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Abstract: We propose a system level approach to value the impact on costs of the integration
of intermittent renewable generation in a power system, based on expected breakeven cost and
breakeven cost risk. To do this, we carefully reconsider the definition of Levelized Cost of Electricity
(LCOE) when extended to non-dispatchable generation, by examining extra costs and gains originated
by the costly management of random power injections. We are thus lead to define a ‘system LCOE’
as a system dependent LCOE that takes properly into account intermittent generation. In order to
include breakeven cost risk we further extend this deterministic approach to a stochastic setting,
by introducing a ‘stochastic system LCOE’. This extension allows us to discuss the optimal integration
of intermittent renewables from a broad, system level point of view. This paper thus aims to provide
power producers and policy makers with a new methodological scheme, still based on the LCOE but
which updates this valuation technique to current energy system configurations characterized by a
large share of non-dispatchable production. Quantifying and optimizing the impact of intermittent
renewables integration on power system costs, risk and CO2 emissions, the proposed methodology
can be used as powerful tool of analysis for assessing environmental and energy policies.

Keywords: intermittent source integration; power system; cost risk; levelized cost of electricity;
generation portfolio frontier

1. Introduction

Levelized Cost of Electricity (LCOE) analysis is an assessment technique routinely used to
value electricity generation costs at plant level, in order to compare them with expected electricity
sales revenues, and check if breakeven can be reached. Its most common use is that of facilitating
comparison among individual generation technology costs. However, this comparison has a limited
scope because it should only be made among production technologies which are homogeneous to
each other, like, for example, dispatchable technologies. Moreover, since hourly electricity output
profiles of non-dispatchable technologies can significantly differ among each other, these technologies
cannot be considered homogeneous among themselves so that the LCOE technique should be carefully
used for comparative purposes within this group. Nevertheless, LCOE valuation is often used in the
case of intermittent renewable sources such as wind or solar [1,2] for comparisons with dispatchable
technologies and with other non-dispatchable technologies. Well aware of this, Joskow [3] tried to
analyze this issue by considering the generation timing impact of intermittent renewables; Reichelstein
and Sahoo [4] tried to extend the definition of LCOE in order to include such timing effects. More
in general, valuing the economic impact on costs of the integration of intermittent sources is a very
important topic which is currently debated in the literature [5,6]. Hittinger et al. [7] analyzed hedging
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mechanisms for randomly generated electricity using co-located natural gas generation and energy
storage. Elsaiah et al. [8] investigated the integration problem from the dispatching perspective and
proposed optimal economic solutions to the dispatch problem for planning and expansion planning
purposes [9].

In this paper, we analyze the problem of the integration of non-dispatchable production in
otherwise dispatchable systems by taking into consideration the whole power system with respect
to its interactions between dispatchable and non-dispatchable components. Our main point relies
on the fact that intermittency imposes to the dispatchable part of the power system both extra costs
and extra gains which are not reflected in the standard LCOE definition [10,11]. Following this line of
reasoning we can obtain a convenient overall measure of the costs that the integration of intermittent
renewables imposes to the power system. This paper will thus provide a methodological scheme for
consistently including non-dispatchable renewables in a LCOE analysis and will update this technique
to current energy system configurations with a large share of intermittent renewable energy. We call
this approach “system LCOE theory”, useful for policy makers which must be aware of the effective
costs that a policy based on renewable energy imposes to the power system.

Going more in the specific, a power system is characterized by a given power capacity and,
consequently, by the energy demanded by users at each hour of the year. In order to match demanded
power capacity, dispatchable technologies (coal and gas in the following analysis) can be combined
in many ways (infinite) into portfolios which differ among each other in terms of generation costs,
i.e., in terms of LCOEs, but also in terms of economic and financial risk [12]. If non-dispatchable
technologies have to be included in the system, this requires to take into account the two following
problems. First, when non-dispatchable energy is generated and injected into the grid, energy from
dispatchable sources must be concurrently reduced of the same quantity in order to maintain the
balance with energy demand. Second, starting from a given level of dispatchable capacity the inclusion
of a non-dispatchable power capacity component in a generation portfolio cannot simply replace
an equivalent amount of the pre-set dispatchable power capacity. In fact, an excess of dispatchable
capacity over the initial level is in any case needed to match demanded power capacity, because for
example wind might not blow during peak hours, and some backup dispatchable power capacity
has to be maintained. In order to quantify how much of dispatchable capacity can be replace by
non-dispatchable capacity in a given portfolio, literature and operators introduced a quantity called
“capacity value” [13], expressed as a percentage of the system capacity. The most conservative operators
adopted a value of zero for the capacity value, i.e., for them adding intermittent renewables does not
modify the portfolio dispatchable sources composition. Operators in areas with large wind availability
computed values ranging for example from 5% (e.g., Southwest Power Pool, USA) to 15% (e.g.,
Midwest ISO, USA) [13]. Recapitulating, the inclusion of intermittent renewable sources into the
power system increases the generation portfolio costs by the plants construction and operation costs
but decreases them by the dispatchable energy saving and the avoided dispatchable power capacity.
Thus, these two effects impose cost variations with respect to the case without intermittent generation
that must be properly accounted for in order to coherently determine the LCOE for intermittent
generation sources. This means that the costs of a non-dispatchable plant depend on the structure,
the management of the energy system as a whole, and possible external policy constraints on the
management. We thus propose a system approach that allows us to derive a LCOE formula for
non-dispatchable sources that takes into account in a proper way extra costs and gains originating
from the interactions between the dispatchable and the intermittent component of the power system
generation portfolio.

Classic LCOE theory itself cannot deal with risk analysis of costs. Based on the stochastic LCOE
theory developed in our previous work [12,14], the system LCOE theory will be then extended towards
a “stochastic system LCOE theory”, in order to include investment risk assessment into the analysis.
In this regard, one should consider that economic and financial risk in the electric energy sector is
mainly due to the high volatility of fossil fuels and CO2 market prices [15]. Annual variability of the
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intermittent source is not considered in this study as a further source of uncertainty. The reason is that
the impact it has on the costs of generation portfolios over the whole lifetime of the plant (a thirty
years time horizon in our study) is negligible. Fluctuations around the average annual electricity
production are independent events that cancel each other on average over time. This kind of risk is,
in fact, very different from price risks (fossil fuels and CO2) which are described by stochastic processes
autocorrelated over time, and we can safely avoid to model it. In order to include fossil fuels and CO2

prices risk, we will use a stochastic dynamical model underlying the LCOE computation, in which the
time evolution of fossil fuel prices is described by geometric Brownian motions [16]. Carbon prices
will be assumed to evolve according to a geometric Brownian motion under different market scenarios
characterized by different CO2 price volatility values. We will show that stochastic LCOE distributions
of energy portfolios are, in general, not Gaussian, having asymmetric long and fat tails which can lead
to large breakeven costs (hereinafter, costs) not captured by the mean-variance approach [17]. For this
reason, our assessment analysis of breakeven cost risk (hereinafter, risk) will be performed using
two risk measures, namely the standard deviation [18] and the Conditional Value at Risk Deviation
(CVaRD) [19] of the stochastic LCOE. CVaRD is the deviation measure associated to Conditional Value
at Risk (CVaR) [20] and plays the same role of the standard deviation in a Markowitz approach [21],
thus providing a very interesting measure for that tail risk which is due to extreme events [22].

