak (42.9 W). Figures 16 and 17 display the
results obtained through the conventional and modified PSO algorithms, respectively. Comparing these
two figures revealed that when the conventional PSO algorithm was used, the configured iteration
number failed to transcend the local solutions, and the global maximum power point was inaccurately
determined to be 35.38 W. By contrast, the modified PSO algorithm enabled quick transcending of
regional solutions and tracking of the maximum power point (42.59 W), with favorable accuracy.
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Figure 17. Maximum power point of Case 3 determined through the modified PSO algorithm.

(4) Case 4 (2-series 2-parallel: (25% shading + 0% shading) // (55% shading + 0% shading))

Figure 18 illustrates the P–V characteristic curve of Case 4. The curve exhibits two peaks, and the
global maximum power point is located on the right peak (64.84 W). Figures 19 and 20 illustrate the
results obtained through the conventional and modified PSO algorithms, respectively. Observing
these two figures showed that the conventional PSO algorithm not only required additional time to
transcend regional solutions but was also affected by the noise signals on the P–V curve. Therefore,
the solution oscillated near 60 W before determining the global maximum power point. By contrast,
the modified PSO algorithm enabled quick transcending of regional solutions, and the tracking and
interpretation process was less affected by the noise signals.
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Figure 20. Maximum power point of Case 4 determined through the modified PSO algorithm.

(5) Comparison and analysis of each case

The four cases were each tested five times using the conventional PSO and modified PSO
algorithms, and the tracking times and maximum power point values were averaged for each case,
as shown in Table 7. The iterations of the two methods are all set as 100 times. They have been
presented in Tables 2 and 3, respectively. In this table, the average tracking time and average maximum
power are derived through averaging tracking times and maximum power outputs of the five trials.
The results showed that the average tracking time and maximum power of each case obtained through
the modified PSO algorithm were more favorable than those attained through the conventional
PSO algorithm.

The test results verified that for each case, the modified PSO algorithm attained more favorable
tracking speed and accuracy than did the convention PSO algorithm. Furthermore, using the
conventional PSO algorithm failed to track the global maximum power point in Case 3. Therefore,
the P–V characteristic curves of Case 2 and Case 3 were further analyzed (Figures 21 and 22).
The results showed that in Case 2, the global maximum power point differed from the left and
right regional solutions by 18.36 W and 9.18 W, respectively. In Case 3, the global maximum power
point differed from the three regional solutions by 23.96 W, 8.68 W, and 5.06 W (from the leftmost
to rightmost peaks, respectively). Although both cases exhibited multiple-peak curves, two of the
regional solutions in Case 3 closely approximated the global maximum power point. This facilitated
incorrect identification of regional solutions as the global solution. Accordingly, the conventional PSO
algorithm performed least desirably in Case 3.
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Table 7. Comparison of the test results of the four cases. 

Case 
Number of Peaks in 

the P–V Curve 

Conventional PSO Modified PSO 

Average 

Tracking Time 

Average 

Maximum Power 

Average 

Tracking Time 

Average 

Maximum Power 

1 Double peaks 0.96 s 35.21 W 0.55 s 35.32 W 

2 Triple peaks 1.89 s 37.08 W 0.98 s 37.28 W 

3 Quadruple peaks Tracking failed 35.73 W 1.2 s 45.55 W 

4 Double peaks 1.22 s 64.68 W 0.67 s 64.73 W 

5. Conclusions 

In this study, the conventional PSO algorithm was adjusted to propose a modified PSO 

algorithm, which was then adopted to track the maximum power point of a photovoltaic module 

array. The weighting value, cognition learning factor, and social learning factor either increased or 

decreased with increasing iteration number. This facilitated decreasing the total number of iterations. 

In addition, the weighting value was slightly adjusted according to the slope and changes in power 

of the P–V characteristic curve, thus enhancing the success rate of tracking the global maximum 

power point. The test results verified that when the modules of the photovoltaic module arrays were 

partially shaded, the modified PSO algorithm more accurately and quickly tracked the global 
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Table 7. Comparison of the test results of the four cases.

Case Number of Peaks in the
P–V Curve

Conventional PSO Modified PSO

Average Tracking Time Average Maximum
Power Average Tracking Time Average Maximum

Power

1 Double peaks 0.96 s 35.21 W 0.55 s 35.32 W
2 Triple peaks 1.89 s 37.08 W 0.98 s 37.28 W
3 Quadruple peaks Tracking failed 35.73 W 1.2 s 45.55 W
4 Double peaks 1.22 s 64.68 W 0.67 s 64.73 W

5. Conclusions

In this study, the conventional PSO algorithm was adjusted to propose a modified PSO algorithm,
which was then adopted to track the maximum power point of a photovoltaic module array.
The weighting value, cognition learning factor, and social learning factor either increased or decreased
with increasing iteration number. This facilitated decreasing the total number of iterations. In addition,
the weighting value was slightly adjusted according to the slope and changes in power of the P–V
characteristic curve, thus enhancing the success rate of tracking the global maximum power point.
The test results verified that when the modules of the photovoltaic module arrays were partially
shaded, the modified PSO algorithm more accurately and quickly tracked the global maximum power
point than the conventional PSO algorithm.
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