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Abstract: A non-isolated Multiport Single Ended Primary Inductor Converter (SEPIC) for
coordinating photovoltaic sources is developed in this paper. The proposed multiport converter
topologies comprise a Single Input Multi yield (SIMO) and Multi Input Multi Output (MIMO). It is
having the merits of decreased number of parts and high power density. Steady state analysis
verifies the improved situation of both the proposed topologies, which is further checked through
simulation results.
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1. Introduction

Sustainable power sources are of potential interest these days to supplant the conventional
fossil fuel power generation. Future power systems will require interfacing of different power
sources. To empower multi-source innovation, a multi-input control converter (MIPC) is of practical
use. The multi-input control supply could accommodate an assortment of sources and consolidate
their features. With numerous data sources, the power source provides unwavering quality and
effectively uses power sources. A multi-input control converter (MIPC) contains different sources fed
through separate converters as shown in Figure 1. The MIPC structure incorporates a few drawbacks,
for example, it requires a different converter for each source which makes the structure complicated
and control techniques difficult. As a result of this reason the usage exertion of MIPC is high.
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To overcome these challenges in MIPC, multiport converters (MPCs) are of potential interest
for applications, for example, the aging grids using numerous sustainable power sources. In MPCs,
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different sources are fed to the load through a single power electronics converter as shown in Figure 2.
MPC leads to a reduction of the unpredictability of the structure and the control procedure. Different
kinds of MPC under DC-DC buck-boost topology have been considered, and limitations of MPC have
also been figured out [1–4].
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Second, voltage sagging is a fundamental feature in the majority of their new sources, which
imposes unnecessary requests and unpredictability to converter designs [5]. Third, very dangerously
high electrostatic potentials are frequently introduced to the sources [6,7]. In this manner,
parallel-associated topologies have been generally well known [8,9]. Based on coupling, isolated MPCs
are typically derived by combining various converters via magnetic coupling such as utilizing
multi-winding transformers [10,11], Disconnection and bidirectional abilities of the considerable
number of ports can be accomplished in these topologies [12,13]. These MPCs are valuable for the
applications where detachment and bidirectional change are essential. However, the real issue is that
an excessive number of dynamic switches are available, and the utilization of transformers makes the
structure massive [14,15]. The non-isolated structure does not utilize a transformer which makes for
an economical and simpler structure [16–20].

The method of developing dual or multi input converters from single input converters was not
explained in [21,22]. In [23] the concepts of Pulsating Voltage Source Cell (PVSC) and the Pulsating
Voltage Load Cell (PVLC) have been introduced. These PVSC and PVLC are extracted from the basic
non-isolated converters like buck, boost, buck- boost, Cuk, zeta, and SEPIC converters. In [24] they
used as the single input multi output but no storage device. In this proposed system a non-isolated
SEPIC converter is used as the PVSC as well as PVLC with the storage device. Since sustainable
power sources are irregular in nature, the use of device capacity is necessary for reliability aspects [25].
A classification of the various multiport converters is given in Figure 3.
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In unidirectional MPCs, the arrangement for associating storage device is not available, so this
structure is less reliable compared with bidirectional MPC. Bidirectional MPC’s contains bidirectional
ports which can use for associating storage devices. In this paper, the proposed structure is a parallel
connected non-isolated SEPIC/SEPIC bidirectional MPC.

2. SEPIC Converter

DC-DC converters are most prevalently known for their ability to increase or decrease the
magnitude of the dc input voltage and furthermore rearrange its polarity [26]. A dc-dc converter works
by quickly turning on and off a power electronics switch. A buck-boost, Cuk and SEPIC converter can
increase or decrease the output voltage more than the input voltage. In Cuk and SEPIC converters the
information current is consistent, unlike in a buck-boost converter, which leads to an advantage of a
better power factor. Another advantage of SEPIC converters is that they have non-inverting output
unlike in a Cuk converter or buck-boost converter [27]. Also in a SEPIC converter, a series capacitor is
used to transfer energy from the input to the output and thus it can respond more smoothly to a short
circuit output, being capable of a true shutdown. When the switch is turned off, its output drops to 0 V.
The circuit diagram of a SEPIC converter is shown in Figure 4.
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In a SEPIC converter, when the pulse is high, the switch S is on, the input voltage charges the
inductor L1, and the capacitor C1 charges the inductor L2. The diode D is reverse biased, and the
capacitor C2 maintains the output. When the pulse is low, the switch S is off, the inductors discharge
through the diode to the load, and charges the capacitors. The greater the percentage of time (duty
cycle) is, the wider the pulse is, and more the output will be, because the longer the inductors charge,
the greater their voltage will be.

