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Abstract: Fog and haze (F-H) weather has been occurring frequently in China since 2012, which 

affects the output power of photovoltaic (PV) generation dramatically by directly weakening solar 

irradiance and aggravating dust deposition on PV panels. The ultra-short-term forecast method 

presented in this study would help to fully reflect the dual effects of F-H on PV output power. 

Aiming at the weakening effect on solar irradiance, estimation models of atmospheric aerosol 

optical depth (AOD) based on particle matter (PM) concentration were established with machine 

learning (ML) method, and the total irradiance received by PV panels was calculated based on 

simplified REST2 model. Aiming at the aggravating effect on dust deposition on PV panels, sample 

set of “cumulative PM concentration—efficiency reduction” was constructed through special 

measurement experiments, then the efficiency reduction under certain dust deposition state was 

estimated with similar-day choosing method. Based on photoelectric conversion model, PM 

concentration prediction and weather forecast information, ultra-short-term forecast of PV output 

power was realized. Experimental results proved the validity and feasibility of the presented 

forecast method. 

Keywords: fog and haze; photovoltaic output power; forecast; aerosol optical depth; particle 

matter concentration; machine learning; efficiency reduction 

 

1. Introduction 

In recent years, photovoltaic (PV) generation has attracted increasing global attention due to its 

economic and environmental benefits. The ability to forecast the output of PV generation in the 

ultra-short term (0–4 h into future) is a key issue to allow a high-level penetration of the PV 

generation into the grid. Besides, accurate ultra-short-term forecast of PV generation is required for 

regulating and dispatching of the power grid. However, this task still faces great challenges because 

the performance of PV generation is heavily influenced by frequently fluctuating weather types and 

meteorological conditions. 

China has been facing fog and haze (F-H) weather since 2012. Especially in autumn and winter, 

large-scale emergence of F-H weather frequently affected the eastern China, and the involved area 

has gradually increased. In 2013, more than 100 cities in 25 provinces in China, which represent 25% 

of the national territorial area, were covered by F-H [1]. On 7December 2015, the Moderate 

Resolution Imaging Spectroradiometer on NASA’s Aqua satellite captured an image of eastern 

China being inundated by F-H, seen in gray area of Figure 1. On 6 December 2015, in Beijing, the 

Chinese government issued a first-ever “red alert” for the city, which resulted in school and factory 

closures and the forcing of motorists from the roads. 
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The severity level of F-H can be quantitatively described by the Air Quality Index (AQI), which 

is a dimensionless index calculated by the concentrations of six sub-indexes: PM10 (inhalable 

particle matter, diameter <10 μm), PM2.5 (fine particulate matter, diameter <2.5 μm), SO2, CO2, CO 

and O3 [2]. The AQI level (LAQI) ranges from Level1–Level6 (0–50, 51–100, 101–150, 151–200, 201–300, 

and >300), corresponding to excellent condition, good condition, slight pollution, moderate 

pollution, severe pollution and serious pollution. By the end of February 2017, the Chinese 

government had set up the National Environmental Air Quality Monitoring Network, consisting of 

more than 5000 air quality monitoring sites to release AQI and six sub-indexes in real time. They also 

attempted measures in the long run to restrict the impacts of F-H, such as introducing a variety of 

energy-saving equipment and employing new energy-saving technology to reduce the consumption 

of fossil fuels, and substituting electricity for coal in industrial manufacturing to effectively control 

pollutant emissions. However, F-H weather still exists in many areas of China [3]. 

 

Figure 1. The spatial distribution of fog and haze (F-H) of eastern China on 7 December 2015. 

F-H could directly reflect and absorb the sunlight passing through the earth atmosphere to 

weaken the solar irradiance reaching the ground. In addition, F-H could aggravate the dust 

deposition on the surface of PV panels, which lower the PV panels’ energy conversion efficiency 

mainly by affecting the transmittance. Thus, F-H obviously has a reduced effect on the output of PV 

generation, which should be fully considered in forecast work.  

The early studies about PV output forecast only considered traditional meteorological factors 

and all kinds of weather types, rarely focusing on F-H [4].The direct forecast and the indirect forecast 

are the two major methods for PV output forecast. The direct forecast is used to predict the PV 

output in a straightforward manor, whereas the indirect forecast is used to predict solar irradiance 

firstly, then the PV output is calculated in a second successive step. In both cases, the two major 

realization approaches are the statistical method and the physical method [5].  

Statistical method implements the learning process to pursuit forecast models named as time 

series model or artificial intelligence (AI) model, and the forecast accuracy depends on the length 

and quality of historical input data. Li et al. [6] classified the weather types into four categories: 

sunny, cloudy, overcast and rain, and established a support vector machine (SVM) model to forecast 

the PV output. It was pointed out that in the early morning and evening, the mean relative error 

(MRE) of the model is 15.25% due to the influence of F-H. Li et al. [7] introduced the F-H weather in 

the classification of weather types, and established a least squares support vector machine (LSSVM) 

model to forecast the PV output. It was declared that MRE of the model is 15.31% under F-H 

weather. 

Physical methods try to obtain an accurate forecast using a white box model, and the accuracy 

is determined by the parameters of physical equations. As for the prediction of solar irradiance, 

some clear sky irradiance models have been proposed, such as Bird, Ineichen, ASHRAE, and REST2, 

which depend on the solar zenith angle, and a limited number of parameters, whose role is to 

describe the local and current atmospheric and environmental conditions [8]. Among these 
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parameters, aerosol optical depth (AOD) has been improved to be the primary influencing factor for 

forecasting results when the sun’s disk is not obscured [9]. Therefore, it is quite important to 

accurately obtain the AOD in real time for the prediction of solar irradiance. 