The stochastic system LCOE is an important construct to investigate the problem of the optimal
integration of intermittent renewables in a given power system. We will show, in fact, that the stochastic
system LCOE theory is able to generate endogenous strategies for optimally managing intermittent
electricity production. In this way, the proposed methodology can be used to analyze and quantify
the global effects of the optimal integration on the power system in terms of cost, risk and CO2

emission reduction. This can be done through the study of the “efficient power system frontier”.
The efficient power system frontier is the locus of efficient power system portfolios, i.e., the locus
of system portfolios that have minimum cost among all system portfolios with the same level of
risk. We will show that frontier analysis offer to policy makers a global view of the power system
which can be useful for investigating the effects produced by environmental and renewable energy
policies. The analysis works in the following way. After discussing efficient system frontiers for fully
dispatchable power system portfolios, we determine efficient frontiers which optimally integrate the
intermittent electricity generation.

Frontier analysis will provide many interesting results. One of the main behavioral implications of
the stochastic LCOE theory is that the joint effect of fossil fuels prices volatility and CO2 price volatility
can induce a rational investor to diversify its generation portfolio in order to minimize the overall
impact of risky factors on the risk of production cost. Since a power system portfolio can be viewed
as the generation portfolio obtained by aggregating individual producer’s portfolio choices, such
diversification effects have an important impact also on the risk of the overall power system. Moreover,
our results indicate that the volatility of carbon market prices plays a crucial role in the emission
reduction process. We will show that CO2 price volatility can induce rational investors to efficiently
reduce the coal fraction of their power generation portfolios for purely risk aversion reasons. As the
CO2 price volatility increases, the set of efficient system portfolios reduces because the most emitting
ones become inefficient. Introducing volatility in CO2 prices, market-based mechanisms for CO2

pricing, like the European Union Emissions Trading Scheme (EU ETS) [23], can produce more relevant
effects on controlling CO2 emissions with respect to non volatile carbon tax schemes. The combined
effect of fossil fuels prices volatility, CO2 price volatility and individual investor’s rational choices
controls CO2 emissions to an extent that can be quantified. From this point of view, frontier analysis is
an important tool for jointly investigating diversification and CO2 emissions reduction effects on the
whole power system due to individual producer’s portfolio choices. In this sense, frontier analysis is
an important tool for evaluating market reactions to environmental and renewable energy policies.

The paper is organized as follows. In Section 2, we first introduce the deterministic system LCOE
theory, and then, we extend the system LCOE theory to the stochastic system LCOE theory. In Section 3,
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the optimal integration of intermittent sources is discussed. System frontiers are determined and the
main results are presented. Finally, policy implications are discussed. Section 4 concludes. To make
the paper self contained, some Appendices have been included. Appendix A reviews the classical,
deterministic LCOE theory. Appendix B illustrates the dynamic model used in the empirical analysis
to describe the stochastic time evolution of fossil fuels and carbon prices. Appendix C reviews some
basic definitions and properties concerning the CVaRD measure. Optimal integration strategies are
derived in Appendix D.

2. The System LCOE Theory

In this Section we show how to include intermittent renewable energy in a given power system
taking coherently into account the interactions with the dispatchable component of the power system
generation portfolio. The analysis is performed first by using the wind source as a working example
and then it is extended to any bundle of intermittent sources. The Section contains three parts.
In Section 2.1, the deterministic system LCOE theory is introduced. We extend the system LCOE
theory to a stochastic setting in Section 2.2. Finally, in Section 2.3 the theory is generalized to account
for many intermittent renewables.

2.1. Deterministic System LCOE Theory

The integration of non-dispatchable sources, as for example wind or photovoltaic technologies,
into a power system requires to take into account the interactions of the intermittent electricity
generation component with the dispatchable component. In particular, two main issues must be
considered. First, when the electricity produced by an intermittent source is generated and injected
into the grid, energy generation from dispatchable sources must be reduced of the same quantity in
order to match the energy demand. Second, the inclusion of a given amount of non-dispatchable
power capacity in a power system cannot actually reduce the power capacity of the dispatchable
sources of the same amount. To this end, the capacity value quantifies how much dispatchable power
generation capacity can be replaced by non-dispatchable capacity in a power system. As outlined
in the Introduction, most conservative operators adopt a value of zero for the capacity value [13],
i.e., for them adding intermittent renewables does not modify the portfolio dispatchable sources
composition. Operators in areas with large wind capacity compute values ranging from 5% (Southwest
Power Pool, Little Rock, AR, USA) to 15% (Midwest ISO, Saint Paul, MN, USA, even if only about
half of 15% potential value has actually been used in capacity planning) [13], because in these areas
it is assumed that some baseline wind production can be guaranteed. In any case, these two side
effects impose some extra costs and gains to the power system that must be accounted for in order to
determine a consistent wind LCOE. More specifically, on one hand the inclusion of a non-dispatchable
sources increases the power system generation portfolio costs because intermittent renewables plants
must be constructed and put in operation, on the other hand, such an inclusion reduces the total costs
of the portfolio because of the energy and capacity reduction. Although in the following we limit
the analysis to a single non-dispatchable source, wind, we will show in Section 2.3 that the obtained
results can be extended to any bundle of intermittent sources.

We limit the analysis to the case in which the diapatchable part of the system portfolio is fully
composed by coal and gas sources. Let us denote by PSY,w the LCOE of the power system portfolio
which does not include intermittent sources (the suffix “SY” stands for system). Since the power
system portfolio is obtained by aggregating individual producer’s portfolio choices, its LCOE can be
expressed as a linear combination of single technology LCOEs PLC,x with weights wx representing the
fraction of electricity generated by each technology in the power system, i.e.,

PSY,w = ∑
x

wxPLC,x, (1)



Energies 2018, 11, 549 5 of 21

for some nonnegative numbers wx (x = “co” , “ga”, respectively for coal and gas) such that 0 ≤ wx ≤ 1
and satisfying the condition ∑x wx = 1 (see Appendix A for the main definitions and a detailed
description of the symbols, their economic meaning, and the way to compute them from market data).
After wind inclusion, the dispatchable generation reduction imposed on technology x in one year will
be denoted by Qx,red and will be expressed as a fraction of the yearly wind power production Qwi as

Qx,red = αxQwi, (2)

for some nonnegative numbers αx such that 0 ≤ αx ≤ 1 and satisfying the condition ∑x αx = 1.
Moreover, if Wx,av denotes the dispatchable capacity reduction of the x technology to be replaced
by wind capacity (the superscript “av” stands for “avoided”) and WTOT is the total power system
dispatchable capacity, we pose

Wx,av = βxWTOT, (3)

for some nonnegative capacity value βx such that 0 ≤ βx ≤ 1.
The inclusion of wind power in a power system generation portfolio can be valued by considering

the present value of the costs of the augmented portfolio in which the wind integration is performed
according to the two aforementioned issues. If we denote by PSY,w

α,β the LCOE of the system portfolio
which coherently integrates the wind sources, we get

QTOTPSY,w
α,β = ∑

x
QxPLC,x + QwiPLC,wi −Qwi ∑

x
αxC̃x,var −∑

x
βxQTOT

(
C̃x,fix +

Ĩx
0 − Tc ˜depx

1− Tc

)
, (4)

where PLC,wi is the “bare” LCOE of the wind technology, computed without considering the system
interactions due to the inclusion of such an intermittent technology. This PLC,wi is indeed the LCOE
used in current literature to evaluate the cost of generating electricity by wind. The second term in
the r.h.s. of Equation (4) accounts for the wind plant construction and operating costs. The third term
quantifies the effects on costs of the first issue, i.e., the quantity of dispatchable generation reduction
due to the injection into the grid of the wind electricity. The fourth term quantifies the effects on costs
of the second issue, i.e., the cost reduction due to the avoided dispatchable capacity. We remark that
in the scheme we propose, the wind integration does not modify the amount of yearly generated
electricity, i.e., QTOT = ∑x Qx.