We assume a SEPIC converter has the small magnitude of switching ripples compared to its
respective dc components and that without losses. The link between input and output voltage can
be obtained both in continuous current mode (CCM) and in discontinuous current mode (DCM) [4].
CCM is preferable for high efficiency and better utilization of passive components and the converter
switches. Converters in both categories provide the same conversion relation given by (1) and (2):

V0(CCM) = V
D

1 − D
(1)

V0(DCM) = DV

√
RTs

2Leq
(2)
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2.1. Proposed Configuration Description

In this paper, a three port (two inputs and one output) SEPIC/SEPIC converter is proposed as
shown in Figure 5. The proposed structure is the combination of pulsating voltage cells (PVC’s). PVC’s
can be of two types. For input side a pulsating voltage source cell (PVSC) is used and for the output
side, a pulsating voltage load cell (PVLC). Each PVSC connects with a common PVLC (as it’s a MISO
structure) through a coupling capacitor forming a complete SEPIC structure. A generalized structure
of the proposed circuit shown in Figure 6 indicates that the number of ports can increase/decrease
further by connecting/disconnecting the additional PVC’s depending on availability of sources [11,14].
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2.2. Single Input Multi output SEPIC Converter

Table 1 shows the comparison of components used in proposed n’port SEPIC MPC and
conventional MIPC. Here “n” port refers to (n − 1) number of sources and one output port or one
sources and (n − 1) number of output ports [28].

Table 1. Comparison table of components of MPC and MIPC SEPIC.

Components Multiport Converter (n) Individual SEPIC Converters

Capacitors n 2(n − 1)
Inductors 2 2(n − 1)
Switches n n − 1
Diodes 0 n − 1
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In the topology, if both the sources are renewable dc sources, for example solar (PV), the converter
works as a unidirectional converter as the energy flows from source to load. The switch S1 is provided
with a definite duty cycle and is triggered at one time. As the one source is PV it works as a partially
unidirectional converter. The reason for becoming particularly unidirectional is that we have a single
voltage source. The output power of two loads is varied by varying the duty cycles of the switches.
The output can be increased or decreased by varying the duty cycles of the switch S1 with respect to
the input voltage. Considering voltage source (PV) having a value of voltage V1. In order to use the
source effectively, the source is operated at different duty cycles. The source is operated with higher
duty cycle for higher output and for lower duty cycle for lesser value. Assume the input voltage V1,
output voltage to be V2 and V3,then D1, D2 & D3 are the respective duty cycles of switch S1, S2 & S3
(PVSC, PVLC1 & PVLC2).

2.3. Modes of Operation

The operation is categorized in three modes as shown in Figure 7.
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2.3.1. Mode-1: S1 is ON (S1 Conducts) and S2 & S3 are OFF

The equivalent circuit of Mode-1 is shown in Figure 8. In this mode, the input side switch is on
and the other switches are turned off. The inductor is charged and the capacitor C1 is pre-charged
and it charges the inductor L. We assume that the capacitor is pre-charged and supplies to the loads.
The voltage source provided charges the inductor L1.
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2.3.2. Mode-2: S1 OFF and S2 and S3 are ON

The equivalent circuit of Mode-2 is shown in Figure 9. Once the switch S1 is turned on, the switches
S2 and S3 are turned off. Now the capacitor C1 is charged and as the inductors L1 and common inductor
L being charged initially supply current to the load. Now capacitors C2 and C3 are charged.
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2.3.3. Mode-3: S1 and S2 OFF & S3 Conduct

The equivalent circuit of Mode-3 is shown in Figure 10. The switch S1 and S2 are off and S3 is turned
on. The inductors L1 & L2 supply the current to the load V3 and the capacitor C2 supplies the load V2.
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2.4. Steady State Analysis of a Single Input Multi Output SEPIC