There are two kinds of methods for obtaining the AOD in practice, satellite observation and 

ground observation. Satellite observation means that the AOD is inverted from monitoring data of 

Moderate Resolution Imaging Spectroradiometer (MODIS) on two remote sensing satellites Terra 

and Aqua, the real-time performance is affected by the satellite transit time and data release cycle, 

and the accuracy is low because variable surface reflectance, e.g., due to seasonal changes of 

vegetation. Ground observation means the AOD is inverted from measure data of multiband sun 

photometers, which are installed in ground observation sites of Aerosol Robotic Network 

(AERONET), the accuracy is high; however, the layout of observation sites in China are quite sparse, 

and the released AOD is only usable in local areas. 

In order to analyze and predict ground air quality, Chu et al. [10], Liu et al. [11], Koelemeijer et 

al. [12], and Guo et al. [13] have used the AOD from satellite observation to calculate the PM 

concentration. The results show that the AOD has a high correlation with PM concentration after the 

modifications of air relative humidity, air temperature, and boundary layer height are considered. 

Inspired by this conclusion, considering the PM concentrations have been released to the public in 

real time by well-covered air quality monitoring sites, this paper tried to establish the AOD 

estimation model based on PM concentration as well as other influencing factors like relative air 

humidity, air temperature, and aerosol scale height. Then the radiative model was employed to 

predict the solar irradiance under F-H weather. 

References [14–17] have investigated the effect of dust deposition on the performance of PV 

panels. Dust deposition is closely related to the exposure period and the tilt angle of the PV panels. 

Semaoui et al. [14] discovered that the transmittance of the glass plate on PV panels could be 

significantly reduced when it is covered with dust in a desert region. Based on an experiment with 

PV panels installed at an angle of 32° to the horizontal, the average transmittance of the glass plate 

over a day was found to be reduced by 8% after one month without rainfall. Similarly, 

Mastekbayeva et al. [15] observed that the transmittance was reduced by 11% after a month of dust 

accumulation in Thailand. In an experiment carried out in Roorkee by Garg et al. [16], it was 

discovered that dust deposition on a glass plate tilted at 45° led to a decrease in the transmittance by 

an average of 8% after an exposure period of 10 days. Sayigh et al. [17] studied the effect of dust 

deposition on a tilted glass plate located in Kuwait city, and the results indicated that the 

transmittance of the plate was decreased from 64 to 17% for tilt angles ranging from 0° to 60° after 38 

days of exposure to the environment.  

Depending on the location, the dust composition may be significantly different, and these 

differences affect the reduction degree of the energy conversion efficiency of PV panels. Kaldellis et 

al. studied [18] three representative samples of air pollution in Athens, Greece, including red earth, 

limestone, and coal ash, as well as natural dust samples. The results indicated that the deposition of 

dust particles led to significant deterioration in the performance of the PV cells. The decline in the 

efficiency of the modules depends primarily on the type of the pollutant because equal amounts of 

various types of dust particles may cause completely different effects. 

Some studies have been devoted to determining the quantitative relationship between the dust 

density and the degradation of PV output. Klugmanne-Radziemska [19] revealed a linear 

relationship between the efficiency reduction of the PV module and the dust density in northern 

Poland. Jiang et al. [20] also found that the efficiency reduction has a linear relationship with the 

dust density, and the difference caused by cell types was not obvious. Ju [21] introduced the dust 

deposition coefficient, and established the relationships between the dust deposition coefficient and 

the output power under dry conditions and the bonding state, respectively. 

Due to the differences in the experimental environment and the dust composition, the 

comparability of the above research works is quite weak, further effort is needed to investigate the 

effect of dust deposition on the performance of PV panels in F-H weather. In addition, the dust 

density on PV panels is difficult to measure in engineering practice. Therefore, it is quite meaningful 
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to search feasible representation of dust density. This paper tries to represent the dust density by 

integral of PM concentration released by air quality monitoring site, and constructs the sample set of 

“cumulative PM concentration—efficiency reduction” by special measurement experiments under 

F-H weather, which could be used to estimate the actual efficiency reduction under certain dust 

deposition state with similar-day choosing method. 

The main contribution of this paper is to present a novel ultra-short-term forecast method for 

PV output power under F-H weather, which could benefit the increase of high-level penetration of 

the PV generation into the grid as well as the economic dispatching of the grid. The contents in 

this paper comprise the following six parts: AOD estimation model based on PM concentration 

(Section 2); calculation of solar irradiance (Section 3); estimation of efficiency reduction for dust 

deposition (Section 4); ultra-short-term forecast method for PV output power (Section 5); case study 

(Section 6); conclusion (Section 7). 

2. AOD Estimation Model Based on PM Concentration 

2.1. Introduction of AOD  

Atmospheric aerosol refers to a heterogeneous system composed of solid and liquid particles 

(0.001 μm < diameter < 10 μm) suspended in the atmosphere, which could reflect and absorb the 

sunlight passing through the atmosphere, thus weaken the solar irradiance reaching the earth’s 

surface. AOD is a dimensionless physical quantity defined as the integral of the extinction coefficient 

from the bottom to the top of the atmosphere in the vertical direction; generally, its value is in the 

range of 0 to 2.5. The higher the AOD value is, the stronger is the weakening effect on solar 

irradiance. 

Angstrom [22] gives the calculate formula of the AOD for the wavelength λ: 



 
 

(1) 

where α is the Angstrom wavelength index, β is the Angstrom turbidity coefficient, both of them are 

related to the diameter distribution and concentration of aerosol particles. For F-H weather, AOD 

has a high correlation with PM concentration (PM10 concentration or PM2.5 concentration) when 

the influences of air relative humidity, air temperature and boundary layer height are considered. 

(1). Air Relative Humidity 

Air relative humidity can change the size, morphology and extinction characteristics of aerosol 

particles, thus affecting the value of AOD. At present, the PM10 concentration and PM2.5 

concentration released by ground air quality monitoring site are the concentration of particulate 

matter after drying with 50 °C. Therefore, it is necessary to revise the PM concentration with 

humidity factor when analyzing the relationship between AOD and PM concentration. The common 

humidity factor models include single-parameter model [23], double-parameter model [24], and 

scattering moisture absorption model [25]. The generality of above models is poor due to the 

parameters are only suited for specific region and aerosol composition. 