In order to find a consistent wind LCOE PLC,wi
α,β that properly accounts for the extra costs an gains

discussed so far (where the indexes α, β remark the dependency on the reduction strategy), let us
express the costs present value described in Equation (4) as follows

QTOTPSY,w
α,β = ∑

x
(Qx − αxQwi)PLC,x + QwiPLC,wi

α,β . (5)

Solving for PLC,wi
α,β , from Equations (4) and (5) we get

PLC,wi
α,β = PLC,wi + ∑

x
αxPLC,x −∑

x
αxC̃x,var −∑

x

βxQTOT

Qwi

(
C̃x,fix +

Ĩx
0 − Tc ˜depx

1− Tc

)
. (6)

By substituting Equation (A11) into Equation (6), we can write PLC,wi
α,β in terms of fixed costs

only, namely

PLC,wi
α,β = PLC,wi + ∑

x

(
αx − βx

w̄wi

)(
C̃x,fix +

Ĩx
0 − Tc ˜depx

1− Tc

)
, (7)

where

w̄wi =
Qwi

QTOT (8)
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is the wind penetration, i.e., the fraction of electricity generated by the wind source in the power
system. Hence, Equation (7) expresses the wind LCOE as the sum of the ’bare’ wind LCOE PLC,wi

plus the costs of the interaction of the wind component with the dispatchable component of the power
system portfolio. PLC,wi

α,β thus shows that the extra costs in the wind LCOE formula depend on the
mix of technologies used to reduce both the electricity generation and the power capacity from the
dispatchable component of the power system portfolio. Equation (7) is the first of our key results.
In Section 2.3 we will provide a generalization of Equation (7) to portfolios of intermittent renewables.

As an example of application, Table 1 shows the values of wind LCOE PLC,wi
α,β computed

using Equation (7) under two different integration strategies. The first one, denominated ’ga red’
(gas reduction), is characterized by a full reduction of both energy and capacity from the gas component
of power system portfolio, i.e., αco = 0, αga = 1 and βco = 0. The second one, denominated ’co red’
(coal reduction) refers to a full reduction of both energy and capacity from the coal component,
i.e., αco = 1, αga = 0 and βga = 0. For each integration strategy, five different cases are considered
corresponding to capacity values (βga in the first strategy and βco in the second strategy) equal to
0%, 5%, 10%, 15%, 20%. For computing Table 1 a wind penetration w̄wi = 40% is assumed. Such a value
was chosen in agreement with the US planned targets as reported in ’Renewable Electricity Futures
Study’ published by the National Renewable Energy Laboratory [24]. As well documented in the ’IEA
Wind—2015 Annual Report’ [25], several European countries have similar wind penetration targets.
Denmark even reached in 2015 a wind penetration of 42% with an outstanding official target of 50%
by 2020.

Table 1. Wind LCOEs PLC,wi
α,β for the two different integration strategies described in the text. A wind

penetration value w̄wi = 40% is assumed.

βga Ga Red βco Co Red

0% 70.6 0% 111.5
5% 68.9 5% 104.6
10% 67.2 10% 97.8
15% 65.5 15% 91.0
20% 63.7 20% 84.1

Finally, Equation (5) allows us to define the “system LCOE”, i.e., the LCOE of the power system
portfolio that includes an intermittent source, as follows

PSY,w
α,β = (wco − αcow̄wi)PLC,co + (wga − αgaw̄wi)PLC,ga + w̄wiPLC,wi

α,β , (9)

i.e., as a linear combination of single technology LCOEs with nonnegative weights representing the
fraction of electricity generated by each technology in the power system.

2.2. Stochastic System LCOE Theory

Economic and financial risk in the electric energy sector is mainly due to the high volatility of the
prices of fossil fuels and CO2 [15]. Thus, at least three sources of risk should be taken into account
when modelling energy portfolio risk: the dynamics of coal market prices, the dynamics of gas market
prices and the dynamics of CO2 prices. Appendix B illustrates the dynamic model used in the empirical
analysis to describe the stochastic time evolution of fossil fuels and carbon prices. Uncertainty in coal,
gas and CO2 market prices influences variable costs of fossil fuel generation. Hence, the insertion of
a stochastic variable costs sequence Cx,var

n (ω) in Equation (A8), due to the stochastic path ω, makes
PLC,x a (time-independent) stochastic variable

PLC,x(ω). (10)
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In what follows, we will refer to PLC,x(ω) of Equation (10) as “stochastic LCOE” [14,26]. For a
single fossil fuel technology x the stochastic LCOE can be defined by the following relationship,

PLC,x(ω) = C̃x,var(ω) + C̃x,fix +
Ĩx
0 − Tc ˜depx

(1− Tc)
, (11)

where the risky terms are highlighted by the path label ω. By definition, the mean of the stochastic
LCOE coincides with the deterministic LCOE obtained in our computations using Table A1 and
reported in Table A2. Thus, the values reported in Table A2 can be also interpreted as mean values
of the stochastic LCOE. CO2 stochastic prices affects both PLC,co(ω) and PLC,ga(ω), thus introducing
correlation between these two random variables. Equation (11) properly extends Equation (A11) by
giving it a distribution, and prepares the way to the introduction of decision theory and optimal
portfolio selection in the field of the LCOE technique.

Under our hypothesis of three sources of risk, the wind LCOE PLC,wi
α,β follows a deterministic

price path because the electricity production from wind source does not burn fossil fuels and does not
release CO2. Moreover, Equation (7) shows that the extra costs imposed to the power systems depend
only on the fixed cost of the fossil fuel dispatchable technologies (which are independent of ω). A wind
plant can be seen, therefore, as a risk-free asset in an otherwise risky portfolio, and the contribution of
the wind source to optimal risk reduction will be shown to be relevant.

Following the same line of reasoning adopted in the deterministic case, the “stochastic system
LCOE”, i.e., the stochastic LCOE of the power system portfolio that includes an intermittent source,
can be defined as follows

PSY,w
α,β (ω) = (wco − αcow̄wi)PLC,co(ω) + (wga − αgaw̄wi)PLC,ga(ω) + w̄wiPLC,wi

α,β , (12)

i.e., as a linear combination of single technology stochastic LCOEs with the same nonnegative weights
of the deterministic case. The integration of an intermittent renewable source, like wind, in a fossil
fuels portfolio does not generate further CO2 emissions but instead goes to replace fossil fuels usage.
The effect of wind inclusion will be that of reducing fossil fuel, CO2 emissions and the overall portfolio
risk. Equation (12) is the second key result of this paper.