The three modes of operations are considered to be in CCM and assuming the ripple voltage and
ripple current as negligible. The steady state equations of topology-1 are as follows, the steady state
equations of each mode are described below:

L
diL1

dt
= (VC1D1 − VC3Deff) (3)

C1
dVc1

dt
= iLD1 + iL1(D2 + Deff) (4)

C2
dVC2

dt
=

−V2

R1
(D1 + D2 + Deff) + iL1D2 + iLD2 (5)

C3
dVC2

dt
=

V3

R2
(D1 + D2 + Deff) + iL1(D2 + Deff) + iL(D2 + Deff) (6)
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At the state assuming:

diL
dt

= 0 And VC2 = V2; V2; VC3 = V3; VC1 = V1 (7)

From Equation (7):

V1 =
D1

1 − D1
V1 (8)

V2

[
D1

D2

[
1 − D1 − Deff

1 − D1

]
V1

]
(9)

On solving the steady state Equations (7) to (9) considering the left hand side as zero, the six state
variables can be derived (iL1 IL12, iL, VC1 and VC2 ).

2.5. Small Signal Approximation model of Single Input Multi output SEPIC Converter

In this section, the expressions for all the circuit parameters are described. Following the
individual mode equations from Equations (3) to (7), the expressions of L1, L2, L, C1, C2 and C
with respect to current and voltage ripples is described below. Considering three modes (i.e., D1, D2

and Deff) operating for periods t1, t2 and t3, respectively:

tA1 = D1 T, t2 = D2 T, t3 = Deff T (10)

In mode-1 the inductor current increases from a low level to high level, say IL11 to IL12 and in
second and third mode, the current falls from IL12 to IL11, so the current ripple is considered to be
∆ IL1 = IL12 − IL11:

Therefore:

L1
diL1

dt
= V1 (11)

L1
i∆L1

dt
= V1 (12)

t1, t2 and t3 can be written as D1 T, D2 T and Deff T, respectively, where, T is the total time period.
Similarly, the voltage ripples can be calculated from the mode equations. The voltage across C1 rises
(assuming linearly) from a low value to a high value, say V11 to V12 during the time t2 and t3. This gives
a voltage ripple ∆VC1 = VC12 – VC11. In this period the capacitor charges by the source current of V1,
i.e., I1 = iL1:

∆VC1 =
I1

C1
(tD2 + tDeff) (13)

C1 =
I1

f∆VC1

(D2 + Deff) (14)

The capacitor C2 discharges in period t1 and t3, i.e., this gives a voltage ripple:

∆VC2 = VC22 − VC21 (15)

∆VC2 =
V2

fR1C2
(D1 + Deff) (16)

The output side capacitor C3 discharges within the period t1 and provides the load current.
The voltage ripple can be written as ∆VC3 = VC32 − VC31

∆VC3 =
V2

fR2C3
(D1) (17)
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So, the circuit parameters can be derived from Equations (13) to (16):

L1 =
V1D1

f∆IL1

(18)

C1 =
I1Deff
f∆CC1

(19)

L =
V2(D2 + Deff)

f∆IL
(20)

C2 =
V2(D2 + Deff)

f∆VC2R1
(21)

L =
V3(D2 + Deff)

f∆IL
(22)

C3 =
V3(D1)

f∆VC3R2
(23)

V1 = 25 V, D1 = 60%, D2 = 30%, Deff = 10%.

∆IL1 = 0.5, ∆IL = 0.5 ∆IC1 = 0.5, ∆VC2 = 0.5, ∆VC3 = 0.5

Allowed ripples and calculated values of the components are:

L1 = 3 mH, C1 = 416 µf,
L = 3.08 mH, C2 = 539 µf,
L = 3.08 mH, C3 = 462 µf

Estimated ripples from simulation are:

∆IL1 = 0.55, ∆IL = 0.45

3. Multi Input Multi Output SEPIC Converter

In the proposed topology both of the input sources used is PV. The converter works as a
unidirectional one where power flows from source to load only. The comparisons of components are
listed in Table 2. The loads used in the circuit are a DC motor and a lamp load. The inputs are connected
in parallel and even the outputs are parallelly connected. To use both the sources effectively [7,8],
the duty cycles for both the sources should be different. The greater the duty cycle, the lower is the
pulse and the output obtained is greater. This is due to the fact that the longer the inductors are
charged, the greater the voltage will be. The loads are connected across the capacitors C3 and C4.
Therefore, the voltage across the respective capacitors is the same as the load voltage for both the loads
are explained in Figure 11.