(2). Boundary Layer Height 

The boundary layer height is the key parameter that affects the distribution characteristic of 

aerosols in boundary layer. The lower the value is, the closer the aerosol concentrated to the near 

ground is, which reveals the higher correlation between AOD and PM concentration. Under the 

assumption that the aerosol concentration decreases exponentially with the altitude, the aerosol 

scale height represents the standard height of aerosol in boundary layer. Therefore, aerosol scale 

height is chosen as one input of the AOD estimation model instead of boundary layer height in this 

paper.  

(3). Air Temperature 
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Air temperature has important influence not only on dry/wet state of aerosol particles, but also 

on the existential state of semi volatile components, boundary layer height, and atmospheric 

stability, thus affecting the relationship between the PM concentration and AOD. 

2.2. Data Sources 

Because ground observation methods can obtain higher accuracy AOD than satellite 

observation methods, in this paper, AOD data are collected from AERONET Beijing site, the 

geographical coordinate of which is 116.583°E/39.783°N. Meanwhile, PM2.5 concentration data, 

PM10 concentration data, air relative humidity data and air temperature data are collected from 

Chaoyang Olympic meteorological station, which is the closest air quality monitoring site to 

AERONET Beijing site. Considering the variation of aerosol scale height is mainly affected by season, 

the season mean value is taken as an approximate real-time value. The season mean values of 

aerosol scale height in spring, summer, autumn and winter are 2.864 km, 3.298 km, 2.284 km and 

1.597 km respectively in northern China [26]. A total of 2141 sets of effective data have been collected 

in total from 1 January 2015 to 30 November 2016. A total of 1971 sets were randomly selected as the 

training data set, and the remaining 170 as the test data set. 

2.3. AOD Estimation Model 

Back propagation (BP) neural networks [27] and support vector machines (SVM) [28] are the 

two most typical machine learning methods at the present. In this paper, the AOD estimation 

models were established respectively by these method sand their performances were compared.  

BP Neural Network Model 

At time t, taking the PM10 concentration CPM10(t), PM2.5 concentration CPM2.5(t), air relative 

humidity R(t), aerosol scale height H(t) and air temperature T(t) as input variables, and the 440 nm 

band AOD τ440(t), and 1020nm band AOD τ1020(t) as output variables, a three-layer BP neural 

network was established with five input neurons, N hidden neurons and two output neurons, and 

the neural network structure is shown in Figure 2. 
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Figure 2. Structure of the back propagation (BP) neural network model. 

The BP neural network model is trained with MatLab Neural Network Toolbox (R2012a, 

MathWorks, Natick, MA, USA), the main steps include data normalization, determining the number 

of hidden neurons and model accuracy validation.  

(1). Data Normalization 

The magnitudes of different input variables of the BP neural network are quite different, 

therefore, it was necessary to normalize each input variable to achieve high training accuracy. In this 

paper, the range of all input variables was normalized to [−1, +1] according to Formula (2): 
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min
norm

max min


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
2 1
v v

v
v v

 (2) 

where, v is one of the variables, and vmax and vmin represent the maximum and minimum values of v 

respectively, with vnorm being the normalized value of v. 

(2). Determine the Number of Hidden Layer Neurons 

Generally, the optimal number of neurons in the hidden layer is determined by empirical 

formula. Nevertheless, in this paper, N is determined by trial method. For certain value of N 

belonging to [6,18], take the tansig function and logsig function as the activation function of hidden 

layer neurons and output layer neurons respectively, initialize weights and thresholds randomly, set 

the iteration times to be 30,000 based on the phenomenon that at that time the falling speed of 

training errors has been quite small, then the network is trained 10 times on the training data set 

with traingdx learning function. For example, take N = 8, the results of the mean square errors (MSE) 

are shown in Table 1. The average MSE of the 10 training results are calculated as shown in Table 2. 

At last, N is determined to be 13 for in that condition the smallest average MSE is achieved. Then, 

retrain the network with target MSE = 6 × 10−2, after 54,728 iterations, the training process is finished, 

the ultimate BP neural network model is obtained.  

Table 1. Mean square errors (MSE) of the training results when number of hidden layer neurons N = 

8. 

Training Process Sequence 1 2 3 4 5 6 7 8 9 10 

MSE (10−2) 7.133 7.153 7.137 7.124 7.185 7.161 7.201 7.195 7.113 7.165 

Table 2. Training results of network with different number of hidden layer neurons. 

N 6 7 8 9 10 11 12 13 14 15 16 17 18 

Average MSE (10−2) 7.02 7.12 7.16 7.07 6.92 6.74 6.83 6.51 6.78 7.14 7.04 6.96 7.03 

(3). Model Accuracy Validation 

The estimation results of the BP neural network model on the training data set are shown in 

Figure 3. It is known that the estimation results of the 440 nm band AOD and 1020 nm band AOD are 

both consistent with the truth values, indicating that BP neural network model has a good fitting 

ability on training data set. Considering that the value of AOD is generally in the range of 0 to 2.5, 

Absolute error (AE) of estimation results on test data set are calculated to validate the estimation 

accuracy of the BP neural network model, as shown in Figure 4. The mean absolute error (MAE) of 

440 nm band AOD is 0.1869, and the number of test samples on which AE is less than 0.3, accounting 

for 86.8% of the total test data set; the MAE of 1020 nm band AOD is 0.1067, and the number of test 

samples on which AE is less than 0.2, accounting for 90.3% of the total test data set. 
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Figure 3. Estimation results of the BP neural network model on the training data set. 

 

Figure 4. Estimation results of BP neural network model on test data set. 