2.3. Extending the System LCOE Theory to Many Intermittent Renewables

Equation (12) can be extended to include any bundle of intermittent renewables in a quite
straightforward way. Let us assume that there are L different intermittent generation technologies,
labelled by the index y = 1, 2, · · · , L. We denote by w̄nd the non-dispatchable sources penetration,
i.e., the fraction of electricity yearly generated in the power system by intermittent renewables

w̄nd =
∑L

y=1 Qy,nd

QTOT , (13)

where Qy,nd is the amount of electricity yearly generated in the power system by the non-dispatchable
source y. The stochastic system LCOE can be expressed in the following way

PSY,w
α,β (ω) = (wco − αcow̄nd)PLC,co(ω) + (wga − αgaw̄nd)PLC,ga(ω) + w̄wiPLC,nd

α,β . (14)

PLC,nd
α,β is the LCOE of the intermittent component of the system portfolio which properly includes

extra costs and gains due to non-dispatchable sources integration. It is given by

PLC,nd
α,β = PLC,nd + ∑

x

(
αx − βx

w̄nd

)(
C̃x,fix +

Ĩx
0 − Tc ˜depx

1− Tc

)
, (15)
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where

PLC,nd =
L

∑
y=1

Qy,nd

Qnd PLC,y, (16)

Qnd = ∑L
y=1 Qy,nd, and PLC,y is the ‘bare’ LCOE of the renewable source y

PLC,y = C̃y +
Ĩy
0 − Tc ˜depy

(1− Tc)
. (17)

We notice that, since intermittent renewables are carbon-free sources, PLC,nd
α,β is a deterministic

quantity (independent of ω).
On these results we will next develop the stochastic system LCOE risk analysis, a powerful tool

for investigating the problem of the optimal integration of intermittent sources into the power system.
This is the main contribution of the paper.

3. Optimal Integration of Intermittent Renewables

In this Section, we will use the stochastic system LCOE theory for investigating the problem of the
optimal integration of intermittent sources into the power system. In particular, we will provide the
optimal integration solution for any initial configuration of the power system, i.e., for any dispatchable
generation sources composition. The main results will be illustrated in the framework of system
frontier analysis which offers a global view of the power system in terms of the cost-risk trade-off.
To better discuss the impact of optimal integration strategies on the power system, we first determine
system frontiers in the case of fully dispatchable (coal and gas) sources. Then, the wind technology will
be included using the system LCOE approach. Finally, we will show that frontier analysis is also an
important tool for investigating the effects produced on the power system by well defined renewable
energy and environmental policies.

3.1. Efficient System Portfolio Frontiers: The Dispatchable Case

One of the main implications of the stochastic LCOE theory is that the joint effect of fossil fuel
prices volatility and the CO2 price volatility can induce rational electricity producers to diversify
their generation portfolios in order to minimize the impact of such factors on the risk of electricity
production [14]. The rationale is that, since LCOE estimates always include uncertainty because of
fluctuating fuel and carbon prices, instead of getting rid of this uncertainty by hiding it under the
carpet, it is wiser to diversify the investment in such a way to control risk in the best possible way.
Since the power system portfolio can be viewed as the generation portfolio obtained by aggregating
individual producer’s portfolio choices, such diversification effects have an important impact also
on the risk of the overall power system. This risk-reducing diversification is not trivial because the
stochastic LCOE of the two fossil fuel components of the portfolio, i.e., coal and gas, are coupled
through the CO2 price process. Table A4 shows correlation values between coal and gas stochastic
LCOEs for the sequence of the CO2 scenarios characterized by σca = 0, 0.10, 0.20, 0.30. As σca increases,
the coupling between PLC,co(ω) and PLC,ga(ω) strengthen, thus showing that the CO2 price volatility
parameter σca plays an important role in the risk reduction process.

The risk assessment can be performed by determining power system portfolio frontiers. We recall
that a power system portfolio belongs to the portfolio frontier if it is at minimum risk (as measured by
the standard deviation or by the CVaR deviation of the stochastic system LCOE) among all system
portfolios with the same LCOE mean. By using Equation (12) for the fully dispatchable case (i.e., in the
case w̄wi = 0), it is possible to draw system portfolio frontiers by plotting for each portfolio composition
(i.e., for each value of wco and of wga = 1−wco with 0 ≤ wco ≤ 1) the mean against standard deviation
of the system LCOE, or the mean against CVaR deviation of the system LCOE. Equation (12) shows
that in the case w̄wi = 0, the individual producer’s frontier coincides with the system frontier. In this
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way, we can investigate the cost-risk trade off of power system portfolios. We will show that a policy
maker can use the information contained in the system portfolio frontier to value the impact on the
power system of environmental and renewable energy policies.

Figure 1 depicts system portfolio frontiers in the (−µSY,w, σSY,w) plane (left panel), and in the
(−µSY,w, CVaRDSY,w) plane (right panel) for each CO2 price volatility scenario (in this paper the
confidence level for the CVaRD risk measure has been taken equal to 95%).
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Figure 1. System portfolio frontiers for the fully dispatchable case. Each graph plots 4 system
portfolio frontiers (for σca = 0, 0.1, 0.2, 0.3). Left panel: The (−µSY,w, σSY,w) plane. Right panel:
The (−µSY,w, CVaRDSY,w) plane. The σca = 0 case is the leftmost curve.

By using this approach it is thus possible to determine the composition of that fully dispatchable
portfolio which minimizes generation risk, i.e., the portfolio that minimizes the standard deviation or
the CVaR deviation of the stochastic LCOE. In this way, optimization can be introduced in the stochastic
LCOE problem, picking up portfolios of assets which have minimum dispersion about the expected
LCOE as measured by standard deviation, or minimum tail risk as measured by CVaRD. Table 2
reports respectively the composition of minimum variance portfolios (mvp) and the composition of
minimum CVaRD portfolios (mcp) for all considered CO2 price volatility scenarios.

Table 2. Composition of minimum variance portfolios (mvp) and minimum CVaRD portfolios (mcp)
for the fully dispatchable case.

σca = 0 σca = 0.1 σca = 0.2 σca = 0.3

wco
mvp 92% 87% 73% 40%

wco
mcp 91% 86% 69% 38%

We notice that in each scenario the composition of the mvp-portfolio is very similar to the
composition of the mcp-portfolio. This means that a variance-risk averse investor (and a variance-risk
averse policy maker) and a tail-risk averse investor (and a tail-risk averse policy maker) would select
very similar portfolios.

The “efficient power system frontier” is defined as the locus of efficient power system portfolios,
i.e., the locus of system portfolios that have minimum cost among all system portfolios with the same
level of risk. The efficient power system frontier is represented in each graph by the upward sloping
part of the curves, starting from the mvp (or the mcp) portfolio and ending with the full gas, single
asset system portfolio. Efficient frontiers provide well defined trade-offs between global cost and risk
and between risk an CO2 emissions of the power system as a whole. As we move along the efficient
frontier from left to right, the gas component increases thus reducing both costs and CO2 emissions
and increasing the portfolio risk. Among efficient portfolios, minimum risk portfolios (mvp or mcp)
are therefore the most costly and the most emitting portfolios. Table 2 shows that as the volatility of
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carbon prices increases, the weight of the coal component of such optimal portfolios decreases. As a
consequence, the set of efficient portfolios is reduced (see Figure 1). Increasing values of the CO2 price
volatility, in fact, make inefficient the most emitting portfolios. This is due to the fact that increasing
carbon volatility makes coal generation riskier than natural gas generation, thus increasing the weight
of the gas technology within individual producer’s efficient portfolios. This leads to a reduction of
both generating costs and CO2 emissions but increases risk. From this point of view, frontier analysis
is an important tool for jointly investigating diversification and CO2 emissions reduction effects on the
whole power system due to individual producer’s portfolio choices. In this sense, frontier analysis is
an important tool for evaluating market reactions to environmental and renewable energy policies.