Table 2. Comparisons of the components in conventional MPC and the proposed SEPIC/SEPIC MPC.

Components n Port SEPIC/SEPIC Converter (n − 2) Individual SEPIC Converter

Capacitors N 2(n − 2)
Inductors N 2(n − 2)
Switches n – 2 n − 2
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3.1. Unidirectional Power Flow

Two separate sources (both photovoltaic cells) having same power ratings have been considered.
To use both the sources effectively, the two sources operate at different duty cycles. The source having
the higher value of voltage operates for lower duty cycle whereas the source having the lower value of
voltage operates for higher duty cycle.

Assuming V1 as the voltage value for the first source and V2 as the voltage value for the second
source; D1 and D2 are the duty cycles for PVSC1 and PVSC2 respectively. If the voltage value of
source 1 is greater than that of source 2, then the duty cycle of source 2 is greater than that of source 1.
The operation can be categorized into four modes. The duty cycles for different modes is shown in the
Figure 12. D1, D2, D3 and D4 are the duty cycles for different modes of operation of the circuit.
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Here, Deff = D1 − D2 and DD = D4 − D3. Each input source is connected in parallel through a
power semiconductor switch and shares a common inductor (L). Only unidirectional power flow from
the sources to inductor is allowed in this configuration. Power flow from each source i.e., source 1 and
source 2, to load is controlled by operating switches S1 and S2 with different duty ratios for the same
switching frequency. Hence, it results in four modes of operation of the converter. The modes with
their respective duty cycle are explained below in Table 3.
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Table 3. Modes of Operation.

MODES ON OFF

Mode A S1 S2, S3, S4
Mode B S2 S1, S3, S4
Mode C S3, S4 S1, S2
Mode D S4 S1, S2, S3

3.1.1. Mode A: S1 and S2 ON but only S1 conducts, S3 and S4 is OFF

The equivalent circuit of mode A is shown in the Figure 13. In this mode, the switches S1 and
S2 are ON. As S2 is reverse biased only switch S1 conducts. In steady state, voltages on the input
capacitors C1 and C2 are V1 and V2 respectively. Since V1 value is greater than V2, S2 blocks the
possibility of flow of inverse current through the second input leg. Since S2 is reverse biased it does
not conduct and the load is sustained by the output capacitors C3 and C4. The inductor L charges
during this mode of operation. Also, the capacitors C3 and C4 on the load side discharge.
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3.1.2. Mode B: S1 OFF and S2 ON, S3 and S4 is OFF

Once the switch S1 is OFF, the switch S2 gets forward biased and starts conducting since the duty
cycle of S2 is greater than that of S2.The load current is maintained by the capacitors on the output
side. The inductor L is charged during this mode by the discharge of the capacitor C2. The capacitors
C3 and C4 discharges and the output voltages are obtained across them. The inductor L is charged
during both mode A and mode B through the discharge of the capacitors C1 and C2, respectively
shown in Figure 14.
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3.1.3. Mode C: S1 OFF and S2 OFF, S3 and S4 is OFF

The equivalent circuit of mode C is shown in Figure 15. Both the switches S1 and S2 are in OFF
state while the switches S3 and S4 conduct. The load is now supplied by both the sources V1 and V2

through the input sides inductors and capacitors. During the mode 3, the capacitors C3 and C4 on the
load side charges through the discharge of the inductor L in the circuit.Energies 2018, 10, x 11 of 25 
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3.1.4. Mode D: S1 OFF and S2 OFF, S3 is OFF and S4 is ON

The equivalent circuit of mode D is shown in Figure 16. Both the switches S1 and S2 are in OFF.
Also the switch S3 is OFF and S4 is ON. The duty cycle for mode D is DD where DD = D4 − D3. In this
mode of operation, the load side capacitor C3 discharges as the switch S3 is open. Also, the inductor L
discharges while the capacitor C4 on the load side charges.
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3.2. Steady State Analysis of Multi Input Multi Output SEPIC Converter