2.3.2. SVM Estimation Models 

Two SVM models, SVM-1 and SVM-2, were established respectively using Lib SVM toolbox, 

and had the same input variables as the BP Neural Network Model. The output variable of SVM-1 is 

the 440 nm band AOD τ440(t), while the output variable of SVM-2 is 1020 nm band AOD τ1020(t). The 

Gaussian kernel function is adopted for the two SVM models. The key to getting a high performance 

SVM model is to set reasonable training parameters, which mainly includes a loss coefficient ε, a 

penalty factor C, and a kernel function parameter σ2 in this paper. Considering that the loss 

coefficient ε mainly affects the generalization ability of the model, and is independent of C and σ2, a 

constant value to C and σ2 is given respectively, and the optimal value of ε is determined firstly 

according to the number of support vectors and MSE of estimation results on the training data set. 

After that, the C and σ2 are determined by the grid search method according to the training accuracy 

on training data set. Ultimately, the training parameters of the SVM-1 model and SVM-2 model are 

finally determined as: ε1 = 0.02, C1 = 6, 2
1  = 10, ε2 = 0.01, C2 = 7, 2

2  = 10. The estimation results of 

the SVM-1 model and SVM-2 model on the training samples are shown in Figure 5. It is known that 

the estimation results of the 440 nm band AOD and 1020 nm band AOD are both within the same 

trend with the truth values. 
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Figure 5. Estimation results of support vector machine (SVM) models on the training data set. 

In order to verify the estimation accuracy of the SVM-1 model and the SVM-2 model, AE of 

estimation results on test data set were calculated, as shown in Figure 6. The MAE of 440 nm band 

AOD was 0.1591, and the number of test samples on which AE was less than 0.3, accounting for 90.2% 

of the total test data set; the MAE of 1020 nm band AOD was 0.0786, and the number of test samples 

on which AE is less than 0.2, accounting for 92.9% of the total test data set. 

The BP neural network model and the SVM models were compared with the MAE as well as the 

MSE of estimation results on the test data set, as shown in Table 3. It was known that their 

performances are quite close. The SVM models had smaller MAE and MSE than the BP neural 

network model, which indicates that the SVM models had higher estimation accuracy. Therefore, the 

SVM models were selected for final AOD estimation in this paper. 

 

Figure 6. Estimation results of SVM models on the test data set. 
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3. Calculation of Solar Irradiance 

The clear sky irradiance models are suitable for calculating the solar irradiance under cloudless 

weather. They can also be used for calculating the solar irradiance in cloudy weather through 

introducing a cloud cover coefficient. Among the appeared clear sky irradiance models, REST2 

model has been proven to have a higher accuracy than other models [8].  

3.1. Introduction and Simplification of REST2 Model 

The REST2 model calculates the direct irradiance and the diffuse irradiance of band 1 (0.29 um ~ 

0.7 um) and band 2 (0.7 um ~ 4 um), respectively. For each of the two-bands, i, the band direct 

irradiance, is obtained from a product of individual transmittances: 

i i i i i i i iE =T T T T T T Ebn R g o n w a 0n
 (3) 

where TRi, Tgi, Toi, Tni, Twi, and Tai are the band transmittances for Rayleigh scattering, uniformly 

mixed gases absorption, ozone absorption, nitrogen dioxide absorption, water vapor absorption, 

and aerosol extinction, respectively. The extra-atmospheric irradiances at the mean sun-earth 

distance are E0n1 = 635.4 W/m2 and E0n2 = 709.7 W/m2 in the two bands, respectively. Considering Tgi, 

Toi and Tni have less impact on Ebni, this paper ignores them to simplify the REST2 model, and then 

total direct irradiance is calculated as:  

bn bn1 bn2

bn R w a 0ni i i i i

E = E + E

E =T T T E





 (4) 

For each band, based on the AOD 𝜏ai, Tai is calculated as [29,30]: 

a a a
exp( )

i i
T = -m  (5) 

where ma is the optical mass for aerosol extinction, which could be obtained from solar zenith angle 

Z: 

0 18198 1 9542 10 16851 95 318. .

a
[cos . / ( . ) ]m = Z Z Z    (6) 

and Z could be calculated as: 

h
Z      arccos(sin sin cos cos cos )

 (7) 

(2 )
284

=23.45 sin
365

d
 


 

 
(8) 

( )12 15    h sH
 (9) 

where φ is the site latitude, δ is the earth declination, θh is the solar hour angle, Hs is the sun time, d is 

the sequence number of the day of the year.  

Twi is calculated as [29,30]: 

T = + h m + h mw1 1 w 2 w(1 ) (1 )  (10) 

2 2

1 2 3 4(1 ) (1 )w2 w w w wT c m c m c m c m      (11) 

where mw is the optical mass for water vapor absorption, which could be obtained from solar zenith 

angle Z: 

0.11423 1.9203 1

w
[cos 0.10648 / (93.781 ) ]m = Z Z Z    (12) 

and h1, h2, c1, c2, c3, c4 could be obtained from precipitable water w: 

(0.065445 0.00029901 ) 1.27281 ) (1 )h = w w + w  (13) 

2
(0.065687 0.0013218 )) (1 1.2008 )h = w w + w  (14) 
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2 2

1
(19.566 1.6506 1.0672 ) / (1 5.4248 1.6005 )c = w w w + w w    (15) 

2 2

2
(0.50158 0.14732 0.047584 ) / (1 1.1811 1.0699 )c = w w w + w w    (16) 

2 2

3
(21.286 0.39232 1.2692 ) / (1 4.8318 1.412 )c = w w w + w w    (17) 

2 2

4
(0.70992 0.23155 0.096514 ) / (1 0.44907 0.75425 )c = w w w + w w    (18) 

TRi is calculated as [29,30]: 

' ' 2

1 ' ' 2

( )

( )

R R
R

R R

1 1.8169 0.033454

1 2.063 0.31978

 


 

m m
T

m m  
(19) 

' ' 2( ) ( )R2 R R1 0.010394 1 0.00011042T m m    (20) 

where 
'

Rm  is the optical mass for Rayleigh scattering, which could be obtained from solar zenith 

angle Z and site pressure P:  

' 0.095846 1.754 1

R
( )[cos 0.48353 / (96.7/ 1013.25 41 ) ]m = Z Z ZP    (21) 

The corresponding calculated formula for the diffuse irradiance of the simplified REST2 model 

is: 

1 2

0.25 0.25

0 0

[ (1 ) (1 )]

cos

( ) / (1 )

d d d

d dp dd

dp w R R a a R as 0

n

dd g s b dp g s

i i i

i i i i i i i i i

i i

i i i i i i i

E E E

E E E

E T B T T B FT T E

E E Z
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 


 
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(22) 

where Ed is the total diffuse irradiance, Edi is band diffuse irradiance, Edpi is the band incident diffuse 

irradiance, Eddi is the band backscattered diffuse irradiance.  