3.2. Efficient System Portfolio Frontiers: Including the Wind Asset into the Power System

The first important difference with respect to the fully dispatchable case is that when the wind
asset is included in the power system, the individual producer’s portfolio frontiers differs from the
system portfolio frontier. This is due to the fact that individual producers can select generation
portfolios with any weights of wind and fossil fuel components. In contrast, at system level the wind
source has a limited availability. In fact, the fraction of the wind energy in the power system portfolio
is constant and is equal to the wind penetration w̄wi. Nevertheless, an analytical characterization of
efficient system portfolios can be given. We will show that a policy maker can use the information
contained in the system portfolio frontier to value the impact on the power system of environmental
and renewable energy policies.

Looking back to Equation (12), we notice that the composition of a system portfolio depends
on the interplay between two parameters, wco and αco, defining the coal component of the portfolio
wco − αcow̄wi. In fact, if we set a given value of the coal component, wco and αco can be combined in
many (infinite) ways to produce different system portfolios with the same value of the coal component.
Since wga = 1 − wco and αga = 1 − αco, the values of wco and αco determine uniquely the gas
component too. All these portfolios bear the same risk (as measured by the standard deviation or by
the CVaR deviation, see Appendix D) but have different generation costs (as measured by the mean of
their stochastic LCOE). This is due to the fact that the last term in the r.h.s of Equation (12) PLC,wi

α,β is
non stochastic and does not affect risk but it influences the LCOE mean of different system portfolio
with the same coal component. In fact PLC,wi

α,β depends on the integration strategy αco and by capacity
values, but is independent of wco. Two main results then follow.

The first result regards the composition of minimum risk portfolios. Such optimal portfolios can
be obtained for wco and αco satisfying the relationship

wco − αcow̄wi = wco
mrp(1− w̄wi), (18)

where “mrp” stands for mvp in the case of standard deviation, and for mcp in the case of CVaR
deviation. The gas component is, of course, wga

mrp(1− w̄wi) and the wind component is w̄wi. The proof
can be found in Appendix D.

With respect to the dispatchable case, the weights of both fossil fuels components of minimum
risk portfolios are reduced by the factor 1− w̄wi. The same factor reduces also the overall risk of such
optimal portfolios. Tables 3 and 4 report, respectively, the composition of minimum variance and
minimum CVaRD power system portfolios in the wind integrated case.

As a second result, a complete characterization of power system frontier portfolios can be obtained.
In fact, in each set of system portfolios with the same coal component (and, consequently, the same
gas and wind components, and the same risk) we can find a system portfolio characterized by the
minimum expected system LCOE. By definition, such a portfolio is a frontier portfolio. It can be
obtained for αco = 0, i.e., in the case of a fully gas reduction strategy (αga = 1). In fact, Equation (12)
and data reported in Table 1 show that αco = 0 is the minimum cost integration strategy for any
composition of the system portfolio, i.e., for any level of risk. System frontiers can be then obtained
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by plotting for each frontier portfolio, i.e., for each value wco ∈
[
0, 1− w̄wi], the mean against the

standard deviation and the mean against the CVaR deviation of the system LCOE. In this manner,
the system LCOE theory is able to produce the optimal integration strategy of intermittent generation
in an endogenous way. Figure 2 shows system frontiers for both risk measures in the four CO2 volatility
scenarios for a wind penetration w̄wi = 40% and βga = 0.

Table 3. Optimal, minimum variance system portfolios for the fully integrated wind case for
w̄wi = 40%.

σca = 0 σca = 0.1 σca = 0.2 σca = 0.3

w̄wi
mvp 40% 40% 40% 40%

wco
mvp(1− w̄wi) 55% 52% 44% 24%

wga
mvp(1− w̄wi) 5% 8% 16% 36%

Table 4. Optimal, minimum CVaRD system portfolios for the fully integrated wind case for w̄wi = 40%.

σca = 0 σca = 0.1 σca = 0.2 σca = 0.3

w̄wi
mcp 40% 40% 40% 40%

wco
mcp(1− w̄wi) 55% 52% 41% 23%

wga
mcp(1− w̄wi) 5% 8% 19% 37%
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Figure 2. Efficient system portfolio frontiers. Each graph plots 4 system portfolio frontiers (for
σca = 0, 0.1, 0.2, 0.3) for βco = 0 = βga. The wind penetration is w̄wi = 40%. Left panel: The (−µSY,w, σSY,w)

plane. Right panel: The (−µSY,w, CVaRDSY,w) plane. The σca = 0 case is the leftmost curve.

Efficient system frontiers are represented by the upward sloping part of the curves, starting from
the mrp portfolio and ending with the two asset, gas and wind, system portfolio. Efficient portfolios are
characterized by a coal component wco ∈

[
0, wco

mrp(1− w̄wi)
]
, a gas component wga ∈

[
0, wga

mrp(1− w̄wi)
]

and a wind component equal to w̄wi. As in the fully dispatchable case, efficient frontiers provide a well
defined trade-off between global cost and risk of the power system. As we move along the efficient
frontier from left to right, we note that cost cannot be reduced without increasing risk.

As a further result, we will show that the fully gas reduction strategy αco = 0 represents also
the minimum risk integration strategy for efficient system portfolios. The minimum risk integration
strategy is defined for each fully dispatchable power system portfolio by the value αco that minimizes
the overall system portfolio risk after the wind inclusion. It can be obtained in a closed form for both
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risk measures. Limiting our analysis to efficient dispatchable power system portfolios (wco ≤ wco
mrp) in

which a wind component is included, the minimum risk strategy αco
mr is given by

αco
mr =

{
0 if 0 ≤ wco ≤ wco

mrp(1− w̄wi)[
wco − wco

mrp(1− w̄wi)
]
/w̄wi if wco

mrp(1− w̄wi) < wco ≤ wco
mrp

(19)

and α
ga
mr = 1− αco

mr. The proof can be found in Appendix D.
Equation (19) clearly shows that for efficient system portfolios the wind integration is performed

also at minimum risk. From this point of view, a renewable energy policy characterized by a well
defined penetration target for the intermittent generation and by a fully gas reduction integration
strategy, generates efficient power system portfolios in which the intermittent production is integrated
at minimum risk. This is an important indication for policy makers aiming at conciliating energy
policies with market logics.

Figure 3 illustrates the impact on the overall power system of a renewable energy policy
characterized by a given wind penetration target w̄wi. Each graph plots 3 system portfolio frontiers,
namely for βga = 0, 0.1, 0.2, and the dispatchable system frontier for the σca = 0.2 scenario. The wind
penetration target is w̄wi = 40%.
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Figure 3. Efficient system portfolio frontiers in the σca = 0.2 scenario. Each graph plots 3 system
portfolio frontiers (for βga = 0, 0.1, 0.2) and the dispatchable system frontier (disp). The wind penetration
is w̄wi = 40%. Left panel: The (−µSY,w, σSY,w) plane. Right panel: The (−µSY,w, CVaRDSY,w) plane.
The dispatchable case is the rightmost curve.