The steady state equations of the proposed topology can be derived:

V01D3 + V02(D3 + D4) = V1D1 + V2D2 (24)
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Steady state average conditions:
diL
dt

= 0 (25)

Vc1 = V1,Vc2 = V2, Vc3 = V01, V42 = V02 (26)

Using the above steady state average conditions in the equations (from (24) to (26)), we have:

Vc1D1 + V2Deff = Vc4DD (27)

The above equations represent the output voltage equations for the first and second
load, respectively.

3.3. Small Ripple Approximation of Multi Input Multi Output SEPIC Converter

Following the individual mode equations from (28) to (34), the expressions of L1, L2, L, C1, C2

and C with respect to current and voltage ripples is described below. Considering three modes i.e., D1,
Deff, D3 and DD operating for T1, T2, T3 and T4 periods respectively.T1, T2, T3 and T4 can be written as
D1 T, Deff T, D3 T and DD T, respectively, where, T is the total time period.

Therefore, the voltage ripples can similarly be calculated from the mode equations. The voltage
across C1 rises (assuming linearly) from a low value to a high value, say V11 to V12 during the time T2,
T3 and T4.Therefore, the circuit parameters are:

L1 =
V1D1

f∆iL1

(28)

L2 =
V2D2

f∆iL2

(29)

L =
VC3

f∆iL
(D3) (30)

C1 =
I1

f∆VC1
(1 − D1) (31)

C2 =
I2

f∆VC2
(D1 + D4) (32)

C3 =
VC3

fR∆VC3
(D2 + DD) (33)

C4 =
VC4

fR∆VC4
(D2) (34)

4. Results and Discussion

Analysis of a Single Input Multi Output SEPIC the Simulink model for a three port unidirectional
SEPIC details are shown in Figure 17.
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Table 4 shows the comparison of measured output voltages (V2 and V3) (from the Simulink model)
and estimated output voltage from (24) to (27) for different set of input voltage (V1) and duty cycles
(D1, D2 and Deff) and also explained the voltage and current of components in PVSC, PVlC2 and
PVLC2 shown in Figure 20.
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Figure 20. Waveforms of voltage and current of components in PVSC, PVlC2 and PVLC2, respectively.

The three modes of operations are clearly visualized in the waveforms of capacitor voltages and
inductor currents of PVSC, PVLC1 and PVLC2. Also the comparison of measured and estimated
output voltages (V1 (act) and V1 (est.)) and voltages (V2 (act) and V2 (est.)) shows approximately the
same values for each different set of input values. And the speed and torque of motor is shown in
Figure 21. In Figure 22 shown in simulink model for a port of SEPIC converter working operations
and simulink details of output voltages 1 and 2.
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In above the Figure 25 shows the detailed voltage and currents across the components of PVLC1.
In Figure 26 shows the voltage and currents across the components of PVLC2.The four modes of

operation are visualized in the waveforms of capacitor voltages and inductor currents of the source
and load sides. The ripple present in inductor currents and capacitor voltages obtained through
MATLAB (R2016a, MathWorks, Natick, MA, USA) is concurrent with an estimated ripple of 0.5. In the
output voltages of load 1, Speed torque characteristics PVSC1, PVSC2, PVLC1 and PVLC2shown in
Figures 27–29.
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The waveforms of capacitor voltages and inductor currents of PVSC1, PVSC2 and PVLC1 and
PVLC2. Also the comparison of measured and estimated output voltages (V0 (act)) and V0 (est.))
shows approximately the same values for a set of input sources (V1, V2) and duty cycles (D1, D2).