Tasi is the band aerosol scattering transmittance, which could be expressed as: 

as a a
exp( )

i i i
T = -m   (23) 

where i


is the single-scattering albedo. For general use, the typical values 1
0 92.   and 2

0 84. 

are recommended. 

BRi is the band forward scattering fraction for Rayleigh extinction. For band 2, there is BR2 = 0.5, 

while for Band 1, BR1could be obtained from mR [29,30]: 

2 
R1 R R

0.5(0.89013 0.0049558 0.000045721 )B = m m

 
(24) 

where: 

  0.095846 1.754 1

R
[cos 0.48353 / (96.741 ) ]m Z Z Z

 
(25) 

Fi is the band correction factor [25,26], for Band 1, there is: 

0 1 21 a1 a1
( + )/(1+ )F = g g g   (26) 

where 0
g

, 1
g

and 2
g

could be obtained from ma: 

 2 2

0 a a a
(3.715+0.368 0.036294 )/(1+0.0009391 )g = m m m  (27) 

   2 2

1 a a a
( 0.164 0.72567 0.20701 )/(1+0.0019012 )g = m m m  (28) 

   2 2

2 a a a
( 0.052288 0.31902 0.17871 )/(1+0.0069592 )g = m m m  (29) 
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for band 2, there is: 

0 1 22 a2 a2
( + )/(1+ )F = h h h   (30) 

where 
0
h ,

1
h and

2
h could be obtained from ma: 

 2 1.5

0 a a a
(3.4352+0.65267 0.00034328 )/(1+0.034388 )h = m m m  (31) 

 2 1.5

1 a a a
(1.231-1.63853 0.20667 )/(1+0.1451 )h = m m m  (32) 

 2 1.5

2 a a a
(0.8889-0.55063 0.50152 )/(1+0.14865 )h = m m m  (33) 

Ba is the aerosol forward scatterance factor, which could be obtained from solar zenith angle Z: 

a
1 exp( 0.6931 1.8326cos )B = Z    (34) 

ρsi is the band sky albedo, which could be obtained from Angstrom wave exponent αi and 

Angstrom turbidity factor βi. For band 1, there is: 

    

  

   

  

s
=

1 1 1 1 1

1 1 1

[0.13363 0.00077358 (0.37567 0.22946 ) / (1 0.10832 )] /

[1 (0.84057 0.68683 ) / (1 0.08158 )]
 (35) 

For band 2, there is: 

    

  

   

  

s
=

2 2 2 2 2

2 2 2

[0.010191 0.00085547 (0.14618 0.062758 ) / (1 0.19402 )] /

[1 (0.58101 0.17426 ) / (1 0.17586 )]
 (36) 

in this paper, take 
1 2

1.3=   , and βi is calculated according to Angstrom equation: 

a

a
i

i i i
=    (37) 

ρgi is the band ground albedo, and 
1 2

0.2
g g
=    is considered here.  

In this paper, AOD of band 1, τa1, AOD of band 2, τa2, are replaced by τ440 and τ1020 as predicted 

by SVM estimation models. The precipitable water w is calculated by the linear fitting model 

proposed by Li Chao [31], that is: 

0.518 0.177w SVP     (38) 

where SVP is the ground water vapor pressure, according to air relative humidity R, and the air 

temperature T, there is: 

0

a

b10   s

T

TSVP R e  
(39) 

where es0 is the saturated vapor pressure at 0 °C, with the empirical coefficient at a = 7.5, b = 237.3. 

3.2. Total Irradiance Calculation 

After the direct irradiance and the diffuse irradiance is calculated, for clear-sky weather, 

assuming that the diffuse irradiance is isotropic, the total irradiance that reaches a PV panel facing 

the equator and arranged with a tilt angle β to the horizontal is: 

x b d

1
= (cos cos sin sin cos ) (1 cos )

2
n hE E Z Z E Z      (40) 

For sun-tracking PV panel, its normal direction is in accordance with the main direction of 

sunlight, so that the received total irradiance is: 

x b d

1
= (1 cos )

2
nE E E Z   (41) 
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In order to evaluate the calculation accuracy of the simplified REST2 model, taking the Baoding 

Campus of North China Electric Power University (NCEPU, Baoding) as the experimental site, the 

solar irradiance toward the main direction of sunlight is measured using a TES-1333R type 

photometer during clear-sky weather between July 2016 and November 2016. Considering the 

photometer has better measurement accuracy when solar irradiance is higher, 65 groups of data 

measured at midday were selected as truth values of solar irradiance for evaluation. 

Correspondingly, PM10 concentration and PM2.5 concentration were collected from the national 

level air quality monitoring site named 2nd Campus of NCEPU. Air relative humidity and air 

temperature were collected from China Weather Network. Then 440 nm band AOD and 1020 nm 

band AOD are estimated using the established SVM models, and the total irradiance is calculated 

with the simplified REST2 model and Formula (41). The calculated irradiances are compared with 

the truth values, as shown in Figure 7. The MRE is 9.46%, which indicates that the calculated 

irradiance has satisfied accuracy. 

 

Figure 7. Calculation of accuracy evaluation of the simplified REST2 model. 