The wind inclusion sensibly reduces the risk of system portfolios. The entity of the risk reduction
does not depend on the capacity value βga. Referring, in fact, to Equation (12), we note that the capacity
value enters only in the last term PLC,wi

α,β which is non stochastic and does not affect risk. However,
the capacity value influences the LCOE mean. Increasing capacity values reduce costs. However,
the entity of such a cost reduction is quite low, and as the capacity value increases the portfolio frontier
moves slightly north. In Figure 3 can be observed a reduction of the expected stochastic system LCOE
due to the wind integration. This reduction is not obvious as it could seem, because of the extra costs
imposed by wind integration, and depends on the specific cost data of the power technologies we used
in the empirical analysis.

Efficient system frontiers also show a well defined trade-off between risk and CO2 emissions.
Let us recall that the CO2 emissions rate of a power generation portfolio can be computed as a linear
combination of single technology emissions rates, using as weights the fraction of energy generated by
each single CO2 emitting technology in the portfolio [14]. Denoting by Ex the CO2 emissions rate due
to technology x measured in tCO2/MWh, the efficient system portfolio emissions rate ESY is given by

ESY = wcoEco + (1− wco − w̄wi)Ega. (20)
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Table 5 shows emission rates computed for optimal standard deviation and optimal CVaRD
portfolios in both the fully dispatchable and in the wind integrated case. Emissions are computed
using an emissions rate of 0.832 tCO2/MWh for coal fired plants and 0.351 tCO2/MWh for gas fired
plants (see Table A1).

Table 5. Emissions rates for minimum variance and minimum CVaRD portfolios (tCO2/MWh) in both
the fully dispatchable and in the integrated case. (d) stands for dispatchable.

σca = 0 σca = 0.1 σca = 0.2 σca = 0.3

mvp(d) 0.794 0.769 0.702 0.543
mvp 0.476 0.462 0.421 0.326
mcp(d) 0.789 0.765 0.683 0.533
mcp 0.473 0.459 0.410 0.320

The inclusion of the wind asset reduces both the risk and the CO2 emission rate. The percentage
abatement of CO2 emissions is exactly equal to the wind penetration in the power system, i.e., 40%.
The entity of emissions abatement is independent from the capacity values of the power system.
Equation (12) shows, in fact, that capacity values influence generation costs but have no effect on both
the risk of the system portfolio and the emissions reduction.

Among efficient system portfolios, minimum risk portfolios are characterized by the maximum
CO2 emission rate. As we move along the efficient system frontier starting from the minimum risk
system portfolio, the risk monotonically increases and the CO2 emission rate monotonically decreases.
CO2 emissions cannot be reduced without increasing risk. Moreover, the abatement of CO2 emissions
of minimum risk portfolios increases as the CO2 price volatility increases (see Table 5). As in the
fully dispatchable case discussed in the previous subsection, Figure 2 shows that increasing values
of the CO2 price volatility make inefficient the most emitting portfolios, thus reducing the set of
efficient system portfolios. The volatility of carbon market prices plays a crucial role in the emission
reduction process also in this wind integrated case because, as in fully dispatchable case, it leads
rational investors to efficiently reduce the coal fraction of power generation portfolios for purely
risk aversion reasons. CO2 price volatility can induces therefore individual producers to modify
their portfolio choices to automatically regulate the CO2 emissions at a level which is lower, or at
lest equal, to the CO2 emission level of minimum risk system portfolios (mvp or mcp, depending
on the chosen risk measure). From this point of view, the stochastic system LCOE theory is an
important tool for investigating jointly diversification and CO2 emissions reduction effects on the
whole power system due to the reaction of individual producers to environmental and renewable
energy policies. Introducing volatility, market-based mechanisms for CO2 pricing can produce more
significant effects on controlling CO2 emissions with respect to non volatile carbon tax schemes. On
one side, they contribute to reduce CO2 emissions in the power system. On the other side they increase
the risk of individual producer’s portfolios, and consequently, the risk of the power system portfolio.
This is an important indication for a policy maker concerned with environmental issues coordinated
with economic issues.

4. Conclusions

The classic LCOE theory is a technique widely used for comparing generation costs among
homogeneous individual technologies or between portfolios of homogeneous technologies, useful
among other things for assessing capacity planning schemes. For intermittent sources, a naive use of
the LCOE fails to consider the constraints of the interaction of a non-dispatchable source inclusion
with the power system. In contrast, system LCOE theory allows policy makers to consistently compute
the LCOE of a non-dispatchable technology taking into account inclusion effects. The stochastic
system LCOE theory even goes beyond this, and allows a policy maker to value the impact of a given
renewable energy policy in terms of risk. When system frontiers are plotted for each given capacity
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value (see Figure 3), the policy maker can in fact quantify the risk reduction which can be obtained by
including a carbon free non-dispatchable asset in the system.

Finally, a policy maker can apply the stochastic system LCOE theory the to the analysis of CO2

emissions assessment and reduction, quantifying the impact of market-based mechanisms of CO2

emissions pricing, also by comparing them to a non-volatile carbon tax scheme. In fact, as it is shown
in Table 5, non-volatile CO2 prices (first column) set a reference emission rate and as volatility increases
(going from left to right along the rows), emission rates of optimal portfolios get reduced, starting
from this initial rate, as long as part of the coal component is substituted with some gas component
(see also Tables 3 and 4). From this point of view, the stochastic system LCOE theory can be used as a
powerful tool of analysis to value the effects on the power system of integrated environmental and
renewable energy policies.

The proposed methodology can be applied also in the case of power capacity expansion planning
in order to account for the inclusion of a non-dispatchable source in a already existing coal and gas
mixed portfolio. To determine the wind LCOE in such a case, it is necessary to carefully evaluate sunk
costs and to include into the analysis (specifically, in the r.h.s. of Equation (4)) incremental costs and
gains due to the wind source integration. Regarding capacity reduction, power market forces can
induce individual producers to efficiently reduce the excess capacity as it becomes not profitable.

Even though in our discussion we referred to the case of two dispatchable technologies, coal
and gas, the system LCOE theory is general and applies to any combination of dispatchable and
non-dispatchable sources. For example, system LCOE theory can be used to study the effects produced
on cost, risk and CO2 emissions by the inclusion of a carbon-free source, like nuclear power, in the
dispatchable component of the power system portfolio. This case is very different from that analyzed
in this paper in which the dispatchable part of the power system portfolio was composed by two fossil
fuel sources. The inclusion of a carbon free dispatchable source may sensibly alter the trade-off between
risk and CO2 emissions of power system portfolios [14]. We leave this topic to future investigations.
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Appendix A. The LCOE Theory

Consider a project of an electricity generating plant, financially seen as a cash flow stream on
a yearly timetable n (n = −N, . . . , 0, . . . , M) as depicted in Figure A1, where n = −N < 0 is the
construction starting time, n = 0 is the end of construction time and the operations starting time,
n = M ≥ 1 is the end of operations time. The evaluation time is assumed to be n = 0.

�� �� ���������������� �� 	

Figure A1. Project timeline.