5. Hardware Implementation of Multi Port SEPIC Converter

The simulation analysis of the open loop unidirectional topology is verified with a real time
hardware setup. The hardware setup is realized with one IGBT (FGA15N1) (Fairchild Semiconductor
and this IGBT short description IGBT NPT 1200V 15A TO-3P) and two MOSFETs (N-channel MOSFET
and 600V 4A MOSFET).A DSPIC30F2010 microcontroller (Microchip Technology, Wide operating
voltage range (2.5 V to 5.5 V) dsPIC30F Motor Control 16-bit Digital Signal Controller) is used for
generating the switching pulses. The research laboratories and Researchers mainly used for in this
version of Matlab software Experiments are carried out in continuous current mode. In the input port,
supply is provided by solar PV of almost equal power rating. The input to PVSC is V1 = 35 V. The duty
cycle for two corresponding switches D1 = 60%, D2 = 30% and D3 = 10%. A 50 W universal motor is
given as load to the unit. The components of the setup are designed to operate maximum at 1 kW.
The component design parameters of the setup are given in Table 5.

Table 5. Design of parameters.

PVSC Inductor, L1 15 mH
Common inductor, L 15 mH
PVSC1 capacitor, C1 0.54 mF
PVLC1 capacitor, C2 0.54 mF
PVLC2 capacitor, C3 0.46 mF

Switching frequency, f 5000 Hz

With the given input and duty cycle, the calculated value of the output voltages for V1 is
V01 = 85.6 V and V02 = 86 V. The output of MATLAB simulation of the proposed topology for the
similar parameters is approximately V01 = 86.66 and V02 = 85.66 V. The output voltages of the proposed
hardware setup for the given input and duty cycle are V01 = 85 V and V02 = 84 V. This indicates that
for the similar value of parameters and inputs, the output corresponding to mathematical analysis,
MATLAB simulation and hardware setup is approximately the same. In Figure 30 shows the block
diagram of hardware arrangements.
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Figure 31. The complete circuit of the three port SIMO structure.

In the above Figure 31 is shown in the complete circuit of the three port SIMO structures details
Table 7 shows the comparison of measured output voltage (from MATLAB Simulink) and timed output
voltages for different sets of input voltages and duty cycles. Therefore it operates in buck, boost and
buck-boost modes. All the hardware output voltage, capacitor output voltages & load 1 and 2 is given
in Figures 32–41.
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Table 7. Actual and Estimated Output Voltages for Different Sets of Input Voltages.

V1 V2 D1 D2 D3 D4 V01 (Act) V01 (Est.) V02 (Act) V02 (Est.)

50 25 0.37 0.67 0.15 0.33 80 79 80 78.78
50 35 0.25 0.70 0.15 0.30 95 94.17 95 94.16
60 30 0.20 0.50 0.30 0.50 45 42 45 42
60 40 0.42 0.60 0.25 0.40 82 81 82 81
35 20 0.30 0.55 0.20 0.45 32.5 34.45 32.5 34.44
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6. Conclusions

The multiport topology for SEPIC converter was studied. A three-port unidirectional model
is proposed. The proposed multiport converter is capable of interfacing two outputs by using a
single voltage source such as a photovoltaic (PV) cell. The operation of the proposed converter
with single a voltage source with a PV is verified. The authentication for the performance and
operation of the converter is done with MATLAB simulations and mathematical analysis. The proposed
circuit is efficient in interfacing the renewable energy due to its advantages of simple configuration,
high efficiency, and reduced devices. The work is carried further with implementation of real time
hardware with a DSPIC microcontroller. The authentication of simulation results and mathematical
analysis of the proposed open loop topology have been proved by a real time hardware setup. Input to
the hardware setup is provided from a solar PV of 35 V, and the unit operates with duty cycles of 67%.
The output voltage of the hardware unit was 85 V, which matches the output voltage of the simulation
and mathematical model. Also the modes of operation of the proposed open loop topology have been
verified with the hardware results.

The multiport converter topology of a SEPIC was studied and a four port SEPIC for unidirectional
properties is proposed. The two sources coupled to the converter are two PV cells. Four port power
management systems can accommodate two sources and combine their advantages by using only
a single conversion stage to interface four power ports. The operation of the proposed converter
having two sources has been verified. The authentication for the performance and operation of the
converter is done using MATLAB simulations and mathematical analysis. The calculation for small
ripple approximation is done to find the parameter values of the different components used in the
circuit. Analysis of the dual-input, dual-output converter with the simulation and experimental results
are presented. Performance comparisons between the ideal calculation and results obtained from the
hardware and simulation are closely matched.
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