4. Estimation of Efficiency Reduction for Dust Deposition 

Under the F-H weather, the particulate matter suspended in the air continuously settles down 

and forms dust deposition on the surface of the PV panels, which lowers the PV panels’ conversion 

efficiency mainly by affecting the transmittance. Considering that it is inconvenient to measure the 

dust density in real time, this paper represents the dust density by integral of PM concentration, and 

constructs the sample set of “cumulative PM concentration—efficiency reduction” through special 

measurement experiments in F-H weather, then the actual efficiency reduction under certain dust 

deposition state is estimated with similar-day choosing method. 

4.1. Process of the Special Measurement Experiment 

From November 2015 to October 2016, special measurement experiments were carried out in 

NCEPU, Baoding, to reflect the effect of dust deposition on PV panels’ efficiency reduction. The 

10PV panels utilized for tests were purchased in the same batch, of which the main specification 

parameters are shown in Table 4.  

Table 4. Specifications of the photovoltaic (PV) panels utilized for special measurement experiment. 

Parameters Values 

Cell type polysilicon 

PV single module nominal efficiency 11.9% 
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Size of the PV module(length × width × thickness) 536 × 477 × 28 mm 

Maximum output power under standard test condition (STC) 30 W 

Open-circuit voltage 21.6 V 

Working voltage at the maximum power point 17.6 V 

Short-circuit current 1.7 A 

Working current at the maximum power point 1.6 A 

The 10 PV panels were divided equally into five groups, and arranged on the open platform of 

an office building (named Automation Building) with tilt angles β of 0°, 30°, 45°, 60°, 90° to the 

horizontal respectively, as shown in Figure 8. A solar simulator was constructed with high pressure 

xenon lamp, trigger, dimmer, voltage regulator, combined with the maximum power point tracking 

(MPPT) controller and resistance load, and a special measurement system was set up to realize the 

accurate measurement of the PV panels’ output power under constant irradiance conditions, as 

shown in Figure 9. 

 

Figure 8. Arrangement of the PV panels. 

In this paper, repetitive measurement processes of PV panels’ efficiency reduction were carried 

out with a period of 14 days for every measurement process, the specific steps of which were as 

follows: 

 

Figure 9. Structure of the special measurement system. 

(1) The surfaces of the five groups of PV panels were cleaned and placed one by one in the 

constant irradiance condition (1000 W/m2) generated by the solar simulator. After the working point 

was controlled to the maximum power point (MPP) with the conductance incremental method, the 

output power was measured. The average output power of each group of PV panels was calculated 

and regarded as P0. 
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(2) The five groups of PV panels were arranged on the open platform to naturally realize the 

dust deposition, and rain weather and snow weather were avoided. 

(3) The PV panels were taken back to the special measurement system periodically (set ΔT = 24 

h as time interval) and the average output power of each group of PV panels in the same constant 

irradiance condition was measured. Meanwhile, the average concentration of PM2.5 and PM10 

during the measurement interval is calculated. The group of PV panels with tilt angle β = 0° for 

example, for the i-th measurement (i = 1, 2, …, M. M is the total number of measure times in one 

measurement process), were regarded with the average output power as Pi, and the average 

concentration of PM10 and PM2.5 were calculated as CiPM10 and CiPM2.5 respectively, then one group of 

measure samples {(CiPM10, CiPM2.5, Pi)} was obtained for one measurement process.  

(4) Return to (1) for the next measurement process if one measurement process is finished, else 

return to (2). 

4.2. Construction and ofAnalysisof Sample Set “Cumulative PMConcentration—Efficiency Reduction” 

For each group of PV panels, the sample set of “cumulative PM concentration—efficiency 

reduction” was constructed based on the corresponding measure samples. For a  group of PV 

panels with tilt angle β = 0° for example, for the i-th measurement in certain measurement process, 

the cumulative PM10 concentration PM10

*

iC , the cumulative PM2.5 concentration PM2.5

*

iC , and the 

efficiency reduction of the PV panels ηi are calculated as: 

1

PM10 PM10

i
*

i j

j

C C T

 

(42) 

1

PM2.5 PM2.5

i
*

i j

j

C C T

 

(43) 

0

0

%100


 i
i

P P

P  
(44) 

Thereby, based on one group of measure samples {(CiPM10, CiPM2.5, Pi)}, one group of samples 

“cumulative PM concentration—efficiency reduction” {( PM10

*

iC , PM2.5

*

iC ,ηi)} was obtained 

correspondingly. After the repetitive measurement processes are accomplished, the sample set of 

“cumulative PM concentration—efficiency reduction” was constructed. The sample set in 

three-dimensional space with the least square surface fitting method was drawn, as shown in Figure 

10. 
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Figure 10. Sample set for PV panels with tilt angle β = 0°. 

It was obvious that the efficiency reduction of PV panels increased with the growth of 

cumulative PM concentration, indicating that the higher the cumulative PM concentration was, the 

more serious the dust accumulation on PV panels was. The obtained maximum efficiency reduction 

of the repetitive measurement processes was 22.19% for PV panels, with tilt angle β = 0°. 

In order to analyze the effect of tilt angle β on the efficiency reduction of PV panels, certain 

measurement process (6 December 2015 to 19 December 2015) is taken as an example, the daily air 

quality of Baoding during the measurement process is shown in Table 5, and the efficiency reduction 

curves of the five group of PV panels were plotted with the number of days for dust deposition, as 

shown in Figure 11.  

 

Figure 11. Efficiency reduction of PV panels with different tilt angle. 

Table 5. Dailyair quality of Baoding, China, 7–20 December 2015. 