Classically, the Levelized Cost of Electricity (LCOE, or ’levelized cost’ LC in short) is defined as
that nonnegative price PLC,x (assumed constant in time, and expressed in real money units) of the
electricity produced by a specific generation technology x which makes the present value of expected
revenues from electricity sales equal to the present value of all expected costs met during the plant
life-cycle (investment costs, operating costs, fuels costs and carbon charges when due). The LCOE
represents the generating costs at the plant level (busbar costs) and does’t include transmission and
distribution costs, and all possible network infrastructures adjustments [27]. To determine the LCOE,
present values are computed by using a discount rate that provides investors with the adequate return
for the assumed risk. In general, this return is quantified by the Weighted Average Cost of Capital
(WACC) which accounts for the possibility that a given project can be financed by a mix of equity
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and debt [28]. Assessing the LCOE through the WACC method allows one to include the level of
risk perceived by investors (both equity holders and bondholders). The LCOE is then a breakeven
reference unitary cost to be compared with the expected market electricity price.

The LCOE for a specific technology x is evaluated at time n = 0 after equating present values of
expected revenues and costs,

M

∑
n=1

(PLC,xQx)(1 + i)n−nb F0,n =
M

∑
n=1

(Cx,var
n + Cx,fix

n + Tx
n )F0,n + Ix

0 . (A1)

In the l.h.s. of Equation (A1), Qx denotes the amount of electricity produced during each period
(one year),

Qx = Wx × 8760× CFx, (A2)

where Wx is the nameplate power capacity of the plant and CFx the Capacity Factor of that technology
(its value can be found in Table A1). In Equation (A1), i is the expected yearly inflation rate (since the
LCOE has to be expressed in real terms), nb refers to the base year used to compute nominal prices
from real prices, and

F0,n =
1

(1 + r)n (A3)

is the discount factor in the WACC evaluation scheme, where the WACC r is kept constant for the
whole life of the project. In the r.h.s. of Equation (A1), the cost term Cx,var

n denotes expected nominal
variable operating expenses, namely operation and maintenance (O&M) variable costs and fuel costs,
which are incurred throughout the operational life of the plant. Variable costs have to include carbon
market costs or carbon taxes, if carbon emissions costs must be accounted for. The cost term Cx,fix

n
accounts for operation and maintenance (O&M) fixed costs. In the r.h.s of Equation (A1), Tx

n indicates
the yearly nominal tax liability

Tx
n = Tc(Rx

n − Cx,var
n − Cx,fix

n − depx
n), (A4)

computed by subtracting costs and asset depreciation depx
n from sales revenues Rn, being Tc the tax

rate (taxable income may be reduced by allowing carry forward of losses, most likely in early years
of operation where the depreciation component is substantial [27]). The term Ix

0 , in the r.h.s. of
Equation (A1) stands for the pre-operations nominal investment expenses, starting at n = −N and
ending at n = 0, but computed as a lump sum. Ix

0 is computed in the following way. Denoting
by Ōx

n the real amount of the overnight cost allocated to year n (again with reference to Figure A1),
the nominal amount Ox

n at year n can be expressed as

Ox
n = (1 + i)n−nbŌx

n n = −N, · · · ,−1, 0. (A5)

Then, Ix
0 is computed as follows

Ix
0 = Ox

−N(1 + r)N + · · ·+ Ox
−1(1 + r) + Ox

0 . (A6)

Since revenues have the form

Rx
n = PLC,x Qx(1 + i)n−nb , (A7)

using Equation (A4) and solving directly Equation (A1) for PLC,x we get

PLC,x =
∑M

n=1(C
x,var
n + Cx,fix

n )F0,n

Qx ∑M
n=1(1 + i)n−nb F0,n

+
Ix
0 − Tc ∑M

n=1 depx
nF0,n

(1− Tc)Qx ∑M
n=1(1 + i)n−nb F0,n

. (A8)
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Equation (A8) can be formally simplified by posing

Q̃x = Qx
M

∑
n=1

(1 + i)n−nb F0,n, (A9)

and defining unitary costs as follows

C̃x,var =
∑M

n=1 Cx,var
n F0,n

Q̃x
, C̃x,fix =

∑M
n=1 Cx,fix

n F0,n

Q̃x
,

Ĩx
0 =

Ix
0

Q̃x
, ˜depx =

∑M
n=1 depx

nF0,n

Q̃x
,

(A10)

thus getting

PLC,x = C̃x,var + C̃x,fix +
Ĩx
0 − Tc ˜depx

(1− Tc)
. (A11)

Looking back to Equation (A1), we notice that the present value of the costs of a given generation
technology x can be expressed as Q̃TOTPLC,x, and in this sense the LCOE can be interpreted as the
“average” generation cost of that technology.

Table A1 details all technical data and costs included in our analysis, for wind and fossil fuel
technologies, denominated in US dollars referred to the base year 2015 ($-2015), i.e., in real dollars.
Data shown in Table A1 are collected from the “Annual Energy Outlook 2016” [29] as reported in
’Capital Cost Estimates for Utility Scale Electricity Generating Plants’ [30] and in “Cost and Performance
Characteristics of New Generating Technologies, Annual Energy Outlook 2016—June 2016” [1] provided
by the US Energy Information Administration. In accordance to the Annual Energy Outlook 2016 (AEO
2016), we assume an expected inflation rate i = 2.2% per annum, and a tax rate Tc = 40%. Carbon costs
have been assumed equal to 25 $-2015 per ton of CO2 [31]. As a reference case, we will use a nominal
WACC rate of 7.9%, in agreement with the assumption of a real WACC of 5.6% adopted in AEO 2016 [1].
LCOE values are computed using Equation (A11). Results are summarized in Table A2.

Table A1. Technical assumptions. All dollar amounts are in year 2015 dollars. Overnight costs are
assumed to be uniformly distributed on the construction period. O&M stands for operation and
maintenance. Mill stands for 1/1000 of a dollar. mmBtu stands for one million Btus. Depreciation is
developed according to the MACRS 20 (Modified Accelerated Cost Recovery System) scheme.

Units Wind Coal Gas

Technology symbol wi co ga
Capacity factor 42% 85% 87%
Heat rate Btu/kWh 0 8800 6600
Overnight cost $/kW 1644 3558 956
Fixed O&M costs $/kW/year 45.98 41.19 10.76
Variable O&M costs mills/kWh 0 4.50 3.42
Fuel costs $/mmBtu 0 2.42 3.91
CO2 intensity Kg-C/mmBtu 0 25.8 14.5
Fuel real escalation rate 0% 0.3% 2.0%
Construction period # of years 3 4 3
Operations start 2022 2022 2022
Plant life # of years 30 30 30

Table A2. LCOE values in $-2015.

PLC,co PLC,ga PLC,wi

102.5 63.8 58.6
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Equation (A11) is valid for a single-technology (labeled by x) project. For a multi-technology
project, i.e., a portfolio w of technologies, the total levelized cost PLC,w can be expressed as a linear
combination of single technology LCOEs, namely as

PLC,w = ∑
x

Qx

QTOT PLC,x ≡∑
x

wxPLC,x, (A12)

where QTOT = ∑x Qx, and

wx =
Qx

QTOT (A13)

is the weight of technology x in the portfolio with ∑x wx = 1. To see this, it suffices to note that the
present value of the costs of a generation portfolio Q̃TOTPLC,w can be expressed as the sum of present
values of single technology costs Q̃TOTPLC,x, thus getting

QTOTPLC,w = ∑
x

QxPLC,x, (A14)

from which Equation (A12) follows. Notice that in Equation (A14) tildes disappeared as a direct
consequence of Equation (A9). The portfolio LCOE is, therefore, a linear combination of individual
technologies LCOEs, weighted by the fraction of electricity generated by each technology.