Number of Days 

for Dust 

Deposition 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Date (Dec.) 7  8 9 10  11  12  13  14  15  16 17 18 19 20 

Air Quality Index 

(AQI) 
322 362 318 349 144 172 352 218 48 39 161 228 254 378 

AQI Level 6 6 6 6 3 4 6 5 1 1 4 5 6 6 

PM2.5 (μg/m3) 275 314 267 301 110 132 303 179 19 18 122 181 203 333 

PM10 (μg/m3) 349 405 363 391 156 189 397 243 49 40 179 258 270 425 

With the growth of the number of days for dust deposition, the PV panels with smaller tilt angle 

β has consistent greater efficiency reduction, which indicated the degree of dust deposition is 

inversely proportional to tilt angle β. Meanwhile, the variation trends of the five groups of PV panels’ 

efficiency reduction are quite similar. The daily AQI Levels of 7 December 2015 to 10 December 2015 

were all “serious pollution”, and the efficiency reduction of each groups of PV panels increased 

quite rapidly. The daily AQI Levels of 15 December 2015 and 16 December 2015 are both “excellent 

condition”, while the efficiency reduction increased quite slowly, even slightly decreased efficiency 

reduction was found for PV panels with β = 90° and β = 30°. On the whole, the efficiency reduction 

increased faster in the early stage of dust deposition, then gradually slowed down, and the smaller 

the tilt angle β was, the more obvious the above tendency was. 

Because the actual irradiance varies continuously, efficiency reduction of PV panels (β = 0°) in 

different irradiance conditions were compared, as shown in Figure 12. It is known that for every 

dust deposition state, the variance of corresponding efficiency reduction is quite small when the PV 
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panels are placed in different irradiance conditions. Therefore, the sample set of “cumulative PM 

concentration—efficiency reduction” constructed in the constant irradiance condition (1000 W/m2) 

could be generalized to other irradiance conditions. 

 

Figure 12. Efficiency reduction of PV panel in different irradiance conditions. 

4.3. Estimation of Efficiency Reduction Based on Similar-Day Choosing Method 

Generally, the tilt angle of PV panels was determined mainly according to the latitude. In this 

paper, a similar-day choosing method was adopted to estimate the efficiency reduction of PV panels 

in certain dust deposition state with arbitrary tilt angle β*. Above all, the cumulative PM 

concentration from the last cleaning time was calculated, and the two sample sets of “cumulative PM 

concentration—efficiency reduction” the corresponding tilt angle are β1 and β2 adjacent to β* were 

selected. Then, according to the nearest neighbor principle of cumulative PM concentration, the 

similar-day sample in each sample set was selected. Eventually the efficiency reduction in current 

dust deposition state was estimated by implementing linear interpolation on the efficiency reduction 

of the selected two similar-day samples, according to the distances from tilt angle β* to the tilt angles 

β1 and β2.  

5. Ultra-Short-Term Forecast Method for PV Generation 

5.1. Photoelectric Conversion Model 

The output of PV panels was mainly affected by the received total irradiance E and the 

component working temperature t0. Without considering the influence of dust deposition to PV 

panels, the photoelectric conversion model is [32]: 

0[ ( )]  sP SE tpv 1 0.005 25  (45) 

where ηpv and S are the conversion efficiency and area of the PV panels, respectively. The component 

working temperature t0 can be estimated according to the received total irradiance E and the air 

temperature T: 

0t T kE 
 

(46) 

where k is the temperature coefficient, and its typical value is 0.03 [33]. 

In this paper, efficiency reduction η is introduced into the photoelectric conversion model to 

reflect the influence of dust deposition on PV panels. By combining Formula (45) with Formula (46), 

the photoelectric conversion model is expressed as: 

1 1 0 005 25     
s
P SE T kE

pv
( ) [ ( )].  (47) 

5.2. Process of Ultra-Short-Term Forecast of PV Output Power 
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In this paper, an hourly ultra-short-term forecast method of PV output power under F-H 

weather is presented, the flow chart of which is shown in Figure 13.  
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Figure 13. Flow chart of the presented forecast method. 

Above all, the predicted values of the input variables to the established SVM estimation models 

of AOD in next hour needed to be acquired respectively. There into, predicted values of PM2.5 

concentration and PM10 concentration in the next hour were obtained using a weighted moving 

average method based on the real-time data released by air quality monitoring site, while predicted 

values of air relative humidity and air temperature were collected directly from the weather forecast 

result of the Accuweather Company, and predicted value of aerosol scale height was approximated 

to be the mean value of the current season. Then, the 440 nm band AOD and 1020 nm band AOD 

were estimated by SVM estimation models. Meanwhile, the precipitable water in the next hour was 

predicted by the linear fitting model. Secondly, the direct irradiance and diffuse irradiance were 

forecasted with the simplified REST2 model respectively, and the total irradiance received by the PV 

panel was calculated according to the arrangement conditions. Thirdly, based on the calculation of 

cumulative concentration of PM, the efficiency reduction of PV panels caused by dust deposition 

was estimated and introduced into the photoelectric conversion model, and then the forecast of PV 

output power in the next hour is accomplished.  

6. Case Study 

The effects of F-H on output power of PV panels and the presented ultra-short-term forecast 

method were evaluated using a 1.2 kW PV generation system on the roof platform of Automation 

Building in NCEPU, Baoding, of which the PV panels were arranged towards the equator and with a 

tilt angel of 35° to the horizontal, as shown in Figure 14, and the main specification parameters of the 

PV panels are shown in Table 6.  
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Figure 14. PV generation system for case study. 

Table 6. Specifications of the panels of the PV generation system. 

Parameters Values 

Cell type polysilicon 

PV single module nominal efficiency 15.1% 

Size of the PV module(length × width × thickness) 1640 × 990 × 35 mm 

Maximum output power under STC 235 W 

Open-circuit voltage 37.0 V 

Working voltage at the maximum power point 29.5 V 

Short-circuit current 8.54 A 

Working current at the maximum power point 7.97 A 

In order to conveniently analysis the effects of F-H on output power of PV panels, three 

cloudless days were chosen to perform the forecast experiment: (1) 14 December 2016, the daily air 

quality was at “good condition”, and surface of PV panels was dustless; (2) 16 December 2016, the 

daily air quality was at “severe pollution”, and the surface of PV panels was dustless; (3) 23 

December 2016, the daily air quality was at “good condition”, and dust had naturally accumulated 

on the surface of PV panels since 17 December 2016. The daily air quality of Baoding from 14–23 

December 2016 is shown in Table 7. 

Table 7. Daily air quality of Baoding, China, 14–23 December 2016. 

Date AQI AQI Level PM2.5 (μg/m3) PM10 (μg/m3) 

14 December 2016 80 Good/2 56 78 

15 December 2016 161 Moderate/4 121 160 

16 December 2016 245 Severe /5 194 244 

17 December 2016 313 Serious/6 262 322 

18 December 2016 336 Serious/6 286 357 

19 December 2016 438 Serious/6 408 494 

20 December 2016 350 Serious/6 297 421 

21 December 2016 432 Serious/6 399 513 

22 December 2016 369 Serious/6 316 444 

23 December 2016 71 Good/2 50 70 

Meanwhile, based on the presented forecast method, an ordinary physical forecast method was 

implemented for comparison by replacing the estimated AOD with season mean values of AOD (τ440 

= 0.41 and τ1020 = 0.16) and ignoring the effect of dust deposition on PV panels. The hourly forecasted 

value and measured value of output power of the PV generation system are shown in Figure 15. 
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Figure 15. Hourly forecast result of output power of the PV generation system. 

It is known that because the experiment time was close to the winter solstice (21 December 

2016), the solar zenith angle Z was greater, which caused the total irradiance to be weaker and the 

output power of the PV system to be lower. On 16 December 2016, there was typical heavy F-H 

weather (LAQI = 5), the PM concentration is higher, and the value of AOD was greater. Compared 

with 14 December 2016, of which the daily air quality was in “good condition”(LAQI = 2), the 

average values of measured output power and output power forecasted by the presented method 

decreased by 16.97% and 17.56% respectively, indicating that F-H has a significant weakening effect 

on solar irradiance. Meanwhile, the presented forecast method could fully reflect this weakening 

effect. In addition, the weakening strength on solar irradiance is related to the air mass (AM). In the 

morning or evening, the AM was greater; thus the F-H had more significant weakening effect on the 

solar irradiance. For example, on 16 December 2016, the PM concentration at 9 o’clock (CPM2.5 = 191 

μg/m3 and CPM10 = 252 μg/m3) was quite close to that at 12 o’clock (CPM2.5= 206 μg/m3 and CPM10 = 256 

μg/m3); nevertheless, compared with 14 December 2016, the output power of the PV generation 

system at 9 o’clock and 12 o’clock decreased by 38.09% and 9.91% respectively. 

The PV panels were cleaned at 8 o’clock on 17 December 2016 and then dust began to naturally 

accumulate on their surface. After six days of serious F-H weather, on 23 December 2016, the 

average value of measured output power of the PV generation system decreased by 14.36% 

compared with that of 14 December 2016, which improves that the dust deposition could result in 

obviously efficiency reduction to PV panels. From 8 o’clock of 17 December 2016 to 8 o’clock of 23 

December 2016, the cumulative concentration of PM2.5 and PM10 reached 44,937 μg·h/m3 and 58,183 

μg·h/m3 respectively, and the efficiency reduction estimated by similar-day choosing method was 

15.46%, which was quite close to the reduction of measured output power, indicating that it is 

reasonable to represent the dust density by cumulative PM concentration. 

In terms of forecast results of the three experiment days, MRE of the presented forecast method 

was 11.61%, while MRE of the ordinary physical forecast method was 16.27%, which indicated that 

the forecast accuracy could be effectively improved when real-time estimation of AOD was 

introduced and the effect of dust deposition on PV panels is taken into account. According to the 

energy industry standards of the People’s Republic of China (NB/T 32011-2013), generally, MRE of 

the ultra-short-term forecast method of PV power in engineering practice should be less 15%. 

Therefore, the accuracy of the presented forecast method is acceptable. Because the output of PV 

generation is intermittent and difficult to forecast, in China, high-level penetration of the PV 
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generation into the grid is still unrealized. In addition, in order to ensure the grid security, 

sometimes PV generation is forbidden to connect to the grid, which results in more power demand is 

supplied by thermal power units. With this background, the presented forecast method could 

benefit an increase in high-level penetration of PV generation into the grid, as well as the economic 

dispatching of the grid. 

7. Conclusions 

Large-scale F-H weather has frequently affected eastern China since 2012, which should be fully 

considered in the forecast work of PV output power. The main contribution of this paper is to 

present a novel ultra-short-term forecast method for PV output power under F-H weather, and the 

following conclusions were drawn: 

(1). Based on data of PM concentration released by air quality monitoring sites as well as data of 

other influence factors, an effective AOD estimation model was established using the BP neural 

network method and SVM method, by which AOD could be accurately obtained in real time, 

then the total irradiance received by PV panels was calculated with satisfactory accuracy by the 

simplified REST2 model. 

(2). It is feasible to represent dust density by cumulative PM concentration for convenience when 

analyzing the effect of dust deposition on PV panels’ conversion efficiency. Based on a sample 

set of “cumulative PM concentration—efficiency reduction” constructed through special 

measurement experiments, the efficiency reduction of PV panels under certain dust deposition 

state could be estimated with similar-day choosing method. 

(3). The case study indicates that the accuracy of the presented forecast method is satisfactory for it 

is able to fully reflect the dual effects of F-H on output power of the PV generation system. The 

forecast error is mainly derived from the error of AOD of as well as the error of estimated 

efficiency reduction, thus the training data set for AOD and sample set of “PM cumulative 

concentration—PV power attenuation rate”—should be replenished to achieve better 

performance on AOD estimation and efficiency reduction estimation, which will be studied in 

later work. 

(4). The presented forecast method could be easily realized in practice as long as there is an air 

quality monitoring site near the position of the PV generation system.Therefore, it hasbroad 

prospectsinapplication as the number of air quality monitoring sites continue to grow. 
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