Appendix B. Underlying Stochastic Dynamic Price Model

To include market risks into the analysis, we assume a dynamical model in which the time
evolution of fossil fuel prices, Xco

t and Xga
t , are both described by geometric Brownian motions,

dXco
t

Xco
t

= (πco + π)dt + σcodZco
t , (A15)

and
dXga

t

Xga
t

= (πga + π)dt + σgadZga
t , (A16)

where

- πco and πga are, respectively, the natural logarithm of one plus the real escalation rate of coal
and natural gas prices, as given in Table A1;

- π is the natural logarithm of one plus the expected inflation rate, π = ln(1 + i);
- σco and σga are, respectively, the volatilities of coal and gas prices;
- Zco

t , Zga
t are independent standard Brownian motions [16].

Fuel prices reported in Table A1 are used as initial conditions of the price dynamics. The numerical
values of the dynamical parameters are reported in Table A3. The real escalation rates parameters
displayed in Table A3, are forecast expected rate of growth of fossil fuels prices, as given in AEO
2016 [29]. The volatility parameters are chosen according to the estimates obtained by Hogue [16] that
used a geometric Brownian motion to simulate the fuels prices dynamics on wellhead prices from
1950–2011 for natural gas, and from 1950–2010 for coal.

Table A3. Dynamical parameters.

Coal Gas

πco = ln(1.003) πga = ln(1.02)
σco = 0.09 σga = 0.16
π = ln(1.022)
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The dynamics of carbon prices (expressed in dollars per ton of CO2) is modeled according to a
geometric Brownian motion of the type

dXca
t

Xca
t

= πdt + σcadZca
t , (A17)

where σca is the carbon volatility and Zca
t is a standard Brownian motion which is assumed to be

independent of Zco
t and Zga

t . A CO2 price equal to 25 $-2015 per ton of CO2 is assumed as initial
condition of the CO2 price process. Xco

t and Xca
t enter in the variable costs term C̃co,var, and Xga

t and
Xca

t enter in the variable cost C̃ga,var. The dynamics of Xca
t affects therefore both coal and gas LCOEs,

thus introducing positive correlation between them. The entity of such a correlation, as well as the
volatility values of coal and gas LCOEs, depend on the CO2 price volatility and can be obtained by
using Monte Carlo techniques. We made simulations under four different scenarios, namely assuming
a carbon price volatility equal to 0%, 10%, 20%, 30%. These assumptions try to depict a zero volatility,
a low, a medium, and an high volatility scenario, respectively, in order to capture the relevance of risk
hedging effects in diversified generation portfolios [23]. For each run of the Monte Carlo simulation,
an evolution path for fossil fuel prices and carbon prices is obtained and, along such paths, LCOE
values were calculated. Figure A2 shows LCOE sample distributions in the σca = 0.2 scenario. It can be
noticed that single fuel LCOE distributions (and, consequently, system portfolios LCOE distributions)
are not gaussian, certainly not symmetric, and show a long and fat right hand side tail. Long and
fat tails make it important to look at the risk associated to extreme, asymmetric events. Table A4
reports the first two moments and correlation values of LCOE simulated distributions in each carbon
volatility scenario.
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Figure A2. LCOE distributions in the σca = 0.2 scenario. Left panel: PLC,co(ω). Right panel: PLC,ga(ω).

Table A4. First two central moments and CVaRD values of the PLC,x (LCOE) distribution.

σca x µLC,x σLC,x CVaRDx ρ

0 co 102.5 5.5 14.3 0ga 63.8 18.7 55.0

0.10 co 102.5 8.0 19.7 0.09ga 63.8 19.0 55.2

0.20 co 102.5 13.6 39.2 0.24ga 63.8 19.7 55.6

0.30 co 102.5 23.5 70.3 0.44ga 63.8 21.1 61.1

Appendix C. CVaR Deviation: A Brief Review

Consider a random variables Y (e.g., the stochastic EEC of a system portfolio) with probability
density f (y), a threshold h and a probability value φ (see Figure A3).
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Figure A3. Risk measures associated to a skewed, long tailed generic distribution.

As conventional in risk theory notation, losses (as e.g., adverse values of the stochastic EEC)
are considered as right tail values. The CVaR of the portfolio at confidence level φ is defined as the
conditional expectation on losses

CVaRφ(Y) =
1

1− φ

∫
y≥h∗

y f (y) dy, (A18)

when h∗ = VaRφ(Y). CVaRφ can thus be seen as the expectation over the residual 1− φ cases, the most
adverse ones (so that CVaRφ ≥ VaRφ). In this way, CVaR fully takes into account tail risk, but in an
asymmetric way, being defined on the most adverse tail only. In turn, CVaRD at confidence level φ is
defined in terms of CVaR [32] as

CVaRDφ(Y) ≡ CVaRφ(Y− µ) = CVaRφ(Y)− µ, (A19)

where µ = E[Y]. In Equation (A19) the first equality shows that CVaRD is the deviation associated
to CVaR, like standard deviation σ, from σ2 = E

[
(Y − µ)2], is associated to the mean. CVaRD is

non-negative (like the standard deviation), whereas this is not necessarily true for CVaR (and the
mean). If c is a constant, the followind equalities hold

CVaRDφ(Y + c) = CVaRDφ(Y), (A20)

and
CVaRDφ(cY) = c CVaRDφ(Y). (A21)

Intuitively, the relationship between VaR and CVaRD (or CVaR) is displayed in Figure A3. Being
a deviation, CVaRD has a different field of application than CVaR. The measures useful to manage the
risk we have in mind are indeed deviation measures, among which we selected standard deviation
(i.e., variance) and CVaRD, with different tail properties.

Appendix D. Proof of Equations (18) and (19)

Let us denote by D a general deviation measure, like standard deviation or CVaRD. From
Equation (12), the risk of a power system portfolio D

(
PSY,w

α,β

)
, can be expressed as

D
(

PSY,w
α,β

)
= D

([
wco − αcow̄wi]PLC,co +

[
wga − αgaw̄wi]PLC,ga), (A22)
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in which Equation (A20) has been used. Since the coefficients of PLC,co and PLC,ga do not sum to 1,
we can rearrange Equation (A22) in the following way

D
(

PSY,w
α,β

)
= (1− w̄wi)D

([
wco − αcow̄wi

1− w̄wi

]
PLC,co +

[
wga − αgaw̄wi

1− w̄wi

]
PLC,ga

)
, (A23)

in which Equation (A21) has been used. Since the coefficients of PLC,ga and PLC,co within the D operator
now sum to 1, the composition of efficient portfolios can be obtained by posing

wco − αcow̄wi

1− w̄wi = wco
mrp, (A24)

where “mrp” stands for mvp in the case of standard deviation, and for mcp in the case of CVaR
deviation. Equation (18) follows directly from Equation (A24). Equation (19) can be obtained by solving
Equation (A24) with respect to αco and accounting for the constraint 0 ≤ αco ≤ 1.
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